CN105567837A - 检测K-ras基因突变的引物和探针体系、方法及试剂盒 - Google Patents
检测K-ras基因突变的引物和探针体系、方法及试剂盒 Download PDFInfo
- Publication number
- CN105567837A CN105567837A CN201610071654.2A CN201610071654A CN105567837A CN 105567837 A CN105567837 A CN 105567837A CN 201610071654 A CN201610071654 A CN 201610071654A CN 105567837 A CN105567837 A CN 105567837A
- Authority
- CN
- China
- Prior art keywords
- primer
- dna
- detected
- probe
- ras
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6858—Allele-specific amplification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/106—Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Genetics & Genomics (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Oncology (AREA)
- Hospice & Palliative Care (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明涉及一种检测K<b>-</b>ras基因突变的引物和探针体系,包括SEQ?ID?NO:1~13所示的核苷酸序列;还公开了其检测方法,包括配置50μL荧光PCR反应体系、进行荧光PCR扩增程序、结果判定等步骤。本发明可同时检测KRAS基因7种突变;最多可以检测1~10拷贝的基因突变;特异性强,在10~30ng?野生型DNA背景下不受干扰;检测性能突出,在10ng?DNA背景下,可以检测出1~10拷贝的基因突变。
Description
技术领域
本发明属于基因工程技术领域,具体涉及一种检测K-ras基因突变的引物和探针体系、方法及试剂盒。
背景技术
K-ras基因是EGFR信号通路中的重要分子之一,是首个影响结直肠癌临床治疗决策的生物标记物,其所编码的K-ras蛋白为EGFR信号通路下游区的一种分子G蛋白,当K-ras基因发生突变后,会导致该信号通路异常活化,从而对EGFR单抗治疗无效。因此,K-ras基因状态与针对EGFR的靶向药物(例如西妥昔单抗和帕尼单抗等)的疗效有关,《09年NCCN非小细胞肺癌临床实践指南》明确指出:如果K-ras基因发生了突变,则不建议病人使用特罗凯(Tarceva/厄洛替尼/Erlotinib)进行分子靶向治疗。
许多肿瘤中K-ras基因的突变率较高,在白血病、肺癌、直肠癌、胰腺癌等癌症中,K-ras突变很常见,尤其是在结直肠癌和非小细胞肺癌中,突变率甚至可达30~60%和21~28%。同时在上述两种肿瘤中约80~90%的K-ras基因突变发生在突变热点2号外显子12、13密码子上,其中的7个突变热点:G12C、G12R、G12S、G12V、G12D、G12A、G13V/D占到了全部突变的90%以上。
因此,检测K-ras基因上述7个突变热点,可准确判断患者对该类治疗的预测疗效,以供临床医师参考,也能尽最大的努力筛选出有效人群,避免错过治疗。
发明内容
针对上述问题,本发明提供一种检测人K-ras基因突变的引物和探针体系,可同时检测KRAS基因7种突变,最多可以检测1~10拷贝的基因突变,特异性强,在10~30ng野生型DNA背景下不受干扰,检测性能突出,在10ngDNA背景下,可以检测出1~10拷贝的基因突变。
为解决以上技术问题,本发明通过以下技术方案实现:
设计一种检测K-ras基因突变的引物和探针体系,包括SEQIDNO:1~13所示的核苷酸序列,所述引物或探针具有以下特点:
(1)本发明引进LNA修饰的野生探针封闭野生模板,探针3’-末端用PO4修饰或NH2修饰封闭阻止TaqDNA聚合酶的延伸;
(2)本发明特异性引物3’-末端碱基采用LNA修饰;
(3)本发明特异性引物3’-末端起第二个碱基引入脱氧次黄嘌呤核苷修饰。
设计一种检测K-ras基因突变的方法,包括以下步骤:
(1)合成所述引物和探针;
(2)配置50μL荧光PCR反应体系:Buffer(10×)5μL,Mg2+1.0~5mmol/L,dNTP100~1000nmol/L,上述每个引物100~500nmol/L,上述每个探针100~1000nmol/L,TaqDNA聚合酶1U~3U,DNA模板5~10ng;
(3)进行荧光PCR扩增程序:酶激活,95℃10min;突变富集,95℃30s,68℃30,64℃50s,72℃25s,16个循环;扩增检测,30个循环,95℃30s,58℃32s,72℃18s,于“58℃32s”该步骤收集荧光信号FAM和HEX;
(4)结果判定:检测体系中,HEX通道15<Ct<22,表明上样在可控范围内,结果有效;以FAM信号通道为阳性判断标准,曲线呈“S”曲线,且Ct<29为阳性,Ct为0则为阴性。
所述DNA模板包括FFPE组织及外周血游离DNA。
利用上述引物和/或探针中的至少一种,可制成用于检测K-ras基因突变的试剂盒。
本发明具有以下积极有益技术效果:
(1)本发明改良现有扩增受阻检测体系,摈弃ARMS引物设计中引入错配的原则,将特异性检测突变引物3’-末端起第2碱基采用脱氧次黄嘌呤核苷代替。脱氧次黄嘌呤核苷(dI)是天然存在的碱基,与A、G、C、T结合力弱,当与其它碱基结合时,会比其它碱基错配相对更稳定。脱氧次黄嘌呤与其它碱基的结合能力为:dI:dC>dI:dA>dI:dG>dI:dT,在DNA聚合酶的催化下,脱氧次黄嘌呤优先与dC结合。
(2)本发明在特异性检测突变引物的3’-末端碱基采用LNA修饰,提高了检测的特异性和敏感性。
(3)本发明引入了LNA修饰的封闭野生型的LNA探针,使得可以在高背景下检测低拷贝。
因此,本发明可同时检测KRAS基因7种突变;最多可以检测1~10拷贝的基因突变;特异性强,在10~30ng野生型DNA背景下不受干扰;检测性能突出,在10ngDNA背景下,可以检测出1~10拷贝的基因突变。
附图说明
图1为本发明阳性结果判定标准对照示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合具体实施例,对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。以下实施例中所涉及的原料,如无特别说明均为市售,所涉及检测方法如无特别说明,则均为常规方法。
实施例1
一种检测KRAS基因7种突变的试剂盒,包括SEQIDNO:1~13所示的核苷酸序列,见表1。
表1引物和探针
。
实施例2
一种检测K-ras基因7种突变的方法,包括以下步骤:
(1)配置50μL荧光PCR反应体系:Buffer(10×)5μL,Mg2+2.0mmol/L,dNTP300nmol/L,实施例1每个引物200nmol/L,实施例1每个探针300nmol/L,TaqDNA聚合酶2U,DNA模板10ng,余量为ddH2O;
(2)进行荧光PCR扩增程序:酶激活,95℃10min;突变富集,95℃30s,68℃30,64℃50s,72℃25s,16个循环;扩增检测,30个循环,95℃30s,58℃32s,72℃18s,于“58℃32s”该步骤收集荧光信号FAM和HEX;
(3)结果判定:检测体系中,HEX通道15<Ct<22,表明上样在可控范围内,结果有效;以FAM信号通道为阳性判断标准,曲线呈“S”曲线,且Ct<29为阳性,Ct为0则为阴性。
实施例3
一、K-ras突变检测体系和阈值的确定
(1)突变检测体系:通过长期的反复测试研究,本发明确定K-ras检测的上样量为10ng,将K-ras基因7种突变分别装入八排管的7个孔,第8个为外控;
(2)阳性判定:阳性判定需要满足以下要求:
首先,PCR阴性对照没有扩增曲线,有标明有污染,结果不可靠;
其次,检测103copies阳性突变,Ct<23,否则性能不稳定;
第三,外控的Ct值为:17~25,确保上样量的准确性;
最后,检测样品,曲线成“S”,且Ct<30。
满足上述条件,待检测样品K-ras基因突变为阳性。
结果无论有无突变,内参HEX通路都有曲线可以观察到,如果没有,则表明实验存在错误,需要重新实验,见图1。
二、检测结肠癌K-ras基因突变
62例结肠癌样本,已经采用厦门艾德ADX-ARMS试剂盒标定,来评价本发明实施例2检测临床样本的准确性。检测有出入或阳性的样本采用COLD-PCR后,亚克隆测序鉴定。
表2本发明检测与ADX-ARMS结果对比
通过与对62例临床样本的检测,结果与厦门艾德完全一致,且主要为Gly12Ser(GGT>AGT)、Gly12Val(GGT>GTT)、Gly12Asp(GGT>GAT)、Gly12Ala(GGT>GCT)和Gly13Asp(GGC>GAC),具体的结果参加表2。对两种方法检测判定为阳性的样本采用COLD-PCR测序,结果完成正确。在结肠癌中,K-ras的突变率约为32.8%左右。
SEQUENCELISTING
<110>河南中医学院第一附属医院
<120>检测K-ras基因突变的引物和探针体系、方法及试剂盒
<130>/
<160>13
<170>PatentInversion3.5
<210>1
<211>17
<212>DNA
<213>人工序列
<220>
<221>modified_base
<222>(16)..(16)
<223>I
<220>
<221>misc_feature
<222>(16)..(16)
<223>nisa,c,g,ort
<400>1
gtggtagttggagctna17
<210>2
<211>17
<212>DNA
<213>人工序列
<220>
<221>modified_base
<222>(16)..(16)
<223>I
<220>
<221>misc_feature
<222>(16)..(16)
<223>nisa,c,g,ort
<400>2
gtggtagttggagctnc17
<210>3
<211>17
<212>DNA
<213>人工序列
<220>
<221>modified_base
<222>(16)..(16)
<223>I
<220>
<221>misc_feature
<222>(16)..(16)
<223>nisa,c,g,ort
<400>3
gtggtagttggagctnt17
<210>4
<211>17
<212>DNA
<213>人工序列
<220>
<221>modified_base
<222>(16)..(16)
<223>I
<220>
<221>misc_feature
<222>(16)..(16)
<223>nisa,c,g,ort
<400>4
tgtggtagttggagcna17
<210>5
<211>17
<212>DNA
<213>人工序列
<220>
<221>modified_base
<222>(16)..(16)
<223>I
<220>
<221>misc_feature
<222>(16)..(16)
<223>nisa,c,g,ort
<400>5
tgtggtagttggagcnc17
<210>6
<211>17
<212>DNA
<213>人工序列
<220>
<221>modified_base
<222>(16)..(16)
<223>I
<220>
<221>misc_feature
<222>(16)..(16)
<223>nisa,c,g,ort
<400>6
tgtggtagttggagcnt17
<210>7
<211>17
<212>DNA
<213>人工序列
<220>
<221>modified_base
<222>(16)..(16)
<223>I
<220>
<221>misc_feature
<222>(16)..(16)
<223>nisa,c,g,ort
<400>7
gtagttggagctggtna17
<210>8
<211>18
<212>DNA
<213>人工序列
<400>8
acctctattgttggatca18
<210>9
<211>15
<212>DNA
<213>人工序列
<400>9
tggagctggtggcgt15
<210>10
<211>27
<212>DNA
<213>人工序列
<400>10
agagtgccttgacgatacagctaattc27
<210>11
<211>19
<212>DNA
<213>人工序列
<400>11
agcctgttattttgtccta19
<210>12
<211>19
<212>DNA
<213>人工序列
<400>12
atcccaattcatacggtag19
<210>13
<211>23
<212>DNA
<213>人工序列
<400>13
tggttccttccttctggcttgtc23
Claims (4)
1.一种检测K-ras基因突变的引物和探针体系,其特征在于:包括SEQIDNO:1~13所示的核苷酸序列。
2.一种检测K-ras基因突变的方法,其特征在于:包括以下步骤:
(1)合成权利要求1所述引物和探针;
(2)配置50μL荧光PCR反应体系:Buffer5μL,Mg2+1.0~5mmol/L,dNTP100~1000nmol/L,权利要求1中所述引物100~500nmol/L,权利要求1中所述探针100~1000nmol/L,TaqDNA聚合酶1U~3U,DNA模板5~10ng;
(3)进行荧光PCR扩增程序:酶激活,95℃10min;突变富集,95℃30s,68℃30,64℃50s,72℃25s,16个循环;扩增检测,95℃30s,58℃32s,72℃18s,30个循环,于“58℃32s”该步骤收集荧光信号FAM和HEX;
(4)结果判定:检测体系中,HEX通道15<Ct<22,表明上样在可控范围内,结果有效;以FAM信号通道为阳性判断标准,曲线呈“S”曲线,且Ct<29为阳性,Ct为0则为阴性。
3.根据权利要求2所述检测K-ras基因突变的方法,其特征在于:所述DNA模板包括FFPE组织DNA或外周血游离DNA。
4.一种检测K-ras基因突变的试剂盒,包括权利要求1所述引物和/或探针中的至少一种。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610071654.2A CN105567837B (zh) | 2016-02-02 | 2016-02-02 | 检测K-ras基因突变的引物和探针体系、方法及试剂盒 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610071654.2A CN105567837B (zh) | 2016-02-02 | 2016-02-02 | 检测K-ras基因突变的引物和探针体系、方法及试剂盒 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105567837A true CN105567837A (zh) | 2016-05-11 |
CN105567837B CN105567837B (zh) | 2019-01-29 |
Family
ID=55878453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610071654.2A Active CN105567837B (zh) | 2016-02-02 | 2016-02-02 | 检测K-ras基因突变的引物和探针体系、方法及试剂盒 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105567837B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106868127A (zh) * | 2017-02-20 | 2017-06-20 | 人和未来生物科技(长沙)有限公司 | 人kras基因多点突变单管联检荧光pcr方法、试剂盒及体系 |
CN106978481A (zh) * | 2017-02-20 | 2017-07-25 | 人和未来生物科技(长沙)有限公司 | 基于arms‑pcr法检测bmp3和ndrg4基因甲基化的荧光pcr方法、试剂盒及体系 |
CN110982886A (zh) * | 2019-12-30 | 2020-04-10 | 武汉光谷联合医学检验所股份有限公司 | 一种人类K-ras基因突变检测试剂盒及其应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102367478A (zh) * | 2011-10-25 | 2012-03-07 | 浙江大学 | 用于KRAS基因突变分型的ARMS-qPCR检测试剂盒及检测方法 |
CN104805208A (zh) * | 2015-04-30 | 2015-07-29 | 山东维真生物科技有限公司 | 用于检测人类kras基因7种热点突变的引物探针组合物、试剂盒及检测方法 |
CN105177118A (zh) * | 2015-07-17 | 2015-12-23 | 陈晓琦 | 检测人egfr基因29种突变的引物和探针体系、方法及试剂盒 |
-
2016
- 2016-02-02 CN CN201610071654.2A patent/CN105567837B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102367478A (zh) * | 2011-10-25 | 2012-03-07 | 浙江大学 | 用于KRAS基因突变分型的ARMS-qPCR检测试剂盒及检测方法 |
CN104805208A (zh) * | 2015-04-30 | 2015-07-29 | 山东维真生物科技有限公司 | 用于检测人类kras基因7种热点突变的引物探针组合物、试剂盒及检测方法 |
CN105177118A (zh) * | 2015-07-17 | 2015-12-23 | 陈晓琦 | 检测人egfr基因29种突变的引物和探针体系、方法及试剂盒 |
Non-Patent Citations (1)
Title |
---|
EVGENY A ET AL.: "Increased detection rates of EGFR and KRAS mutations in NSCLC specimens with low tumour cell content by 454 deep sequencing", 《VIRCHOWS ARCH》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106868127A (zh) * | 2017-02-20 | 2017-06-20 | 人和未来生物科技(长沙)有限公司 | 人kras基因多点突变单管联检荧光pcr方法、试剂盒及体系 |
CN106978481A (zh) * | 2017-02-20 | 2017-07-25 | 人和未来生物科技(长沙)有限公司 | 基于arms‑pcr法检测bmp3和ndrg4基因甲基化的荧光pcr方法、试剂盒及体系 |
CN106978481B (zh) * | 2017-02-20 | 2020-06-16 | 人和未来生物科技(长沙)有限公司 | 基于arms-pcr法检测bmp3和ndrg4基因甲基化的荧光pcr方法、试剂盒及体系 |
CN110982886A (zh) * | 2019-12-30 | 2020-04-10 | 武汉光谷联合医学检验所股份有限公司 | 一种人类K-ras基因突变检测试剂盒及其应用 |
Also Published As
Publication number | Publication date |
---|---|
CN105567837B (zh) | 2019-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Weinberg et al. | Molecular profiling of biliary cancers reveals distinct molecular alterations and potential therapeutic targets | |
Zaliova et al. | Genomic landscape of pediatric B-other acute lymphoblastic leukemia in a consecutive European cohort | |
Yang et al. | IDH mutant lower grade (WHO Grades II/III) astrocytomas can be stratified for risk by CDKN2A, CDK4 and PDGFRA copy number alterations | |
Morgenstern et al. | The challenge of defining “ultra‐high‐risk” neuroblastoma | |
Vanni et al. | The current state of molecular testing in the BRAF-mutated melanoma landscape | |
Vigneswaran et al. | Beyond the World Health Organization grading of infiltrating gliomas: advances in the molecular genetics of glioma classification | |
Hu et al. | Fluorescence in situ hybridization (FISH): an increasingly demanded tool for biomarker research and personalized medicine | |
Park et al. | Utility of targeted deep sequencing for detecting circulating tumor DNA in pancreatic cancer patients | |
Nagahashi et al. | Genomic landscape of colorectal cancer in Japan: clinical implications of comprehensive genomic sequencing for precision medicine | |
Chang et al. | Comprehensive molecular and clinicopathologic analysis of 200 pulmonary invasive mucinous adenocarcinomas identifies distinct characteristics of molecular subtypes | |
Gorovets et al. | IDH mutation and neuroglial developmental features define clinically distinct subclasses of lower grade diffuse astrocytic glioma | |
Dietel et al. | Predictive molecular pathology and its role in targeted cancer therapy: a review focussing on clinical relevance | |
Jansen et al. | Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers | |
Lan et al. | Mutations in the RAS and PI3K pathways are associated with metastatic location in colorectal cancers | |
Bibault et al. | Next-generation sequencing of FLT3 internal tandem duplications for minimal residual disease monitoring in acute myeloid leukemia | |
Sha et al. | Association study of the let-7 miRNA-complementary site variant in the 3′ untranslated region of the KRAS gene in stage III colon cancer (NCCTG N0147 Clinical Trial) | |
Yamauchi et al. | Serial profiling of circulating tumor DNA for optimization of anti‐VEGF chemotherapy in metastatic colorectal cancer patients | |
Cruz et al. | Analysis of KIAA1549–BRAF fusion gene expression and IDH1/IDH2 mutations in low grade pediatric astrocytomas | |
Barrett et al. | Clinical study of genomic drivers in pancreatic ductal adenocarcinoma | |
van't Erve et al. | Metastatic colorectal cancer treatment response evaluation by ultra-deep sequencing of cell-free DNA and matched white blood cells | |
Hwang et al. | Distinct mutational profile and immune microenvironment in microsatellite-unstable and POLE-mutated tumors | |
Kim et al. | Circulating tumor DNA shows variable clonal response of breast cancer during neoadjuvant chemotherapy | |
CN105567837A (zh) | 检测K-ras基因突变的引物和探针体系、方法及试剂盒 | |
Tafe et al. | Clinical genotyping of non–small cell lung cancers using targeted next-generation sequencing: utility of identifying rare and co-mutations in oncogenic driver genes | |
Huvila et al. | Molecular subtype diagnosis of endometrial carcinoma: Comparison of the next-generation sequencing panel and Proactive Molecular Risk Classifier for Endometrial Cancer classifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |