CN105562053B - 一种宏观气凝胶光催化剂材料的制备方法 - Google Patents

一种宏观气凝胶光催化剂材料的制备方法 Download PDF

Info

Publication number
CN105562053B
CN105562053B CN201610004178.2A CN201610004178A CN105562053B CN 105562053 B CN105562053 B CN 105562053B CN 201610004178 A CN201610004178 A CN 201610004178A CN 105562053 B CN105562053 B CN 105562053B
Authority
CN
China
Prior art keywords
catalyst
graphene oxide
aerogels
dispersion
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610004178.2A
Other languages
English (en)
Other versions
CN105562053A (zh
Inventor
周莹
万文超
于姗
阳叶
张骞
王芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN201610004178.2A priority Critical patent/CN105562053B/zh
Publication of CN105562053A publication Critical patent/CN105562053A/zh
Application granted granted Critical
Publication of CN105562053B publication Critical patent/CN105562053B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/232Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种宏观气凝胶光催化剂材料的制备方法,将片状的光催化剂超声分散于去离子水中,形成分散液;将氧化石墨烯分散于去离子水中,形成混合溶液;将石墨烯水溶液缓慢加入到催化剂分散液中,并持续搅拌和超声处理,形成催化剂‑氧化石墨烯分散液;催化剂‑氧化石墨烯分散液在急冷至完全冻透,并冷冻干燥得去水分,得到一体式负载于氧化石墨烯气凝胶光催化剂;对上述一体式气凝胶光催化剂进行水合肼,氨水,乙二胺等还原性蒸汽还原或者退火还原,进一步得到催化剂和石墨烯负载的一体式气凝胶光催化剂。本发明光催化性能高,由于采用氧化石墨烯石和墨烯作为载体,载体有利于光生载流子的分离和电子传输,从而大大地提高了光催化效率。

Description

一种宏观气凝胶光催化剂材料的制备方法
技术领域
本发明属于光催化剂材料的制备方法技术领域,尤其涉及一种宏观气凝胶光催化剂材料的制备方法。
背景技术
随着经济社会的飞速发展和环境的急剧变化,解决能源短缺和环境污染问题已成为实现社会可持续发展和保障国家安全的迫切需要。在众多技术途径中,以太阳能为直接驱动力的光催化材料收到了广泛关注。光催化材料能将低密度的太阳能有效地转化为高密度的化学能,如裂解水制备氢气和氧气,降解有机污染物、还原重金属离子实现对空气和水的净化,因此,从能源和环境的角度综合考虑,太阳能光催化技术是解决能源短缺和环境污染的最终方案之一。
然而,目前研究的光催化材料基本上都是以粉体为主,而且大多数研究都是围绕着粉体光催化剂的掺杂、晶面控制等展开,也有一些研究将催化剂负载到一些比表面积较大的载体上。然而,目前研究的大多数载体都是没有活性的并且存在或多或少的结合不稳定的问题,而且许多载体本身都是对环境有污染材料。因此,寻找更加合适的催化剂载体一直是该领域的一个重要研究方向。
近年来石墨烯材料因其有着良好的导电性和电子传输能力而受到人们广泛研究,其中更是有许多研究将其作为光催化剂的载体。如Zhang和Li等,成功用TiO2光催化剂负载到石墨烯气凝胶上,所得到的光催化材料对染料亚甲基橙有良好的降解性能(J.Am.Chem.Soc.,2014,136,5852-5855;Applied Catalysis B:Environmental,2015,174–175,421–426)。类似的报道还包括Niu等(Adv.Mater.2015,27,3767–3773;)。但是该类方法再合成三维一体式光催化气凝胶时都常常需要使用高温(180摄氏度),长时间水热反应(24h)以及一些连接剂。在这些苛刻的条件下,纳米颗粒光催化材料才能与石墨烯气凝胶基底有较好的结合。但是这些苛刻的条件对催化剂本身以及环境的影响又是不可避免的。
发明内容
本发明的目的在于提供一种宏观气凝胶光催化剂材料的制备方法,旨在解决目前研究的大多数载体都是没有活性的并且存在或多或少的结合不稳定的问题,而且许多载体本身都是对环境有污染材料等问题。
本发明是这样实现的,一种宏观气凝胶光催化剂材料的制备方法,该制备方法包括:
将片状光催化剂(如C3N4、MoS2等)超声分散于水中,形成1-3mg/ml的均匀分散液;
将氧化石墨烯分散于水中,形成1-5mg/ml的均匀混合溶液;
按照1:10-10:1的比例将氧化石墨烯水溶液缓慢加入到催化剂分散液中,持续搅拌2h随后超声处理30min,形成催化剂-氧化石墨烯分散液;
将催化剂-氧化石墨烯分散液在-60--170℃条件下急冷至完全冻透,并采用24-48h(视分散液的体积决定)冷冻干燥得去水分,得到一体式气凝胶光催化剂;
对上述一体式气凝胶光催化剂在水合肼,氨水,乙二胺还原性蒸汽条件下还原或者在200-500摄氏度条件下退火,进一步得到催化剂和石墨烯负载的一体式气凝胶光催化剂。
所述光催化剂为C3N4、MoS2等片状光催化剂。
本发明提供的制备方法仅采用冷冻干燥的方法即可得到一体化的气凝胶光催化剂;
本发明对设备要求低,只需要冻干机等简单设备即可,不需要高温等条件;本发明制备材料的周期短,一次冷冻干燥周期2~3天;本发明制备的材料稳定性好,性能优越,采用的催化剂和氧化石墨烯都是片状材料,而且都很容易分散在水中,大大增强了其负载的结合能力;本发明光催化性能高,由于采用氧化石墨烯以及石墨烯作为载体,载体有利于光生载流子的分离,从而大大地提高了光催化效率。本发明解决了目前一体化光催化剂的制备存在的制备方法负载,载体二次污染的问题。本发明提供了一种高效的气凝胶光催化剂材料的制备方法。该方法污染小,设备条件要求低,适用于大规模的工业生产,并且所得到的材料性能稳定。适合大规模工业生产。
附图说明
图1是本发明实施例提供的气凝胶光催化剂材料的制备方法流程图。
图2是本发明实施例提供的宏观气凝胶光催化剂材料的制备方法的扫描电镜图;
图3是本发明实施例提供的宏观气凝胶光催化剂材料对于低浓度(400ppb)NO降解图。
图4是本发明实施例提供的宏观气凝胶光催化剂对于甲基橙(MO)染料的降解图。
图5是本发明实施例提供的宏观气凝胶光催化剂对于几种有机物的吸附图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供了一种高效的气凝胶光催化剂材料的制备方法。该方法污染小,设备条件要求低,适用于大规模的工业生产,并且所得到的材料性能稳定。适合大规模工业生产。
本发明基于石墨烯(包括氧化石墨烯)的大片层结构,我们考虑是否可以通过使用类似的片状光催化剂将其负载到石墨烯气凝胶上,充分利用氧化石墨烯表面丰富的官能团,这样的片与片结合将大大增加二者的结合能力。为此,本发明首次采用氧化石墨烯作为载体,通过简单的冷冻干燥法,成功地将C3N4,MoS2等片状催化剂负载到氧化石墨烯层片的表面,并得到三维载于氧化石墨烯的光催化材料,后续经过简单的气相或者退火还原即可得到光催化剂负载于石墨烯气凝胶。这种气凝胶光催化材料相对比较于粉体光催化剂具有较大的比表面积,并且大大地提高了光催化活性位点,从而增加光催化活性。不仅如此,这种三维多孔气凝胶光催化材料还可以吸附染料、油等有机物,具有广泛的潜在应用前景。
下面结合附图及具体实施例对本发明的应用原理作进一步描述。
一种气凝胶光催化剂材料的制备方法,该制备方法包括:
S101:将片状光催化剂(C3N4,MoS2等片状光催化剂)超声分散于去离子水中,形成1-3mg/ml均匀分散液;
S102:将氧化石墨烯分散于去离子水中,形成1-5mg/ml均匀混合溶液;
S103:按照1:10-10:1的比例将氧化石墨烯水溶液缓慢加入到催化剂分散液中,持续搅拌2h随后超声处理30min,形成催化剂-氧化石墨烯分散液;
S104:催化剂-氧化石墨烯分散液在-60~-170℃条件下急冷至完全冻透,并采用24~48h冷冻干燥得去水分,得到一体式气凝胶光催化剂;
S105:对上述一体式气凝胶光催化剂进行水合肼,氨水,乙二胺还原性蒸汽还原或者在200~500摄氏度条件下退火,进一步得到催化剂和石墨烯负载的一体式气凝胶光催化剂。
实施例1:
本实例提供了一种宏观气凝胶光催化剂材料的制备方法,具体包括以下步骤:
(1)将片状粉体C3N4光催化剂分散于去离子水中,形成2.5mg/ml的分散液;
(2)将氧化石墨烯分散于去离子水中形成1mg/ml水溶液;
(3)将上述氧化石墨烯溶液缓慢加入到C3N4分散液中,搅拌2h超声30min形成均匀的混合溶液;
(4)将上述混合溶液置于零下170℃条件下冷冻,随后冷冻干燥形成C3N4-氧化石墨烯气凝胶光催化剂;
实施例2:
(1)将片状粉体C3N4光催化剂分散于去离子水中,形成2.5mg/ml的分散液;
(2)将氧化石墨烯分散于去离子水中形成1mg/ml水溶液;
(3)将上述氧化石墨烯溶液缓慢加入到C3N4分散液中,搅拌超声形成均匀的混合溶液;
(4)将上述混合溶液置于零下170℃条件下冷冻,随后冷冻干燥形成C3N4-氧化石墨烯气凝胶光催化剂;
(5)将上述C3N4-氧化石墨烯气凝胶光催化剂在200℃,5%H2条件下退火2h,得到C3N4-石墨烯气凝胶光催化剂;
实施例3:
(1)将片状粉体C3N4光催化剂分散于去离子水中,形成2mg/ml的分散液;
(2)将氧化石墨烯分散于去离子水中形成2mg/ml水溶液;
(3)将上述氧化石墨烯溶液缓慢加入到C3N4分散液中,搅拌2h超声30min形成均匀的混合溶液;
(4)将上述混合溶液置于零下170℃条件下冷冻,随后冷冻干燥形成C3N4-氧化石墨烯气凝胶光催化剂;
(5)将上述C3N4-氧化石墨烯气凝胶置于水合肼蒸汽下还原2h形成C3N4-石墨烯气凝胶光催化剂;
实施例4:
(1)将片状粉体MoS2光催化剂分散于去离子水中,形成2.5mg/ml的分散液;
(2)将氧化石墨烯分散于去离子水中形成1mg/ml水溶液;
(3)将上述氧化石墨烯溶液缓慢加入到MoS2分散液中,搅拌超声形成均匀的混合溶液;
(4)将上述混合溶液置于零下80℃条件下冷冻,随后冷冻干燥形成MoS2-氧化石墨烯气凝胶光催化剂;
(5)将上述MoS2-氧化石墨烯气凝胶置于氨气蒸汽下还原2h形成MoS2-石墨烯气凝胶光催化剂;
实施例5:
(1)将片状粉体BiOCO3光催化剂分散于去离子水中,形成1.5mg/ml的分散液;
(2)将氧化石墨烯分散于去离子水中形成3mg/ml水溶液;
(3)将上述氧化石墨烯溶液缓慢加入到BiOCO3分散液中,搅拌超声形成均匀的混合溶液;
(4)将上述混合溶液置于零下170℃条件下冷冻,随后冷冻干燥形成BiOCO3-氧化石墨烯气凝胶光催化剂;
(5)将上述BiOCO3-氧化石墨烯气凝胶置于水合肼蒸汽下还原2h形成BiOCO3-石墨烯气凝胶光催化剂;
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种宏观气凝胶光催化剂材料的制备方法,其特征在于,该制备方法包括:
将C3N4、MoS2片状光催化剂超声分散于水中,形成1-3mg/ml的均匀分散液;
将氧化石墨烯分散于水中,形成1-5mg/ml的均匀混合溶液;
按照1:10-10:1的比例将氧化石墨烯水溶液缓慢加入到催化剂分散液中,并持续搅拌2h随后超声处理30min,形成催化剂-氧化石墨烯分散液;
将催化剂-氧化石墨烯分散液在-60℃到-170℃条件下急冷至完全冻透,并采用24-48h冷冻干燥除去水分,得到一体式气凝胶光催化剂;
对一体式气凝胶光催化剂在水合肼,氨水,乙二胺还原性蒸汽条件下还原或者在200-500摄氏度下退火,进一步得到催化剂和石墨烯负载的一体式气凝胶光催化剂。
CN201610004178.2A 2016-01-04 2016-01-04 一种宏观气凝胶光催化剂材料的制备方法 Active CN105562053B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610004178.2A CN105562053B (zh) 2016-01-04 2016-01-04 一种宏观气凝胶光催化剂材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610004178.2A CN105562053B (zh) 2016-01-04 2016-01-04 一种宏观气凝胶光催化剂材料的制备方法

Publications (2)

Publication Number Publication Date
CN105562053A CN105562053A (zh) 2016-05-11
CN105562053B true CN105562053B (zh) 2018-03-02

Family

ID=55873006

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610004178.2A Active CN105562053B (zh) 2016-01-04 2016-01-04 一种宏观气凝胶光催化剂材料的制备方法

Country Status (1)

Country Link
CN (1) CN105562053B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106362785B (zh) * 2016-08-05 2019-02-19 中国海洋大学 一种酸化氮化碳纳米片石墨烯复合气凝胶的制备方法
CN107185576A (zh) * 2017-05-24 2017-09-22 上海大学 一种三维结构的氮化碳/石墨烯复合材料的制备方法
CN107572510B (zh) * 2017-10-24 2021-01-08 电子科技大学 石墨烯气凝胶及调控石墨烯气凝胶电导率和热导率的方法
CN107715910A (zh) * 2017-10-26 2018-02-23 苏州大学 基于苝四酸二酐修饰的氮化碳/氧化石墨烯气凝胶复合材料及其制备方法与应用
CN107999091A (zh) * 2017-12-08 2018-05-08 西南石油大学 一种用于高效光催化分解H2S的MnS/In2S3材料的制备方法
CN108097310B (zh) * 2017-12-11 2020-04-07 河南师范大学 一种用于有效降解亚甲基蓝染料废水的c3n4/琼脂复合气凝胶光催化材料的制备方法
CN108745394A (zh) * 2018-04-13 2018-11-06 重庆三峡学院 一种光催化材料及制备方法
CN109107574A (zh) * 2018-08-01 2019-01-01 兰州大学 银基含氧酸盐/氧化石墨烯气凝胶的制备方法及其制得的气凝胶和应用
CN109174149A (zh) * 2018-08-13 2019-01-11 江苏大学 一种可见光响应型MoS2/GO/g-C3N4三元复合光催化材料及其制备方法
CN109603697B (zh) * 2018-12-24 2022-02-15 施柏山 一种纳米碳混杂气凝胶及其制备方法和应用
CN110694664A (zh) * 2019-10-22 2020-01-17 邢台学院 一种石墨相氮化碳/石墨烯复合光催化剂制备方法及应用
CN110773146A (zh) * 2019-10-31 2020-02-11 江苏科技大学 一种石墨烯气凝胶负载催化剂复合材料及其制备方法和应用
CN113617351A (zh) * 2021-08-27 2021-11-09 西安理工大学 类石墨相氮化碳/石墨烯/氧化石墨烯复合气凝胶及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600315A (zh) * 2015-01-07 2015-05-06 上海大学 一种片状MoS2/石墨烯复合气凝胶及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600315A (zh) * 2015-01-07 2015-05-06 上海大学 一种片状MoS2/石墨烯复合气凝胶及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A Metal-Free,Free-Standing,Macroporous Graphene@g-C3N4 Composite Air Electrode for High-Energy Lithium Oxygen Batteries;Wen-Bin Luo et al.;《Small》;20150216;第11卷(第23期);第2817-2824页 *

Also Published As

Publication number Publication date
CN105562053A (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
CN105562053B (zh) 一种宏观气凝胶光催化剂材料的制备方法
Zhang et al. Black magnetic Cu-g-C3N4 nanosheets towards efficient photocatalytic H2 generation and CO2/benzene conversion
Gao et al. Strongly coupled g‐C3N4 nanosheets‐Co3O4 quantum dots as 2D/0D heterostructure composite for peroxymonosulfate activation
Ruan et al. A visible-light-driven Z-scheme CdS/Bi12GeO20 heterostructure with enhanced photocatalytic degradation of various organics and the reduction of aqueous Cr (VI)
Guo et al. A novel Z-scheme g-C3N4/LaCoO3 heterojunction with enhanced photocatalytic activity in degradation of tetracycline hydrochloride
Wu et al. Synthesis of g-C3N4 with heating acetic acid treated melamine and its photocatalytic activity for hydrogen evolution
Huang et al. Self-assembly of an organic–inorganic hybrid nanoflower as an efficient biomimetic catalyst for self-activated tandem reactions
Zhou et al. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst
CN102974283B (zh) 介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料及其制备方法
CN105056985B (zh) g‑C3N4/氧化石墨烯/纳米铁可见光响应催化膜
Pei et al. Effective improvement of photocatalytic hydrogen evolution via a facile in-situ solvothermal N-doping strategy in N-TiO2/N-graphene nanocomposite
Zhao et al. Polyimide aerogels crosslinked with MWCNT for enhanced visible-light photocatalytic activity
CN102407147A (zh) ZnIn2S4-石墨烯复合光催化剂的制备方法与应用
Xu et al. Boosting alkaline photocatalytic H2O2 generation by incorporating pyrophosphate on g-C3N4 for effective proton shuttle and oxygen activation
Wei et al. A novel cobalt–carbon composite for the electrochemical supercapacitor electrode material
Feng et al. Effective H2O2-Free photo-Fenton processes over ZnSe nanosheets for photocatalytic degradation of dyes and antibiotics
Xie et al. Fabrication of an FAPbBr3/g-C3N4 heterojunction to enhance NO removal efficiency under visible-light irradiation
CN105749894A (zh) 一种三维石墨烯-二氧化钛复合物光催化剂的制备方法
Jia et al. Deep eutectic solvent-assisted growth of gold nanofoams and their excellent catalytic properties
CN103861657A (zh) 纳米银负载多孔二氧化硅的制备方法
CN104475749A (zh) β-环糊精稳定化包埋纳米零价铁的制备方法
Wang et al. Rice-husk-derived mesoporous 0D/2D C3N4 isotype heterojunction with improved quantum effect for photodegradation of tetracycline antibiotics
CN106587166A (zh) 一种氧化铁介晶纳米粒子及其合成方法和应用方法
CN103877959A (zh) 氢化二氧化钛纳米管/纳米颗粒复合光催化材料及制备方法
Hu et al. Ultrathin graphitic carbon nitride modified PbBiO2Cl microspheres with accelerating interfacial charge transfer for the photodegradation of organic contaminants

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant