CN105583533A - 用于激光驱动的飞片结构及其制备方法 - Google Patents

用于激光驱动的飞片结构及其制备方法 Download PDF

Info

Publication number
CN105583533A
CN105583533A CN201610159021.7A CN201610159021A CN105583533A CN 105583533 A CN105583533 A CN 105583533A CN 201610159021 A CN201610159021 A CN 201610159021A CN 105583533 A CN105583533 A CN 105583533A
Authority
CN
China
Prior art keywords
layer
film flying
aluminium
laser
laser driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610159021.7A
Other languages
English (en)
Other versions
CN105583533B (zh
Inventor
吉祥波
祝明水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemical Material of CAEP
Original Assignee
Institute of Chemical Material of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemical Material of CAEP filed Critical Institute of Chemical Material of CAEP
Priority to CN201610159021.7A priority Critical patent/CN105583533B/zh
Publication of CN105583533A publication Critical patent/CN105583533A/zh
Application granted granted Critical
Publication of CN105583533B publication Critical patent/CN105583533B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/361Removing material for deburring or mechanical trimming
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals
    • C25D3/44Aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种用于激光驱动的飞片结构及其制备方法,该结构包括透明基底;所述透明基底上设置纳米铝阵列烧蚀层;所述纳米铝阵列烧蚀层上填充氧化铝阻热层;所述氧化铝阻热层上设置铝飞片层。本发明将烧蚀层制备成Al/Al2O3的复合纳米结构,使其与激光产生表面等离子共振吸收效应,降低金属铝对激光的反射作用,提高激光吸收,解决激光驱动飞片中金属铝烧蚀层对激光的高反射难题,促进激光驱动飞片技术的进步。

Description

用于激光驱动的飞片结构及其制备方法
技术领域
本发明涉及激光驱动飞片技术领域,具体涉及一种用于激光驱动的飞片结构及其制备方法。
背景技术
激光驱动飞片技术是用激光束辐照透明基底表面上的金属膜(飞片靶),激光能量将烧蚀一部分膜层产生高压等离子体,利用产生的等离子体推动剩余膜层(飞片)高速飞行,产生极高的瞬时冲击压力。飞片靶是激光驱动飞片中能量转换关键部件,其包含烧蚀层、阻热层和飞片层三层结构。其中烧蚀层的作用是吸收激光的能量,产生高压等离子体。由于铝金属的汽化热较低,容易形成等离子体,而被认为是理想的烧蚀层材料。但是金属铝表面对光的反射率很高,大部分激光能量被反射而浪费,从而导致需要输入高能量的激光去驱动飞片。在基底材料与烧蚀层间加入一层吸光度高的材料(碳黑、Ge、Mg)可以减少激光的反射,增强吸收,但是这些材料的加入影响了铝等离子的产生,激光能量与飞片动能间的转化率仅30%左右,飞片性能并没有得到明显改善。低的能量吸收和转换效率导致驱动高速飞片需要较高的激光能量,难以大规模推广使用激光驱动飞片技术。
发明内容
本发明克服了现有技术的不足,提供一种用于激光驱动的飞片结构及其制备方法。以期待解决传统多层飞片中铝烧蚀层对激光的吸收率低问题,提高激光的利用率,有利于实现该技术的光纤连接和小型化。
为解决上述的技术问题,本发明采用以下技术方案:
一种用于激光驱动的飞片结构,包括透明基底;所述透明基底上设置纳米铝阵列烧蚀层;所述纳米铝阵列烧蚀层上填充氧化铝阻热层;所述氧化铝阻热层上设置铝飞片层。
更进一步的技术方案是纳米铝阵列烧蚀层厚度为0.2μm至1μm。
更进一步的技术方案是纳米铝阵列烧蚀层是圆柱型纳米铝周期阵列结构。
更进一步的技术方案是相邻两个圆柱型纳米铝的中心之间距离为0.6μm至1.2μm。
更进一步的技术方案是圆柱型纳米铝的直径为0.5μm至1μm,长度为0.2μm至1μm。
更进一步的技术方案是氧化铝阻热层厚度为1μm至2μm。
更进一步的技术方案是铝飞片层厚度为4μm至10μm。
更进一步的技术方案是提供一种用于激光驱动的飞片结构制备方法,所述的方法包括以下步骤:
步骤一、在透明基底的表面物理沉积一层金属铝;
步骤二、将金属铝氧化成多孔的氧化铝,然后在孔中电沉积金属铝,孔填充满后得到圆柱型纳米铝周期阵列结构;
步骤三、在圆柱型纳米铝周期阵列结构表面磁控溅射一层氧化铝阻热层;
步骤四、在氧化铝阻热层表面沉积一层金属铝飞片层。
更进一步的技术方案是步骤一是采用阳极氧化或电子束刻蚀方式在在透明基底的表面物理沉积一层金属铝。
更进一步的技术方案是步骤四是采用磁控溅射或粘贴方式在氧化铝阻热层表面沉积一层金属铝飞片层。
与现有技术相比,本发明的有益效果是:本发明将烧蚀层制备成Al/Al2O3的复合纳米结构,使其与激光产生表面等离子共振吸收效应,降低金属铝对激光的反射作用,提高激光吸收,解决激光驱动飞片中金属铝烧蚀层对激光的高反射难题,促进激光驱动飞片技术的进步。
附图说明
图1为本发明一个实施例的结构示意图。
图2为本发明一个实施例中纳米铝直径变化对光的吸收性能分析曲线图。
附图标记说明:1.透明基底,2.纳米铝阵列烧蚀层,3.氧化铝阻热层,4.铝飞片层。
具体实施方式
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
下面结合附图及实施例对本发明的具体实施方式进行详细描述。
实施例1
如图1所示,根据本发明的一个实施例,本实施例公开一种用于激光驱动的飞片结构,该结构包括透明基底1;所述透明基底上设置纳米铝阵列烧蚀层2;所述纳米铝阵列烧蚀层上填充氧化铝阻热层3;所述氧化铝阻热层上设置铝飞片层4。具体的,透明基底1材料可以为K9玻璃,透明陶瓷或透明晶体。本实施例中在YAG的透明陶瓷作为透明基底的表面物理沉积一层金属铝,厚度为1μm。采用阳极氧化的方法将金属铝氧化成多孔的氧化铝,然后在孔中电沉积金属铝,孔填充满后得到圆柱型纳米铝周期阵列结构。在周期结构的缝隙中填充氧化铝作为介质层。圆柱型纳米铝周期阵列结构作为纳米铝阵列烧蚀层2,圆柱型纳米铝周期阵列结构的周期为893nm,即相邻两个圆柱型纳米铝的中心之间距离为0.6-1.2μm;通过控制时间制备出多个直径Ф0.5μm-Ф1μm的圆柱型纳米铝结构。然后圆柱型纳米铝周期阵列结构表面磁控溅射一层氧化铝作为氧化铝阻热层3,氧化铝阻热层厚度为1μm。最后在氧化铝阻热层表面物理沉积一层5μm的金属铝作为铝飞片层4。
如图2所示,本实施例对纳米铝直径变化对光的吸收性能分析曲线图显示,分析发现制备的圆柱型纳米铝周期阵列结构作为纳米铝阵列烧蚀层,该圆柱型纳米铝结构的直径为600-660nm;最后成型的该用于激光驱动的飞片结构对1064nm的光吸收均大于70%。
实施例2
根据本发明的另一个实施例,本实施例进一步公开用于激光驱动的飞片结构的制备方法,该方法包括以下步骤:
步骤1、采用阳极氧化或电子束刻蚀方式在在透明基底的表面物理沉积一层金属铝。
步骤2、将金属铝氧化成多孔的氧化铝,然后在孔中电沉积金属铝,孔填充满后得到圆柱型纳米铝周期阵列结构;使其与激光产生表面等离子共振吸收效应,降低金属铝对激光的反射作用,提高激光吸收。
步骤3、在圆柱型纳米铝周期阵列结构表面磁控溅射一层氧化铝阻热层。
步骤4、采用磁控溅射或粘贴方式在氧化铝阻热层表面沉积一层金属铝飞片层,最终得到用于激光驱动的飞片结构。
本实施例解决了传统多层飞片中铝烧蚀层对激光的吸收率低问题,提高了激光的利用率,有利于实现该技术的光纤连接和小型化。
在本说明书中所谈到的“一个实施例”、“另一个实施例”、“实施例”等,指的是结合该实施例描述的具体特征、结构或者特点包括在本申请概括性描述的至少一个实施例中。在说明书中多个地方出现同种表述不是一定指的是同一个实施例。进一步来说,结合任一个实施例描述一个具体特征、结构或者特点时,所要主张的是结合其他实施例来实现这种特征、结构或者特点也落在本发明的范围内。
尽管这里参照发明的多个解释性实施例对本发明进行了描述,但是,应该理解,本领域技术人员可以设计出很多其他的修改和实施方式,这些修改和实施方式将落在本申请公开的原则范围和精神之内。更具体地说,在本申请公开权利要求的范围内,可以对主题组合布局的组成部件和/或布局进行多种变型和改进。除了对组成部件和/或布局进行的变型和改进外,对于本领域技术人员来说,其他的用途也将是明显的。

Claims (10)

1.一种用于激光驱动的飞片结构,包括透明基底(1);其特征在于:所述透明基底(1)上设置纳米铝阵列烧蚀层(2);所述纳米铝阵列烧蚀层(2)上填充氧化铝阻热层(3);所述氧化铝阻热层(3)上设置铝飞片层(4)。
2.根据权利要求1所述的用于激光驱动的飞片结构,其特征在于所述的纳米铝阵列烧蚀层(2)厚度为0.2μm至1μm。
3.根据权利要求1所述的用于激光驱动的飞片结构,其特征在于所述的纳米铝阵列烧蚀层(2)是圆柱型纳米铝周期阵列结构。
4.根据权利要求3所述的用于激光驱动的飞片结构,其特征在于相邻两个圆柱型纳米铝的中心之间距离为0.6μm至1.2μm。
5.根据权利要求3或4所述的用于激光驱动的飞片结构,其特征在于所述的圆柱型纳米铝的直径为0.5μm至1μm。
6.根据权利要求1所述的用于激光驱动的飞片结构,其特征在于所述的氧化铝阻热层(3)厚度为1μm至2μm。
7.根据权利要求1所述的用于激光驱动的飞片结构,其特征在于所述的铝飞片层(4)厚度为4μm至10μm。
8.一种用于激光驱动的飞片结构制备方法,其特征在于所述的方法包括以下步骤:
步骤一、在透明基底的表面物理沉积一层金属铝;
步骤二、将金属铝氧化成多孔的氧化铝,然后在孔中电沉积金属铝,孔填充满后得到圆柱型纳米铝周期阵列结构;
步骤三、在圆柱型纳米铝周期阵列结构表面磁控溅射一层氧化铝阻热层;
步骤四、在氧化铝阻热层表面沉积一层金属铝飞片层。
9.根据权利要求8所述的用于激光驱动的飞片结构制备方法,其特征在于所述的步骤一是采用阳极氧化或电子束刻蚀方式在在透明基底的表面物理沉积一层金属铝。
10.根据权利要求8所述的用于激光驱动的飞片结构制备方法,其特征在于所述的步骤四是采用磁控溅射或粘贴方式在氧化铝阻热层表面沉积一层金属铝飞片层。
CN201610159021.7A 2016-03-18 2016-03-18 用于激光驱动的飞片结构及其制备方法 Expired - Fee Related CN105583533B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610159021.7A CN105583533B (zh) 2016-03-18 2016-03-18 用于激光驱动的飞片结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610159021.7A CN105583533B (zh) 2016-03-18 2016-03-18 用于激光驱动的飞片结构及其制备方法

Publications (2)

Publication Number Publication Date
CN105583533A true CN105583533A (zh) 2016-05-18
CN105583533B CN105583533B (zh) 2017-08-29

Family

ID=55923633

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610159021.7A Expired - Fee Related CN105583533B (zh) 2016-03-18 2016-03-18 用于激光驱动的飞片结构及其制备方法

Country Status (1)

Country Link
CN (1) CN105583533B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106513990A (zh) * 2016-12-29 2017-03-22 中国工程物理研究院化工材料研究所 含纳米铝球光吸收层适用于1064nm激光的飞片系统及制备方法
CN106835232A (zh) * 2016-12-29 2017-06-13 中国工程物理研究院化工材料研究所 用于1064mm激光驱动飞片系统的飞片结构及制备方法
CN108098165A (zh) * 2017-12-13 2018-06-01 深圳市晶特智造科技有限公司 激光打标方法
CN108593624A (zh) * 2018-04-13 2018-09-28 东南大学 选择性增强的多波长金属等离子共振结构及其制备方法
CN111367068A (zh) * 2018-12-25 2020-07-03 核工业西南物理研究院 激光共振驱动弹丸注入系统
CN113028905A (zh) * 2019-12-25 2021-06-25 南京理工大学 一种小型化脉冲激光器和原位集成微型起爆单元的激光飞片起爆装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5046423A (en) * 1990-04-02 1991-09-10 The United States Of America As Represented By The Department Of Energy Laser-driven flyer plate
US5301612A (en) * 1993-05-28 1994-04-12 The United States Of America As Represented By The United States Department Of Energy Carbon-assisted flyer plates
CN103341693A (zh) * 2013-07-01 2013-10-09 江苏大学 一种提高激光间接微压印成形能力的复合飞片
CN204422565U (zh) * 2014-12-08 2015-06-24 天津大学 一种激光驱动飞片等离子体测速装置
CN105171841A (zh) * 2015-09-29 2015-12-23 扬中中科维康智能科技有限公司 一种冲裁贴片下置放式专用装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5046423A (en) * 1990-04-02 1991-09-10 The United States Of America As Represented By The Department Of Energy Laser-driven flyer plate
US5301612A (en) * 1993-05-28 1994-04-12 The United States Of America As Represented By The United States Department Of Energy Carbon-assisted flyer plates
CN103341693A (zh) * 2013-07-01 2013-10-09 江苏大学 一种提高激光间接微压印成形能力的复合飞片
CN204422565U (zh) * 2014-12-08 2015-06-24 天津大学 一种激光驱动飞片等离子体测速装置
CN105171841A (zh) * 2015-09-29 2015-12-23 扬中中科维康智能科技有限公司 一种冲裁贴片下置放式专用装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106513990A (zh) * 2016-12-29 2017-03-22 中国工程物理研究院化工材料研究所 含纳米铝球光吸收层适用于1064nm激光的飞片系统及制备方法
CN106835232A (zh) * 2016-12-29 2017-06-13 中国工程物理研究院化工材料研究所 用于1064mm激光驱动飞片系统的飞片结构及制备方法
CN106513990B (zh) * 2016-12-29 2018-02-06 中国工程物理研究院化工材料研究所 含纳米铝球光吸收层适用于1064nm激光的飞片系统及制备方法
CN106835232B (zh) * 2016-12-29 2018-08-31 中国工程物理研究院化工材料研究所 用于1064mm激光驱动飞片系统的飞片结构及制备方法
CN108098165A (zh) * 2017-12-13 2018-06-01 深圳市晶特智造科技有限公司 激光打标方法
CN108593624A (zh) * 2018-04-13 2018-09-28 东南大学 选择性增强的多波长金属等离子共振结构及其制备方法
CN111367068A (zh) * 2018-12-25 2020-07-03 核工业西南物理研究院 激光共振驱动弹丸注入系统
CN113028905A (zh) * 2019-12-25 2021-06-25 南京理工大学 一种小型化脉冲激光器和原位集成微型起爆单元的激光飞片起爆装置

Also Published As

Publication number Publication date
CN105583533B (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
CN105583533A (zh) 用于激光驱动的飞片结构及其制备方法
Zhang et al. Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids
US11014197B2 (en) Picosecond-nanosecond laser composite asynchronous ceramics polishing method
US8895844B2 (en) Solar cell comprising a plasmonic back reflector and method therefor
CN107937939A (zh) 三维微细金属结构增材的制造方法及其制造装置
CN1874012A (zh) 高亮度GaN基发光管芯片及其制备方法
CN104993013A (zh) 一种大面积铜铟镓硒薄膜太阳能电池组件的全激光刻划方法
CN1226452C (zh) 激光熔覆纳米陶瓷涂层抗裂的处理方法
CN110315078A (zh) 一种多功能的激光选区熔化成形设备
CN104625422B (zh) 基于电子动态调控乙醇溶液辅助金属加工方法
Chen et al. Review on laser-induced etching processing technology for transparent hard and brittle materials
KR101387918B1 (ko) 유기전계발광표시장치 및 그 제조 방법
JP2013526077A (ja) 構造化された裏面を有する太陽電池およびその製造方法
CN108994448B (zh) 一种激光驱动飞片靶结构及其制备方法
CN203845965U (zh) 激光驱动飞片技术用碳纳米管复合薄膜
CN109132998A (zh) 单脉冲纳秒激光诱导透明介电材料表面周期性结构的方法
CN103205672A (zh) 一种易于焊接的蒸镀用掩模板的制备工艺
CN106835232B (zh) 用于1064mm激光驱动飞片系统的飞片结构及制备方法
CN1887688A (zh) 利用纳米球反相多孔模板制备尺寸可控纳米点阵列的方法
CN106435685B (zh) 铝表面电沉积制备低吸收率与高半球发射率氧化膜的方法
WO2016143366A1 (ja) 透明導電膜付ガラス基板及びその製造方法
CN107378231A (zh) 利用金属纳米墨汁在透明材料表面制备金属结构的方法
TWI382557B (zh) 薄膜太陽能電池之穿透孔製作方法
CN109877470A (zh) 一种锂离子电池多孔铜箔的制备方法
Tang et al. Preparation of hierarchical Micro-Nano titanium dioxide structures via laser irradiation for enhancing water transport performance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170829