CN105583393B - 一种铝合金汽车底盘铸件金属型低压铸造成型用结晶保压后顺序增压方法 - Google Patents

一种铝合金汽车底盘铸件金属型低压铸造成型用结晶保压后顺序增压方法 Download PDF

Info

Publication number
CN105583393B
CN105583393B CN201610130591.3A CN201610130591A CN105583393B CN 105583393 B CN105583393 B CN 105583393B CN 201610130591 A CN201610130591 A CN 201610130591A CN 105583393 B CN105583393 B CN 105583393B
Authority
CN
China
Prior art keywords
pressure
crystallization
stage
pressurize
solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610130591.3A
Other languages
English (en)
Other versions
CN105583393A (zh
Inventor
张花蕊
张虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing hang Da Xin Wood Technology Co., Ltd.
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201610130591.3A priority Critical patent/CN105583393B/zh
Publication of CN105583393A publication Critical patent/CN105583393A/zh
Application granted granted Critical
Publication of CN105583393B publication Critical patent/CN105583393B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/04Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/09Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure
    • B22D27/13Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure making use of gas pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

本发明公开了一种铝合金汽车底盘铸件金属型低压铸造成型用结晶保压后顺序增压方法,该方法在升液、充型和结晶增压阶段,延续现有铝合金铸件低压铸造工艺,升液压力、充型压力和结晶增压压力控制在15~21kPa、25~35kPa和80~100kPa。在结晶保压阶段和卸压阶段之间,增加了顺序增压阶段。根据铸件结构特点和凝固顺序,设定多个特征部位。确定特征部位A开始凝固后,开始增大结晶保压压力;确定特征部位B开始凝固后,加大增压速度;待特征部位C开始凝固后,继续加大增压速度20~40kPa/s,直至结晶保压压力增大到到310~1000kPa,然后保压直至特征部位D凝固结束。本发明方法使得凝固补缩效果和铸件力学性能显著提高,同时避免了铝液飞溅、铸件飞边毛刺等缺陷,显著减低了对模具结构和铸型合模力的要求。

Description

一种铝合金汽车底盘铸件金属型低压铸造成型用结晶保压后 顺序增压方法
技术领域
本发明涉及一种采用低压铸造工艺制作铝合金汽车底盘铸件的方法,更特别地说,是一种按照顺序凝固时间在进入结晶保压阶段后继续顺序增压的、制备铝合金汽车底盘铸件的、金属型低压铸造成型用结晶保压后顺序增压方法。
背景技术
近年来,随着汽车轻量化要求的提高,铝合金结构件在汽车上的应用越来越广泛。以底盘悬架系统为例,铝合金前/后转向节应用比例已接近50%,摆臂、控制臂类零件的铝合金应用比例也达到30%左右。1995年,宝马5系车就采用了全铝悬架,使悬挂系统质量减轻了15%;前桥、后桥采用了铝合金,减重65kg。中高端车型更多的应用铝合金零件,而在低端车型上应用铝合金材料由于价格原因受到很大限制。降低成本成为汽车铝合金零件生产企业努力的方向。
铸造成型铝合金汽车底盘构件的常用材料为A356和A380等,常用的铸造工艺有重力金属型铸造、低压铸造、高压铸造、差压铸造、高真空压铸和半固态铸造等。差压铸造工艺较多用于生产转向节、控制臂等外形复杂、截面变化大、不能产生缩孔缩松等铸造缺陷的高品质铸件。
差压铸造和低压铸造的共同特点在于:(1)充型速度可控,金属液流动平稳、减少了二次夹杂;(2)铸件在压力下凝固,补缩效果好、组织致密,致密度和力学性能显著提高。其差别在于:差压铸造有上下两个压力罐,下压力罐为保温炉和铝液坩埚,上压力罐为铸型(砂型或金属型模具),而低压铸造仅有一个下压力罐,铸型直接暴露在大气中。与低压铸造相比,差压铸造铸件在较大的压力环境下结晶凝固,组织更加致密,但差压铸造的上下罐结构带来的操作不便,以及更复杂的结构和控制系统带来的设备价格增加,导致差压铸造的应用远不及低压铸造普及。
低压铸造工艺过程可用作用在金属液表面的压力-时间曲线来反应。典型的压力-时间曲线包括升液阶段、充型阶段、结壳增压阶段、结壳保压阶段、结晶增压阶段、结晶保压阶段以及卸压阶段等七个不同工艺阶段。金属型低压铸造一般省去结壳阶段,因此,金属型低压铸造工艺过程为:升液、充型、结晶增压、结晶保压和卸压五个阶段。
结晶增压压力直接影响了凝固补缩效果,结晶增压压力越高,凝固补缩效果越好,越有利于消除缩孔缩松等缺陷,提高组织致密度。低压铸造的结晶增压压力一般为50~80kPa,特殊条件下增大到80~150kPa。
对于铝合金金属型低压铸造,实际生产中考虑到铸型合模力的限制以及模具间缝隙带来的铝液溢出飞溅、铸件飞边毛刺等问题,限制了通过提高结晶增压压力进一步提高铸件组织致密度和力学性能的可行性。
发明内容
本发明的目的就在于针对复杂形状、变截面铝合金汽车底盘铸件金属型低压铸造成型难以实现高结晶增压压力的问题,结合该类铸件的结构特点和顺序凝固工艺要求,提出一种在进入结晶保压阶段后根据凝固顺序持续增压的铝合金铸件金属型低压铸造成型用加压方法,以进一步减少缩孔缩松等铸造缺陷、提高铸件组织致密度和力学性能。
本发明的一种金属型低压铸造成型用结晶保压后顺序增压方法,所述金属型低压铸造至少包括有升液阶段、充型阶段、结晶增压阶段、结晶保压阶段和卸压阶段;其特征在于:根据铸件结构特点和凝固顺序,设定多个特征部位,所述特征可以是特征部位A、特征部位B、特征部位C、特征部位D;根据特征部位的凝固顺序在结晶保压阶段与卸压阶段之间增加了结晶保压后顺序增压阶段;
(A)在特征部位A开始凝固后,以5~20kPa/s的速度增大结晶保压压力,直到结晶保压压力到100~200kPa,然后保压到特征部位B开始凝固;若特征部位B开始凝固时,仍未到达100~200kPa压力,则在特征部位B开始凝固时执行步骤B;
(B)在特征部位B开始凝固后,以10~20kPa/s的速度增大结晶保压压力,直到结晶保压压力到210~300kPa,然后保压到特征部位C开始凝固;若特征部位C开始凝固时,仍未到达210~300kPa压力,则在特征部位C开始凝固时执行步骤C;
(C)在特征部位C开始凝固后,以20~40kPa/s的速度增大结晶保压压力,直到结晶保压压力到310~1000kPa,然后进入保压阶段;
(D)在压力310~1000kPa条件下,保压至特征部位D凝固结束后,继续保压10~60s后卸压。
本发明的另一种金属型低压铸造成型用结晶保压后顺序增压方法,所述金属型低压铸造至少包括有升液阶段、充型阶段、结晶增压阶段、结晶保压阶段和卸压阶段;其特征在于:根据铸件结构特点和凝固顺序,设定多个特征部位,所述特征可以是特征部位A、特征部位B、特征部位C、特征部位D;根据特征部位的凝固顺序在所述的结晶保压阶段与所述的卸压阶段之间增加了结晶保压后顺序增压阶段;
(A)在特征部位A开始凝固后,以5~20kPa/s的速度增大结晶保压压力,直到结晶保压压力到100~200kPa,然后保压到特征部位B开始凝固;若特征部位B开始凝固时,仍未到达100~200kPa压力,则在特征部位B开始凝固时执行步骤B;
(B)在特征部位B开始凝固后,以20~40kPa/s的速度增大结晶保压压力,直到结晶保压压力到310~1000kPa,然后进入保压阶段;
(C)在压力310~1000kPa条件下,保压至特征部位D凝固结束后,继续保压10~60s后卸压。
本发明的一种制备铝合金汽车底盘铸件的金属型低压铸造成型用结晶保压后顺序增压方法优点在于:
(1)采用本发明方法制备A356铝合金铸件,凝固补缩效果显著提高。与现有低压铸造加压方法相比,在模具结构和合模力不变的情况下,可以提高抗拉强度10~50%,提高延伸率25~50%。显著减低了对模具结构和铸型合模力的要求,同时避免了铝液溢出飞溅、铸件飞边毛刺等缺陷。
(2)采用本发明方法制备复杂形状、变壁厚的高品质铝合金铸件,可以实现差压铸造的致密度和力学性能指标,同时避免了差压铸造的上下罐结构带来的操作不便,以及更复杂的结构和控制系统带来的设备价格增加等问题,可以更好的适应汽车底盘构件等铝合金铸件低成本大批量生产要求。
附图说明
图1A是汽车后转向节的结构特征示意图。
图1B是实施例1的结晶保压顺序增压方式的压力-时间曲线图。
图2A是汽车用控制臂的结构特征示意图。
图2B是实施例2的结晶保压顺序增压方式的压力-时间曲线图。
图3是实施例3的结晶保压顺序增压方式的压力-时间曲线图。
具体实施方式
下面将结合附图和实施例对本发明做进一步的详细说明。
针对转向节、控制臂、副车架等铝合金汽车底盘铸件外形复杂、截面变化大等特点,差压铸造或低压铸造时通常采用顺序凝固原则,既浇口(升液管)放在厚大部位处,充型过程中,高温铝液自浇口流出充满铸件,最后到达远离浇口的较薄部位;凝固过程中,远离浇口的较薄部位先凝固,然后逐渐向浇口部位顺序凝固,以实现良好的补缩效果。
在本发明中,根据铸件结构特点和凝固顺序,设定多个特征部位,即选择距离浇口最远的端部薄壁处为特征部位A,选择距离浇口次远的壁厚突变处为特征部位B,选择距离浇口较近的壁厚突变处为特征部位C,选择浇口中心为特征部位D。
本发明提出的是一种增加了结晶保压后顺序增压的金属型低压铸造方法来制备铝合金汽车底盘铸件(即一种铝合金汽车底盘铸件金属型低压铸造成型用结晶保压后顺序增压方法),本发明方法包括有:升液阶段、充型阶段、结晶增压阶段、结晶保压阶段、结晶保压后顺序增压阶段和卸压放气阶段。具体地说:
步骤一,升液阶段;
调节升液阶段的压力为15~21kPa,升液速度为1.8~2.0kPa/s;
将15~21kPa的压缩空气通入密封的保温炉中,铝液在压力的作用下沿升液管平稳上升至铸型浇口处,并流入铸型中;
步骤二,充型阶段;
调节充型阶段的充型压力为25~35kPa,充型速度为0.4~1.0kPa/s,使铝液从浇口进入型腔,直至将型腔全部充满;
步骤三,结晶增压阶段;
经步骤二后使铝液完全充满铸型后,在5~7s快速增加压力至80~100kPa;
步骤四,结晶保压阶段;
在增压压力达到80~100kPa后,进入结晶保压阶段;
步骤五,结晶保压后顺序增压阶段;
在本发明中,结晶保压后顺序增压方法具体视铸件尺寸和结构、模具状态和冷却条件而有差异。
所述的结晶保压后顺序增压方法是指:
(A)在特征部位A开始凝固后,以5~20kPa/s的速度增大结晶保压压力,直到结晶保压压力到100~200kPa,然后保压到特征部位B开始凝固;若特征部位B开始凝固时,仍未到达100~200kPa压力,则在特征部位B开始凝固时执行步骤B;
(B)在特征部位B开始凝固后,以10~20kPa/s的速度增大结晶保压压力,直到结晶保压压力到210~300kPa,然后保压到特征部位C开始凝固;若特征部位C开始凝固时,仍未到达210~300kPa压力,则在特征部位C开始凝固时执行步骤C;
(C)在特征部位C开始凝固后,以10~40kPa/s的速度增大结晶保压压力,直到结晶保压压力到310~1000kPa,然后进入保压阶段;
(D)在压力310~1000kPa条件下,保压至特征部位D凝固结束后,继续保压10~60s;
步骤六,卸压放气阶段;
经步骤五后,待铝合金汽车底盘铸件凝固完毕,解除保温炉内的气体压力,使升液管和浇道口未凝固的铝液流回到保温炉中。
在本发明中,另一种铝合金汽车底盘铸件金属型低压铸造成型用结晶保压后顺序增压方法包括有:升液阶段、充型阶段、结晶增压阶段、结晶保压阶段、结晶保压后顺序增压阶段和卸压放气阶段。具体地说:
步骤一,升液阶段;
调节升液阶段的压力为15~21kPa,升液速度为1.8~2.0kPa/s;
将15~21kPa的压缩空气通入密封的保温炉中,铝液在压力的作用下沿升液管平稳上升至铸型浇口处,并流入铸型中;
步骤二,充型阶段;
调节充型阶段的充型压力为25~35kPa,充型速度为0.4~1.0kPa/s,使铝液从浇口进入型腔,直至将型腔全部充满;
步骤三,结晶增压阶段;
经步骤二后使铝液完全充满铸型后,在5~7s快速增加压力至80~100kPa;
步骤四,结晶保压阶段;
在增压压力达到80~100kPa后,进入结晶保压阶段;
步骤五,结晶保压后顺序增压阶段;
(A)在特征部位A开始凝固后,以5~20kPa/s的速度增大结晶保压压力,直到结晶保压压力到100~200kPa,然后保压到特征部位B开始凝固;若特征部位B开始凝固时,仍未到达100~200kPa压力,则在特征部位B开始凝固时执行步骤B;
(B)在特征部位B开始凝固后,以20~40kPa/s的速度增大结晶保压压力,直到结晶保压压力到310~1000kPa,然后进入保压阶段;
(C)在压力310~1000kPa条件下,保压至特征部位D凝固结束后,继续保压10~60s;
步骤六,卸压放气阶段;
经步骤五后,解除保温炉内的气体压力,使升液管和浇道口未凝固的铝液流回到保温炉中。
实施例1
后转向节,A356合金,重2.8kg。浇注温度为710℃,模具材质H13钢,模具初始温度为350℃,冷却方式为9路水冷与3路风冷组合。转向节构形及特征部位如图1A所示。图1A的结构参考现代制造工程2014年第4期《汽车后转向节轻量化设计与试验验证》,作者张琦等。
参见图1B所示的压力-时间曲线图,采用金属型低压铸造成型用结晶保压后顺序增压方法制备铝合金后转向节铸件的步骤有:
步骤一,升液阶段;
在升液压力为18kPa、升液速度为1.8kPa/s的条件下,铝液沿升液管平稳上升至铸型浇口处,并流入铸型中;
步骤二,充型阶段;
在充型压力为25kPa、充型速度为0.5kPa/s的条件下,铝液从浇口充入型腔,直至型腔全部充满;
步骤三,结晶增压阶段;
铝液充满铸型后,快速增大结晶压力,在5.5s增压压力至80kPa;
步骤四,结晶保压阶段;
增压压力达到80kPa后,进入结晶保压阶段;
步骤五,结晶保压后顺序增压阶段;
在本发明中,改进的结晶保压顺序增压方式进行结晶保压处理,其压力-时间曲线如图1B所示。
(A)特征部位A在充型10s后开始凝固,此时开始以10kPa/s的速度增大结晶保压压力到100kPa,然后保压到特征部位B开始凝固;
(B)特征部位B充型13s后开始凝固,此时开始以20kPa/s的速度增大结晶保压压力,至特征部位C开始凝固时,结晶保压压力增大到220kPa;
(C)特征部位C充型19s后开始凝固,此时开始以30kPa/s的速度增大结晶保压压力,直到结晶保压压力到500kPa,然后进入保压阶段;
(D)特征部位D在充型完成后190s凝固结束,继续保压10s;
步骤六,卸压放气阶段;
经步骤五后,解除保温炉内的气体压力,使升液管和浇道口未凝固的铝液流回到保温炉。
对比实施例1
采用与实施例1相同的步骤一至步骤三,不同之处在于省略了步骤五的结晶保压后顺序增压的处理。
继步骤三后,在增压压力达到80kPa后,开始结晶保压200s,随后解除保温炉内的气体压力,使升液管和浇道口未凝固的铝液流回到保温炉。
将实施例1和对比实施例1制得的A356合金转向节铸件,经T6热处理后,测试其抗拉强度、屈服强度和延伸率性能。
采用Instron 8801型号拉伸试验机测量,对比实施例1制得的转向节的力学性能:抗拉强度、屈服强度和延伸率分别为252MPa、205MPa、8.2%。
采用Instron 8801型号拉伸试验机测量,实施例1制得的转向节的力学性能:抗拉强度、屈服强度和延伸率分别达到335MPa、286MPa、12.2%。
通过对比可知,经本发明方法所得转向节的抗拉强度、屈服强度和延伸率提高了32.9%、39.5%和48.8%,达到了差压铸造的力学性能指标。
实施例2
下控制臂,A356合金,重2.4kg。浇注温度为720℃,模具材质H13钢,模具初始温度为250℃,冷却方式为6路水冷与3路风冷组合。控制臂构形及特征部位如图2A所示。图2A的结构参考《汽车控制臂挤压铸造数值模拟及工艺优化》,作者邢志威等。
参见图2B所示的压力-时间曲线图,采用金属型低压铸造成型用结晶保压后顺序增压方法制备铝合金下控制臂铸件的步骤有:
步骤一,升液阶段;
在升液压力为19kPa、升液速度为1.9kPa/s的条件下,铝液沿升液管平稳上升至铸型浇口处,并流入铸型中;
步骤二,充型阶段;
在充型压力为26kPa、充型速度为0.7kPa/s的条件下,铝液从浇口充入型腔,直至型腔全部充满;
步骤三,结晶增压阶段;
铝液充满铸型后,快速增大结晶压力,在6s增压压力至85kPa;
步骤四,结晶保压阶段;
增压压力达到85kPa后,进入结晶保压阶段;
步骤五,结晶保压后顺序增压阶段;
(A)特征部位A在充型8s后开始凝固,此时开始以15.5kPa/s的速度增大结晶保压压力,直到结晶保压压力到130kPa,然后保压到特征部位B开始凝固;
(B)特征部位B充型12s后开始凝固,此时开始以30kPa/s的速度增大结晶保压压力,直到结晶保压压力到900kPa,然后进入保压阶段;
(C)特征部位D在充型完成后130s凝固结束,继续保压30s;
步骤六,卸压放气阶段;
经步骤五后解除保温炉内的气体压力,使升液管和浇道口未凝固的铝液流回到保温炉。
对比实施例2
采用与实施例2相同的步骤一至步骤三,不同之处在于省略了步骤五的结晶保压后顺序增压的处理。
继步骤三后,在增压压力达到85kPa后,开始结晶保压160s,随后解除保温炉内的气体压力,使升液管和浇道口未凝固的铝液流回到保温炉。
将实施例2和对比实施例2制得的A356合金转向节铸件,经T6热处理后,测试其抗拉强度、屈服强度和延伸率性能。
采用Instron 8801型号拉伸试验机测量,对比实施例2制得的控制臂的力学性能:其抗拉强度、屈服强度和延伸率分别达到256MPa、199MPa、8.4%。
采用Instron 8801型号拉伸试验机测量,实施例2制得的控制臂的力学性能:抗拉强度、屈服强度和延伸率分别达到345MPa、285MPa、12.5%。
经本发明方法处理后的控制臂的抗拉强度、屈服强度和延伸率提高了34.8%、43.2%和44.3%,达到了差压铸造的力学性能指标。
实施例3
后转向节,A356合金,重2.8kg。浇注温度为710℃,模具材质H13钢,模具初始温度为350℃,冷却方式为9路水冷与3路风冷组合。转向节构形及特征部位如图1A所示。
参见图3所示的压力-时间曲线图,采用金属型低压铸造成型用结晶保压后顺序增压方法制备铝合金后转向节铸件的步骤有:
步骤一,升液阶段;
在升液压力为16kPa、升液速度为2.0kPa/s的条件下,铝液沿升液管平稳上升至铸型浇口处,并流入铸型中;
步骤二,充型阶段;
在充型压力为30kPa、充型速度为0.7kPa/s的条件下,铝液从浇口充入型腔,直至型腔全部充满;
步骤三,结晶增压阶段;
铝液充满铸型后,快速增大结晶压力,在6s增压压力至95kPa;
步骤四,结晶保压阶段;
增压压力达到95kPa后,进入结晶保压阶段;
步骤五,结晶保压后顺序增压阶段;
在本发明中,改进的结晶保压顺序增压方式进行结晶保压处理,其压力-时间曲线如图3所示。
(A)特征部位A在充型10s后开始凝固,此时开始以20kPa/s的速度增大结晶保压压力至135kPa,然后保压到特征部位B开始凝固;
(B)特征部位B充型13s后开始凝固,此时开始以38kPa/s的速度增大结晶保压压力,直到结晶保压压力到360kPa,然后进入保压阶段;
(C)特征部位D在充型完成后190s凝固结束,继续保压50s;
步骤六,卸压放气阶段;
经步骤五后,解除保温炉内的气体压力,使升液管和浇道口未凝固的铝液流回到保温炉。
将实施例3制得的A356合金转向节铸件,经T6热处理后,采用Instron 8801型号拉伸试验机测试其抗拉强度、屈服强度和延伸率性能:抗拉强度、屈服强度和延伸率分别达到350MPa、292MPa及13.1%,达到了差压铸造的力学性能指标。

Claims (2)

1.一种铝合金汽车底盘铸件金属型低压铸造成型用结晶保压后顺序增压方法,所述金属型低压铸造至少包括有升液阶段、充型阶段、结晶增压阶段、结晶保压阶段和卸压阶段;
其特征在于:所述铝合金汽车底盘铸件是指转向节、控制臂、副车架或者轮毂支架;在凝固过程中,远离浇口的较薄部位先凝固,然后逐渐向浇口部位顺序凝固;根据铸件结构特点和凝固顺序,设定多个特征部位,即选择距离浇口最远的端部薄壁处为特征部位A,选择距离浇口次远的壁厚突变处为特征部位B,选择距离浇口较近的壁厚突变处为特征部位C,选择浇口中心为特征部位D;根据特征部位的凝固顺序在结晶保压阶段与卸压阶段之间增加了结晶保压后顺序增压阶段;
步骤一,升液阶段;
调节升液阶段的压力为15~21kPa,升液速度为1.8~2.0kPa/s;
步骤二,充型阶段;
调节充型阶段的充型压力为25~35kPa,充型速度为0.4~1.0kPa/s,使铝液从浇口进入型腔,直至将型腔全部充满;
步骤三,结晶增压阶段;
经步骤二后使铝液完全充满铸型后,在5~7s快速增加压力至80~100kPa;
步骤四,结晶保压阶段;
在增压压力达到80~100kPa后,进入结晶保压阶段;
步骤五,结晶保压后顺序增压阶段;
(A)在特征部位A开始凝固后,以5~20kPa/s的速度增大结晶保压压力,直到结晶保压压力到100~200kPa,然后保压到特征部位B开始凝固;若特征部位B开始凝固时,仍未到达100~200kPa压力,则在特征部位B开始凝固时执行步骤B;
(B)在特征部位B开始凝固后,以10~20kPa/s的速度增大结晶保压压力,直到结晶保压压力到210~300kPa,然后保压到特征部位C开始凝固;若特征部位C开始凝固时,仍未到达210~300kPa压力,则在特征部位C开始凝固时执行步骤C;
(C)在特征部位C开始凝固后,以20~40kPa/s的速度增大结晶保压压力,直到结晶保压压力到310~1000kPa,然后进入保压阶段;
(D)在压力310~1000kPa条件下,保压至特征部位D凝固结束后,继续保压10~60s;
步骤六,卸压放气阶段;
经步骤五后,待铸件凝固完毕,解除保温炉内的气体压力,使升液管和浇道口未凝固的铝液流回到保温炉中。
2.一种铝合金汽车底盘铸件金属型低压铸造成型用结晶保压后顺序增压方法,所述金属型低压铸造至少包括有升液阶段、充型阶段、结晶增压阶段、结晶保压阶段和卸压阶段;
其特征在于:所述铝合金汽车底盘铸件是指转向节、控制臂、副车架或者轮毂支架;在凝固过程中,远离浇口的较薄部位先凝固,然后逐渐向浇口部位顺序凝固;根据铸件结构特点和凝固顺序,设定多个特征部位,即选择距离浇口最远的端部薄壁处为特征部位A,选择距离浇口次远的壁厚突变处为特征部位B,选择距离浇口较近的壁厚突变处为特征部位C,选择浇口中心为特征部位D;根据特征部位的凝固顺序在所述的结晶保压阶段与所述的卸压阶段之间增加了结晶保压后顺序增压阶段;
步骤一,升液阶段;
调节升液阶段的压力为15~21kPa,升液速度为1.8~2.0kPa/s;
步骤二,充型阶段;
调节充型阶段的充型压力为25~35kPa,充型速度为0.4~1.0kPa/s,使铝液从浇口进入型腔,直至将型腔全部充满;
步骤三,结晶增压阶段;
经步骤二后使铝液完全充满铸型后,在5~7s快速增加压力至80~100kPa;
步骤四,结晶保压阶段;
在增压压力达到80~100kPa后,进入结晶保压阶段;
步骤五,结晶保压后顺序增压阶段;
(A)在特征部位A开始凝固后,以5~20kPa/s的速度增大结晶保压压力,直到结晶保压压力到100~200kPa,然后保压到特征部位B开始凝固;若特征部位B开始凝固时,仍未到达100~200kPa压力,则在特征部位B开始凝固时执行步骤B;
(B)在特征部位B开始凝固后,以20~40kPa/s的速度增大结晶保压压力,直到结晶保压压力到310~1000kPa,然后进入保压阶段;
(C)在压力310~1000kPa条件下,保压至特征部位D凝固结束后,继续保压10~60s;
步骤六,卸压放气阶段;
经步骤五后,待铸件凝固完毕,解除保温炉内的气体压力,使升液管和浇道口未凝固的铝液流回到保温炉中。
CN201610130591.3A 2016-03-08 2016-03-08 一种铝合金汽车底盘铸件金属型低压铸造成型用结晶保压后顺序增压方法 Active CN105583393B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610130591.3A CN105583393B (zh) 2016-03-08 2016-03-08 一种铝合金汽车底盘铸件金属型低压铸造成型用结晶保压后顺序增压方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610130591.3A CN105583393B (zh) 2016-03-08 2016-03-08 一种铝合金汽车底盘铸件金属型低压铸造成型用结晶保压后顺序增压方法

Publications (2)

Publication Number Publication Date
CN105583393A CN105583393A (zh) 2016-05-18
CN105583393B true CN105583393B (zh) 2017-05-10

Family

ID=55923506

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610130591.3A Active CN105583393B (zh) 2016-03-08 2016-03-08 一种铝合金汽车底盘铸件金属型低压铸造成型用结晶保压后顺序增压方法

Country Status (1)

Country Link
CN (1) CN105583393B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108080601A (zh) * 2017-12-31 2018-05-29 北京航空航天大学 一种低压增压铸造机用低压充型高压凝固的铸造装置与铸造方法
CN108543914B (zh) * 2018-06-07 2024-03-29 田平康 一种高压轮毂铸造模具及其铸造方法
CN108543915B (zh) * 2018-06-07 2024-02-13 田平康 一种轮毂铸造模具及其铸造方法
CN108526444B (zh) * 2018-06-07 2019-11-15 田平康 一种高压轮毂铸造方法
CN108746566B (zh) * 2018-06-07 2019-10-18 田平康 一种能够加强轮毂上耳强度的轮毂铸造方法
CN108838372B (zh) * 2018-07-26 2020-09-08 哈尔滨工业大学 大型船舶铜合金螺旋桨桨毂差压铸造成型非线性加压方法
CN109550921B (zh) 2018-12-27 2021-03-16 中信戴卡股份有限公司 一种铝合金零件的铸造工艺
CN110899665B (zh) * 2019-12-30 2021-04-06 重庆长安汽车股份有限公司 一种适用于多层复杂结构铸件的低压铸造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0578387A1 (en) * 1992-06-17 1994-01-12 Ryobi Ltd. Low pressure die-casting machine and low pressure die-casting method
JP2006159229A (ja) * 2004-12-06 2006-06-22 Tokyo Light Alloy Co Ltd 低圧鋳造方法及び低圧鋳造炉
CN101497121A (zh) * 2008-01-31 2009-08-05 上海爱仕达汽车零部件有限公司 柴油发动机铝合金缸体金属型低压铸造方法
CN101497119A (zh) * 2008-01-31 2009-08-05 上海爱仕达汽车零部件有限公司 柴油发动机铝合金缸体金属型低压铸造的加压方法
CN102806334A (zh) * 2012-08-30 2012-12-05 连云港启创铝制品制造有限公司 一种铝合金轮毂低压铸造模具及其浇注方法
CN103341744A (zh) * 2013-07-10 2013-10-09 江苏东方龙机车集团有限公司 汽车轮毂加工方法
CN105344974A (zh) * 2015-12-15 2016-02-24 哈尔滨工业大学 一种低压铸造过程中施加波动压力的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0578387A1 (en) * 1992-06-17 1994-01-12 Ryobi Ltd. Low pressure die-casting machine and low pressure die-casting method
JP2006159229A (ja) * 2004-12-06 2006-06-22 Tokyo Light Alloy Co Ltd 低圧鋳造方法及び低圧鋳造炉
CN101497121A (zh) * 2008-01-31 2009-08-05 上海爱仕达汽车零部件有限公司 柴油发动机铝合金缸体金属型低压铸造方法
CN101497119A (zh) * 2008-01-31 2009-08-05 上海爱仕达汽车零部件有限公司 柴油发动机铝合金缸体金属型低压铸造的加压方法
CN102806334A (zh) * 2012-08-30 2012-12-05 连云港启创铝制品制造有限公司 一种铝合金轮毂低压铸造模具及其浇注方法
CN103341744A (zh) * 2013-07-10 2013-10-09 江苏东方龙机车集团有限公司 汽车轮毂加工方法
CN105344974A (zh) * 2015-12-15 2016-02-24 哈尔滨工业大学 一种低压铸造过程中施加波动压力的方法

Also Published As

Publication number Publication date
CN105583393A (zh) 2016-05-18

Similar Documents

Publication Publication Date Title
CN105583393B (zh) 一种铝合金汽车底盘铸件金属型低压铸造成型用结晶保压后顺序增压方法
CN105598418B (zh) 一种铝合金汽车底盘铸件金属型低压铸造成型用保压后快速增压方法
CN105583395B (zh) 一种铝合金汽车底盘铸件金属型低压铸造成型用结晶增压方法
CN105642866B (zh) 一种铝合金车轮金属型低压铸造成型用结晶增压方法
CN105583394B (zh) 一种铝合金车轮金属型低压铸造成型用结晶保压后顺序增压方法
CN111673072B (zh) 一种基于多升液管中心增压的车轮成型装置与方法
CN108080601A (zh) 一种低压增压铸造机用低压充型高压凝固的铸造装置与铸造方法
JP2791529B2 (ja) 差圧鋳造方法及び差圧鋳造装置
CN105689688B (zh) 一种铝合金车轮金属型低压铸造成型用结晶保压增压方法
CN102784902B (zh) 金属型调压铸造设备
CN108326256A (zh) 一种低压充型高压凝固铸造装置与铸造方法
CN109420751A (zh) 一种汽车铝合金前副车架金属型低压铸造工艺
CN108543932A (zh) 一种铝合金铸件的铸造方法
CN111069569A (zh) 低压充型重力补缩式铸造模具及其铸造方法
CN105618710B (zh) 一种铝合金车轮金属型低压铸造成型用保压后快速增压方法
CN108296468A (zh) 一种调压增压铸造机用低压充型高压凝固的铸造装置与铸造方法
CN108097923A (zh) 一种差压增压铸造机用低压充型高压凝固的铸造装置与铸造方法
CN103464724A (zh) 一种车轮或车轮中心盘的铸造方法
CN111673071A (zh) 一种基于多升液管的车轮快速顺序凝固成型装置与方法
CN1323783C (zh) 镁合金轮毂压力铸造装置及其方法
CN105382240A (zh) 一种薄壁铝合金铸件的精密铸造工艺
CN211803763U (zh) 低压充型重力补缩式铸造模具
US11219945B2 (en) Process for casting aluminum alloy parts
CN110899665B (zh) 一种适用于多层复杂结构铸件的低压铸造方法
CN111889652A (zh) 一种反重力铸造局部加压用锁模装置及反重力铸造设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20180521

Address after: 100191 A002 4, A002 A, Zhi Zhen mansion, 7 Zhichun Road, Beijing.

Patentee after: Beijing hang Da Xin Wood Technology Co., Ltd.

Address before: 100191 Xueyuan Road, Haidian District, Beijing, No. 37

Patentee before: Beihang University