CN105624585A - 一种浮式lng管线用x80q热轧厚板及其生产方法 - Google Patents

一种浮式lng管线用x80q热轧厚板及其生产方法 Download PDF

Info

Publication number
CN105624585A
CN105624585A CN201410691652.4A CN201410691652A CN105624585A CN 105624585 A CN105624585 A CN 105624585A CN 201410691652 A CN201410691652 A CN 201410691652A CN 105624585 A CN105624585 A CN 105624585A
Authority
CN
China
Prior art keywords
cooling
steel plate
hot
temperature
rolled thick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410691652.4A
Other languages
English (en)
Other versions
CN105624585B (zh
Inventor
张帅
任毅
王爽
刘文月
高红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Angang Steel Co Ltd
Original Assignee
Angang Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Angang Steel Co Ltd filed Critical Angang Steel Co Ltd
Priority to CN201410691652.4A priority Critical patent/CN105624585B/zh
Publication of CN105624585A publication Critical patent/CN105624585A/zh
Application granted granted Critical
Publication of CN105624585B publication Critical patent/CN105624585B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明提供浮式LNG管线用X80Q热轧厚板,钢板厚度≥31mm,成分按重量百分比计:C:0.040%~0.075%、Si:0.16%~0.29%、Mn:1.50%~1.75%、P≤0.015%、S≤0.002%、Nb:0.03%~0.05%、Ti:0.021%~0.039%、V:0.07%~0.09%、Als:0.021%~0.039%,N:0.003%~0.006%、Ti/N:3.42~6.95、Mo:0~0.14%、Ni:0.10%~0.19%、Cu:0.10%~0.19%、Cr<0.15%、(Mo+Ni+Cu):0.25%~0.40%,余量铁和不可避免杂质;方法:精炼控制(O+N+H)≤80PPm;粗轧温度1010~1120℃,每道次变形量≥12%,累计变形量≥54%,精轧温度770~860℃,累计变形量61%~73%;轧后冷却和热处理采用在线淬火+回火或ACC+调质。工艺灵活,便于实施,钢板残余应力小,组织带状和成分偏析低,服役条件下微观组织结构和性能稳定。

Description

一种浮式LNG管线用X80Q热轧厚板及其生产方法
技术领域
本发明属于低碳低合金钢领域,尤其涉及一种海洋天然气开采、输运浮式LNG项目管线用厚度≥25.4mm的X80Q热轧厚板及其生产方法。
背景技术
随着世界对石油和天然气需求量日益增加及陆上油气资源的逐渐枯竭,新兴油气资源的开采目标逐渐向海洋转移,近年来,各国对海底资源的勘探和开采愈加重视,相应的海底油气开采、输运项目和设施的建设大幅增加,对相应管线用钢板、钢管的需求日益增大。
LNG(LiquefiedNaturalGas)指液化天然气,浮式LNG项目是海洋天然气工程中一种新型的海上气田开发项目,集海上天然气的净化、液化、储存、再气化、装卸和外输为一体,具有建设周期短、便于迁移和可重复使用及对环境影响小等优点,是未来海上油气项目建设的一个重要领域。浮式LNG项目所用管线钢一般为调质态产品,厚度相对较大,除了要求钢板保证相应的强度外还需具有良好的低温韧性、耐腐蚀性、焊接性等,兼具组织性能稳定、内应力低等特点。浮式LNG项目管线用厚度≥25.4mm的X80Q钢板要求屈服强度560-665MPa,抗拉强度625-825MPa,屈强比≤0.92,-30℃下平均冲击功≥180J,-20℃下DWTT平均韧性剪切面积≥85%。
一般来说,管线钢的厚度越大其晶粒细化和微观组织均匀性控制越困难,造成DWTT性能显著恶化,因此,大壁厚(厚度超过30mm)管线钢的DWTT性能控制一直是管线钢生产应用的重大难题,严重影响了相应油气管道输送项目的建设。同时,浮式LNG项目管线一般为调质态产品,而在油气管道中通常热煨弯管和管件为调质态产品,但不保证DWTT性能;并且,各国浮式LNG项目的建设正处于起步阶段,对浮式LNG管线用钢的研究不足,大壁厚高强度浮式LNG管线用X80Q的相应技术更为稀少。
《一种低屈强比X80管线钢及其制造方法》(CN101768703A),公开了一种X80管线钢,其化学成分重量百分比为C:0.02%~0.06%、Si:0.22%~0.29%、Mn:1.60%~1.90%、P≤0.012%、S≤0.002%、Cu:0.15%~0.25%、Ni:0.20%~0.30%、Nb:0.07%~0.11%、V:0.03%~0.057%、Ti:0.012%~0.022%、Cr:0.08%~0.26%、Mo:0.22%~0.32%、Al≤0.045%、N≤0.0043%、Ca≤0.0018%;其不足之处在于,其成分上Nb、Mo、Ni等合金元素含量较多,制造方法上其轧后冷却采用超快冷+弛豫+加速冷却的方案,且超快冷冷速不低于80℃/s,其所述钢板厚度不超过16mm,工艺操作复杂,对厚规格钢板极难实现。
《一种调质型管线钢板及其生产方法》(CN103266287A),公开的管线钢的化学成分重量百分比为C:0.08%~0.12%、Si:0.20%~0.40%、Mn:1.10%~1.60%、P≤0.008%、S≤0.002%、Ti:0.010%~0.030%、Al:0.020%~0.055%、Ni:0.20%~0.50%、Mo:0.20%~0.50%、V:0.03%~0.06%、Nb:0.02%~0.05%、Cr:0.20%~0.50%,其不足之处在于,所公开的管线钢同样贵重合金含量较多,未公开钢板DWTT性能,且未涉及热处理工艺。
《一种高强度焊管及其生产方法》(US2009297872A1),公开了一种X80级高强度焊管,从其公开内容可以看出,其成分为(重量百分比)C:0.02~0.10%、Si≤0.6%、Mn:1.5%~2.5%、Ni:0.10%~0.70%、Nb:0.01%~0.10%、Ti:0.005%~0.030%、Al≤0.1%、N:0.001%~0.006%、B≤0.0025%、Cu≤0.60%、Cr≤0.80%、Mo≤0.35%、V≤0.05%、Ca≤0.006%、Mg≤0.006%,其余为Fe或杂质元素。产品厚度20mm,其不足之处在于,合金元素含量较多,采用控轧控冷或控轧控冷+回火方式生产。该发明同样存在产品厚度小,生产成本高等问题。
《一种管线用低温落锤性能优异的高强度热轧钢带的生产方法》(KR20060028967(A)),公开了了一种热轧管线钢,虽然-20℃下具有良好的DWTT性能,但其钢板厚度小于15mm,无法满足浮式LNG厚壁X80Q的要求,且成分中含有Ni:0.20%~0.30%、Mo:0.20%~0.30%等较多的贵重元素。
此外,文献《超快冷对X80管线钢屈强比的影响》主要分析冷却工艺对X80管线钢性能、组织影响且其工艺与本发明差异明显;文献《热处理对X80管线钢组织性能影响的研究》、《不同调质热处理X80钢厚板的组织与性能》所涉及的钢板主要用于制作弯管和管件,侧重介绍热处理工艺与组织、性能的关系,且在成分及工艺方面与本发明有明显差异。
发明内容
本发明的目的在于克服上述问题和不足而提供一种海洋天然气浮式LNG项目管线用韧性良好的X80Q热轧厚板及其生产方法,所生产热轧厚板的残余应力小,组织带状和成分偏析低,服役条件下微观组织结构和性能稳定,安全性、耐用性更为优异,工艺灵活,便于实施。
本发明目的是这样实现的:
一种浮式LNG管线用X80Q热轧厚板,其特征在于,该钢板的成分按重量百分比计如下:C:0.040%~0.075%、Si:0.21%~0.35%、Mn:1.65%~1.85%、P≤0.015%、S≤0.002%、Nb:0.03%~0.05%、Ti:0.021%~0.039%、V:0.07%~0.10%、Als:0.021%~0.039%、N:0.003%~0.006%、Ti/N:3.42~7.45、Mo:0~0.14%、Ni:0.10%~0.19%、Cu:0.16%~0.24%、Cr<0.30%、(Mo+Ni+Cu):0.30%~0.45%,余量为铁和不可避免的杂质;所述浮式LNG管线用X80Q热轧厚板的CEIIW控制在0.40%~0.44%、CEPcm控制在0.17%~0.20%,其中CEIIW=C+Mn/6+(Ni+Cu)/15+(Cr+Mo+V)/5,CEPcm=C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10+5B。
本发明成分设计理由:
C是最为廉价有效的强化元素,可以提高淬透性,起到固溶强化和沉淀强化作用,因此,碳含量不宜过低;但是,碳含量的增加对材料韧性和焊接性不利,本发明设定碳控制范围为0.04%~0.075%。
Si可以起到强化作用,但其含量过高会使钢的塑性和韧性降低,对本发明而言,其最佳范围是0.21%~0.35%。
Mn可以起到固溶强化作用,还能增加奥氏体稳定性,对提高淬透性也有利,但是,锰含量过高易诱发偏析,恶化韧性和耐腐蚀性,因此本发明认为将Mn含量控制在1.65%~1.85%较为适宜。
Nb、V、Ti在加热过程中可以抑制奥氏体晶粒长大,细化相变组织;同时还能形成C、N化物沉淀,起到析出强化作用。本发明充分利用了Nb、Ti、V的细晶和析出强化作用,使钢板在热处理后具有良好的综合性能;但其含量过高一方面会造成合金成本增加,另一方面对焊接性产生不良影响,因此,本发明控制Nb:0.03%~0.05%、Ti:0.021%~0.039%、V:0.07%~0.10%。
Al是有效的脱氧元素,但Al含量过高会使钢中的夹杂物增加,影响焊接性,因此,Als的含量控制在0.021%~0.040%为宜。
N可以与Ti、Nb结合形成较高熔点的析出物,对抑制板坯加热和钢板热处理时晶粒长大发挥明显作用,因此,钢中存在一定的N对性能有利,但含量过高会恶化母材和焊接热影响区的韧性,其含量控制在0.003%~0.006%为宜;Ti/N:3.42-7.45可有效控制钢中游离N含量,充分发挥N的有益效果。
Mo可以明显提高奥氏体稳定性和淬透性,增加钢板厚度方向冷却均匀性,促进中低温转变组织形成,但是,钼含量过高不但会增加成本,还对材料焊接性有不利影响,因此,应控制其含量为0~0.14%。
Ni、Cu可以起到固溶强化作用,是奥氏体稳定元素,可以提高淬透性,还能够改善钢的耐腐蚀性能;但Ni价格较高、Cu含量过高会使韧性恶化,因此,本发明将Ni含量控制在0.10%~0.19%、Cu含量控制在0.16%~0.24%。
Cr有很强的固溶强化作用,还可以有效提高组织稳定性,但Cr含量过高会影响焊接性和韧性,所以,Cr含量不超过0.30%为宜。
本发明的CEIIW控制在0.40%~0.44%、CEPcm控制在0.17%~0.20%可以保证钢板获得高强度、高韧性的同时具有适宜的可焊性和耐腐蚀性。
一种浮式LNG管线用X80Q热轧厚板的生产方法,包括冶炼、炉外精炼、连铸、轧制、冷却及热处理;
精炼过程必须进行真空脱气、Ca和微Ti处理,控制(O+N+H)≤80ppm,有效降低钢中有害元素含量并控制夹杂物组成及形态;
连铸坯经清理后加热,坯料加热温度1170~1210℃,加热过程分为预热段、加热段和均热段,总加热时间1.2~1.6min/mm,其中,均热段时间不少于30min。分段加热方式有利于降低连铸坯表面和厚度中心温差,改善组织均匀性,减少加热缺陷;加热温度和保温时间的控制能够保证合金元素充分固溶,促进成分和温度均匀化,同时,有效控制奥氏体晶粒尺寸,为最终钢板能够获得良好的强韧性匹配,提高DWTT性能奠定基础。
粗轧采用横纵向轧制,粗轧温度1010~1130℃,每道次变形量≥11%,累计压下量≥51%;精轧温度770~880℃,累计变形量65%~76%。粗轧阶段对道次变形量的控制可以使奥氏体充分再结晶;累计压下量能够保证整体的晶粒细化效果;精轧阶段保证足够的累积变形量使奥氏体充分变形,增加形核位置;轧制阶段对变形温度的控制和变形量的保证使奥氏体晶粒充分细化,同时能够促进冷却后形成组织的细化,对改善大壁厚管线钢的DWTT性能发挥有益作用。
轧后冷却和热处理采用在线淬火+回火或ACC+调质两种工艺;
采用在线淬火+回火工艺时钢板轧后加速冷却开始温度750~790℃,冷却速度≥15℃/s,终冷温度≤350℃,回火时,回火温度460~540℃,保温1.0~3.0min/mm;采用ACC+调质工艺时钢板轧后加速冷却开始温度730~760℃,冷却速度8~18℃/s,终冷温度380~500℃,之后堆垛缓冷,缓冷冷速0.2~1.0℃/s;调质时,控制淬火温度880~940℃,保温1.0~1.4min/mm,冷却速度≥20℃/s,获得细晶、过饱和固溶组织;回火温度490~570℃,保温时间1.5~4.0min/mm。本发明的轧后冷却和热处理工艺促进了合金元素的析出强化和间隙元素的扩散,提高了屈服强度,降低了残余应力,有效控制了屈强比,使钢板组织性能稳定、内应力低;同时,控制铁素体体积百分比在15%~45%,平均晶粒尺寸不超过15μm,适宜的铁素体比例和细小的晶粒尺寸可以有效改善材料的韧性,保证低温DWTT性能,成功解决了厚规格管线钢DWTT性能控制的难题,从而使钢板获得良好的综合性能。
本发明有益效果在于:
(1)本发明成分设计以C、Mn为基础,充分利用Nb、Ti、V的细晶和沉淀作用提高钢板性能,并通过在钢中加入Cu、Ni元素并配以相应的生产工艺使之发挥出强化、韧化和耐腐蚀性作用,有效提高综合性能,使钢板满足浮式LNG工程要求。
(2)本发明CEIIW和CEPcm适宜,保证材料具有良好的可焊性。
(3)本发明轧后冷却和热处理可采用在线淬火+回火或ACC+调质两种方案,工艺灵活,便于实施。
(4)本发明所述热轧厚板的残余应力小,组织带状和成分偏析低,服役条件下微观组织结构和性能稳定,安全性、耐用性更为优异。
(5)本发明所述浮式LNG管线用X80Q热轧厚板的厚度规格≥25.4mm,横向屈服强度可达到575-635MPa,横向抗拉强度达到650-710MPa,屈强比不超过0.90,-30℃横向冲击功不低于360J,-20℃横向DWTT剪切面积不低于85%,在NACE-0284标准的B溶液中96小时腐蚀试验结果满足技术要求,适用于作为制造浮式LNG管线的原料。
附图说明
图1为本发明实施例1显微组织金相图。
图2为本发明实施例3显微组织金相图。
具体实施方式
下面通过实施例对本发明作进一步的说明。
本发明实施例根据技术方案的组分配比,进行冶炼、炉外精炼、连铸、轧制、冷却及热处理。本发明实施例钢的化学成分见表1。本发明实施例钢的主要轧制工艺参数见表2。本发明实施例钢的主要冷却工艺参数见表3。本发明实施例钢的主要热处理工艺参数见表4。本发明实施例钢热处理后性能见表5。本发明实施例钢抗腐蚀检验情况见表6。
表1本发明实施例钢的化学成分wt%
表2本发明实施例钢的主要轧制工艺参数
表3本发明实施例钢的主要冷却工艺参数
表4本发明实施例钢的主要热处理工艺参数
表5本发明实施例钢热处理后性能
注:拉伸试样为φ12.7mm圆拉伸试样。
表6本发明实施例钢抗腐蚀检验情况
实施例 CLR,% CTR,% CSR,% 检验结论
1 0 0 0 合格
2 0 0 0 合格
3 0 0 0 合格
4 0 0 0 合格
5 0 0 0 合格
6 0 0 0 合格
注:试验溶液为NACEB溶液,腐蚀时间96小时。

Claims (4)

1.一种浮式LNG管线用X70Q热轧厚板,其特征在于,钢板厚度≥31mm,该钢板的成分按重量百分比计如下:C:0.040%~0.075%、Si:0.16%~0.29%、Mn:1.50%~1.75%、P≤0.015%、S≤0.002%、Nb:0.03%~0.05%、Ti:0.021%~0.039%、V:0.07%~0.09%、Als:0.021%~0.039%,N:0.003%~0.006%、Ti/N:3.42~6.95、Mo:0~0.14%、Ni:0.10%~0.19%、Cu:0.10%~0.19%、Cr<0.15%、(Mo+Ni+Cu):0.25%~0.40%,余量为铁和不可避免的杂质;所述浮式LNG管线用X70Q热轧厚板的CEIIW控制在0.37%~0.41%、CEPcm控制在0.16%~0.19%,其中CEIIW=C+Mn/6+(Ni+Cu)/15+(Cr+Mo+V)/5,CEPcm=C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10+5B。
2.一种权利要求1所述浮式LNG管线用X70Q热轧厚板的生产方法,包括冶炼、炉外精炼、连铸、轧制、冷却及热处理,其特征在于:
精炼过程必须进行真空脱气、Ca和微Ti处理,控制(O+N+H)≤80ppm;
连铸坯经清理后加热,坯料加热温度1160~1200℃,加热过程分为预热段、加热段和均热段,总加热时间1.2~1.6min/mm,其中,均热段时间不少于30min;
粗轧采用横纵向轧制,粗轧温度1010~1120℃,每道次变形量≥12%,累计变形量≥54%,精轧温度770~860℃,累计变形量61%~73%;
轧后冷却和热处理采用在线淬火+回火或ACC+调质两种工艺。
3.根据权利要求2所述浮式LNG管线用X70Q热轧厚板的生产方法,所述在线淬火+回火工艺为,钢板轧后加速冷却开始温度750~790℃,冷却速度≥15℃/s,终冷温度≤350℃;回火时,回火温度450~520℃,保温1.0~3.0min/mm。
4.根据权利要求2所述浮式LNG管线用X70Q热轧厚板的生产方法,所述ACC+调质工艺为,钢板轧后加速冷却开始温度720~770℃,冷却速度8~18℃/s,终冷温度400~520℃,之后堆垛缓冷,缓冷冷速0.2~1.0℃/s;调质时,控制淬火温度870~930℃,保温1.0~1.4min/mm,冷却速度≥20℃/s,回火温度470~560℃,保温时间1.5~4.0min/mm。
CN201410691652.4A 2014-11-26 2014-11-26 一种浮式lng管线用x80q热轧厚板及其生产方法 Active CN105624585B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410691652.4A CN105624585B (zh) 2014-11-26 2014-11-26 一种浮式lng管线用x80q热轧厚板及其生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410691652.4A CN105624585B (zh) 2014-11-26 2014-11-26 一种浮式lng管线用x80q热轧厚板及其生产方法

Publications (2)

Publication Number Publication Date
CN105624585A true CN105624585A (zh) 2016-06-01
CN105624585B CN105624585B (zh) 2018-02-02

Family

ID=56039924

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410691652.4A Active CN105624585B (zh) 2014-11-26 2014-11-26 一种浮式lng管线用x80q热轧厚板及其生产方法

Country Status (1)

Country Link
CN (1) CN105624585B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107988548A (zh) * 2016-10-27 2018-05-04 鞍钢股份有限公司 一种适应低温祼露环境的x80管线钢板及其生产方法
CN108467993A (zh) * 2018-06-11 2018-08-31 鞍钢股份有限公司 一种低温管线用超宽高韧性热轧厚板及其生产方法
CN109957709A (zh) * 2017-12-14 2019-07-02 鞍钢股份有限公司 一种含v大变形x70m管线钢板及其制造方法
CN112342350A (zh) * 2020-09-14 2021-02-09 唐山中厚板材有限公司 一种高强韧性厚规格钢板的生产方法
CN113005369A (zh) * 2021-02-26 2021-06-22 五矿营口中板有限责任公司 采用大展宽比模式生产超宽低温x70m管线钢板的方法
CN115323261A (zh) * 2021-05-11 2022-11-11 宝山钢铁股份有限公司 一种调质型抗酸管线用钢板及其制造方法
CN115505848A (zh) * 2022-09-28 2022-12-23 马鞍山钢铁股份有限公司 一种V-Nb-Ti复合微合金化500MPa级-165℃低温抗震钢筋及其生产方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134116A (ja) * 1984-07-24 1986-02-18 Sumitomo Metal Ind Ltd 強靭性熱間圧延コイルの製造法
CN102021497A (zh) * 2009-09-15 2011-04-20 鞍钢股份有限公司 一种x80管线钢热轧板卷及其制造方法
CN102409224A (zh) * 2010-09-21 2012-04-11 鞍钢股份有限公司 低温韧性优异的厚规格海底管线用热轧钢板及其生产方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134116A (ja) * 1984-07-24 1986-02-18 Sumitomo Metal Ind Ltd 強靭性熱間圧延コイルの製造法
CN102021497A (zh) * 2009-09-15 2011-04-20 鞍钢股份有限公司 一种x80管线钢热轧板卷及其制造方法
CN102409224A (zh) * 2010-09-21 2012-04-11 鞍钢股份有限公司 低温韧性优异的厚规格海底管线用热轧钢板及其生产方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107988548A (zh) * 2016-10-27 2018-05-04 鞍钢股份有限公司 一种适应低温祼露环境的x80管线钢板及其生产方法
CN107988548B (zh) * 2016-10-27 2019-06-25 鞍钢股份有限公司 一种适应低温祼露环境的x80管线钢板及其生产方法
CN109957709A (zh) * 2017-12-14 2019-07-02 鞍钢股份有限公司 一种含v大变形x70m管线钢板及其制造方法
CN109957709B (zh) * 2017-12-14 2020-07-17 鞍钢股份有限公司 一种含v大变形x70m管线钢板及其制造方法
CN108467993A (zh) * 2018-06-11 2018-08-31 鞍钢股份有限公司 一种低温管线用超宽高韧性热轧厚板及其生产方法
CN112342350A (zh) * 2020-09-14 2021-02-09 唐山中厚板材有限公司 一种高强韧性厚规格钢板的生产方法
CN113005369A (zh) * 2021-02-26 2021-06-22 五矿营口中板有限责任公司 采用大展宽比模式生产超宽低温x70m管线钢板的方法
CN113005369B (zh) * 2021-02-26 2022-05-27 日钢营口中板有限公司 采用大展宽比模式生产超宽低温x70m管线钢板的方法
CN115323261A (zh) * 2021-05-11 2022-11-11 宝山钢铁股份有限公司 一种调质型抗酸管线用钢板及其制造方法
CN115323261B (zh) * 2021-05-11 2023-08-11 宝山钢铁股份有限公司 一种调质型抗酸管线用钢板及其制造方法
CN115505848A (zh) * 2022-09-28 2022-12-23 马鞍山钢铁股份有限公司 一种V-Nb-Ti复合微合金化500MPa级-165℃低温抗震钢筋及其生产方法
CN115505848B (zh) * 2022-09-28 2023-08-11 马鞍山钢铁股份有限公司 一种V-Nb-Ti复合微合金化500MPa级-165℃低温抗震钢筋及其生产方法

Also Published As

Publication number Publication date
CN105624585B (zh) 2018-02-02

Similar Documents

Publication Publication Date Title
CN106480374B (zh) 一种耐寒管线用高韧性低屈强比热轧厚板及其生产方法
CN105624585B (zh) 一种浮式lng管线用x80q热轧厚板及其生产方法
CN101906575B (zh) 一种高强度经济型x70管线钢热轧平板及其生产方法
CN102912228B (zh) 一种经济型高强度低屈强比管件钢及其生产方法
CN102912250B (zh) 一种油气输送用经济型低屈强比管件用钢及其生产方法
CN109957730B (zh) 一种高塑性厚壁深海管线用平板及其生产方法
CN102618791B (zh) 耐硫化氢腐蚀的高强韧性石油套管及其制造方法
JP2013129879A (ja) 耐硫化物応力割れ性に優れた油井用高強度継目無鋼管およびその製造方法
CN105695898A (zh) 一种浮式lng管线用x70q热轧厚板及其生产方法
CN103469098B (zh) 一种具有良好抗hic性能的x80管线钢及其生产方法
JP2004176172A (ja) 耐水素誘起割れ性に優れた高強度継目無鋼管およびその製造方法
CN105506472A (zh) 560MPa级深海管线用热轧钢板及其生产方法
CN109161790A (zh) 一种酸性条件下使用的高级别高韧性管件钢板及其制造方法
CN106811700B (zh) 一种厚规格抗酸性x60ms热轧卷板及其制造方法
CN107988558B (zh) 一种厚壁调质深海管线用平板及其生产方法
CN103710619B (zh) 一种k60级管件用热轧厚板及其生产方法
CN104264069A (zh) 一种特厚规格x70管线钢及其制造方法
US20160369759A1 (en) Steel pipe for fuel injection pipe and fuel injection pipe using the same
CN105586529B (zh) 一种890MPa级高强度钢、钢管及其制造方法
CN109957714B (zh) 强度和低温韧性优良的管线用钢及其制造方法
CN107988548B (zh) 一种适应低温祼露环境的x80管线钢板及其生产方法
CN113913695B (zh) 耐腐蚀抗疲劳水下油气采输用管线钢及其生产方法
CN102400062B (zh) 低屈强比超高强度x130管线钢
JP6468302B2 (ja) 高強度油井用鋼管用素材および該素材を用いた高強度油井用鋼管の製造方法
CN113930684B (zh) 经济型耐时效高应变析出强化管线钢及其生产方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant