CN105561966B - 介孔铝酸锌纳米晶催化剂及其制法和在催化苯酚羟基化中的应用 - Google Patents

介孔铝酸锌纳米晶催化剂及其制法和在催化苯酚羟基化中的应用 Download PDF

Info

Publication number
CN105561966B
CN105561966B CN201610014678.4A CN201610014678A CN105561966B CN 105561966 B CN105561966 B CN 105561966B CN 201610014678 A CN201610014678 A CN 201610014678A CN 105561966 B CN105561966 B CN 105561966B
Authority
CN
China
Prior art keywords
zinc aluminate
water chestnut
catalyst
nanocrystalline catalyst
template
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610014678.4A
Other languages
English (en)
Other versions
CN105561966A (zh
Inventor
张万举
田正芳
解明江
王永正
沈宇
郭学锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Huanggang Normal University
Original Assignee
Nanjing University
Huanggang Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University, Huanggang Normal University filed Critical Nanjing University
Priority to CN201610014678.4A priority Critical patent/CN105561966B/zh
Publication of CN105561966A publication Critical patent/CN105561966A/zh
Application granted granted Critical
Publication of CN105561966B publication Critical patent/CN105561966B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/60Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by oxidation reactions introducing directly hydroxy groups on a =CH-group belonging to a six-membered aromatic ring with the aid of other oxidants than molecular oxygen or their mixtures with molecular oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种菱片状介孔铝酸锌纳米晶催化剂的制备方法,它是将摩尔比为1:2的氯化锌和氯化铝为前体,溶解于挥发性极性有机溶剂中,以非离子型表面活性剂作为模板,将其溶解于前体溶液中,随后将前体和模板的混合溶液转移到培养皿中,将培养皿放置在40‑60℃的真空干燥箱内,先低真空度(0.05大气压)下保持1h,然后在高真空度(0.01大气压)下保持1h得到前体和模板的混合物凝胶,将上述得到的混合凝胶转移至水热釜中,加氨水,在100‑180℃下进行水热处理48h,将水热处理后的凝胶进行洗涤烘干并在空气气氛下直接焙烧去除模板得到菱片状介孔铝酸锌纳米晶催化剂。该催化剂能在温和的条件下,催化苯酚氧化成苯二酚。

Description

介孔铝酸锌纳米晶催化剂及其制法和在催化苯酚羟基化中的 应用
技术领域:
本发明涉及介孔铝酸锌纳米晶催化剂,具体地说,涉及一种利用软模板方法合成具有菱片状形貌和介孔结构的锌铝尖晶石型纳米晶催化剂及其苯酚催化氧化的应用。
背景技术:
自Mobil公司首次合成出介孔MCM-41以来,其合成方法已被广泛的扩展到非硅基介孔材料的合成,介孔材料虽然克服了微孔材料在传质方面的局限,但是其热稳定性和水热稳定性却远不如微孔材料,这些缺点大大的局限了介孔材料的应用价值,介孔材料的热稳定性和水热稳定性较差在很大程度上是由于传统方法合成的介孔材料大多孔壁为无定形的或为半晶化的。目前,合成孔壁晶化的介孔材料仍是一个热点领域。通常,得到晶化的孔壁的方法是通过焙烧,但是其缺陷在于高温焙烧过程中会使孔道坍塌甚至消失。然而,水热的方法是一种较好的晶化方式,水热法也是微孔材料的常用合成方法,利用水热的方法合成孔壁晶化的介孔材料将是一种很有前景的方法。
锌铝基尖晶石型复合氧化物具有稳定的结构,适当的表面酸性,其主要应用于作为脱氢、脱氢环化、加氢、脱水、选择性催化还原、异构化等反应的催化剂或催化剂载体。可以用作透明导体、介电材料、光学材料和传感材料。目前文献报道的合成类似的尖晶石型复合氧化物通常是利用硬模板的方法,即,利用介孔硅为模板通过浇铸的方法进行合成,如文献:Chem.Commun,2006,1772–1774;Chem.Mater.2007,19,4791-4795,另外,北京化工大学的段雪等人通过利用Zn和Al的LDH为前体,利用过量的氧化锌为模板的自产生模板的方法合成了具有介孔结构的铝酸锌,但是其介孔结构为无序的堆积孔。目前,对于铝基多孔尖晶石型材料主要用于做为载体用于催化,很少有单独用作催化剂的报道,尤其是将其作为高效的催化氧化芳香族化合物的催化剂至今未见报道。
发明内容:
本发明提供了一种菱片状介孔铝酸锌纳米晶催化剂的制备方法和菱片状介孔铝酸锌纳米晶催化剂。这种催化剂可在温和的条件下,实现对苯酚的选择性催化羟基化并且具有很高的选择性(98%)和较高的转化率(达到43%)。
本发明可以通过如下技术方案实现:
一种菱片状介孔铝酸锌纳米晶催化剂的制备方法,它包括下列步骤:
步骤1、将摩尔比为1:2的氯化锌和氯化铝溶解于挥发性极性有机溶剂中配制成锌离子浓度为0.25-0.50mol/L的前体溶液;
步骤2、称取非离子型表面活性剂溶解于步骤1所制备的前体溶液中,使非离子型表面活性剂的浓度为1.25-8.33g/L;
步骤3、将步骤2中制备的前体和模板的混合溶液转移到培养皿中,然后将培养皿放置在40-60℃的真空干燥箱内,先在低真空度(0.05大气压)下保持1h,然后在高真空度(0.01大气压)下保持1h得到前体和模板的混合物凝胶;
步骤4、将步骤3得到的混合凝胶转移至水热釜中,加氨水,在100-180℃下进行水热处理48h;
步骤5、将步骤4中得到的水热处理后的凝胶进行洗涤烘干并在空气气氛下直接焙烧去除模板得到菱片状介孔铝酸锌纳米晶催化剂。
上述的菱片状介孔铝酸锌纳米晶催化剂的制备方法,步骤1所述的发挥性极性有机溶剂为无水乙醇、丙酮或四氢呋喃。
上述的菱片状介孔铝酸锌纳米晶催化剂的制备方法,步骤2所述的非离子型表面活性剂为P123、F127或F108。
上述的菱片状介孔铝酸锌纳米晶催化剂的制备方法,步骤5所述的焙烧温度为500℃,升温速率为1℃/min.
一种上述菱片状介孔铝酸锌纳米晶催化剂的制备方法制得的菱片状介孔铝酸锌纳米晶催化剂。
上述的菱片状介孔铝酸锌纳米晶催化剂在催化苯酚羟基化制备苯二酚中的应用。
一种采用上述的菱片状介孔铝酸锌纳米晶催化剂催化苯酚羟基化制备苯二酚的方法,它包括下列步骤:
步骤1、将0.94g苯酚溶解于10ml水中,在苯酚溶液中加入80mg的上述的菱片状介孔铝酸锌纳米晶催化剂;
步骤2、将步骤1的混合物加热至反应温度(80℃)后,滴加0.5ml的双氧水并搅拌反应360分钟后,离心除去催化剂,得到苯二酚的水溶液,对反应体系进行检测分析。
该方法对苯酚催化羟基化的选择性为98%,转化率达到43%,比目前工业上应用的钛硅分子筛更好的选择性和收率。
本发明的有益效果在于:
1.本方法采用了价格低廉的无机盐为前体,大大降低了成本,而且本方法的操作简单,制备过程时间短,便于大规模生产;
2.该方法可以广泛的应用于多孔铝基尖晶石型(MAl2O4)的合成;
3.本催化剂成本低廉,无需负载价格高昂的过渡金属氧化物。利用铝酸锌直接作为催化剂催化苯酚羟基化反应,尚属首次。
附图说明:
图1是实施例1制备的菱片状介孔铝酸锌纳米晶催化剂的透射电镜照片。
图2是实施例1制备的菱片状介孔铝酸锌纳米晶催化剂的高分辨透射电镜照片。
图3是实施例1制备的菱片状介孔铝酸锌纳米晶催化剂的X射线衍射图,内嵌的为广角衍射图。
图4是实施例1制备的菱片状介孔铝酸锌纳米晶催化剂的氮气吸附等温线和孔径分布曲线。
图5是实施例2制备的菱片状介孔铝酸锌纳米晶催化剂与其他类催化剂的催化氧化苯酚羟基化的性能对比图。
具体实施方式:
本发明将用以下的实施例来加以详细的说明,但这些实施例仅是为说明本发明,而本发明并不局限于此。
实施例1
称取0.01mol氯化锌和0.02mol氯化铝,将其共同溶解于60ml无水乙醇中得到前体溶液,然后将0.5g P123溶解于前体溶液中得到前体和模板的混和溶液。将前体和模板的混合溶液转移至培养皿中,放置在温度为40℃的真空干燥箱内先低真空度至0.05大气压保持1h,然后在高真空度0.01大气压下保持1h,得到前体和模板的混合凝胶,将得到的混合凝胶转移至水热釜中,加入50ml氨水(20wt.%)于100℃下水热48h。将水热后的混合凝胶进行洗涤,烘干并在空气气氛下以升温速率为1℃/min至500℃焙烧4h去除模板,即得到菱片状介孔铝酸锌纳米晶催化剂。产物的形貌通过透射电镜表征,如图1所示,产物的结晶性通过高倍透射电镜和粉末X射线衍射表征如图2和图3所示,产物的孔结构通过透射电镜和氮气吸附等温线表征如图4所示。
实施例2
称取0.01mol氯化锌和0.02mol氯化铝,将其共同溶解于80ml丙酮中得到前体溶液,然后将1.0g F127溶解于前体溶液中得到前体和模板的混和溶液。将前体和模板的混合溶液转移至培养皿中,放置在温度为50℃的真空干燥箱内先低真空度至0.05大气压保持1h,然后在高真空度0.01大气压下保持1h,得到前体和模板的混合凝胶,将得到的混合凝胶转移至水热釜中,加入50ml氨水(20wt.%)于120℃下水热48h。将水热后的混合凝胶进行洗涤,烘干并在空气气氛下以升温速率为1℃/min至500℃焙烧4h去除模板,即得到菱片状介孔铝酸锌纳米晶催化剂。产物的形貌和结晶性和实施例1得到的相似。
实施例3
称取0.01mol氯化锌和0.02mol氯化铝,将其共同溶解于120ml四氢呋喃中得到前体溶液,然后将1.5g F108溶解于前体溶液中得到前体和模板的混和溶液。将前体和模板的混合溶液转移至培养皿中,放置在温度为60℃的真空干燥箱内先低真空度至0.05大气压保持1h,然后在高真空度0.01大气压下保持1h,得到前体和模板的混合凝胶,将得到的混合凝胶转移至水热釜中,加入50ml氨水(20wt.%)于180℃下水热48h。将水热后的混合凝胶进行洗涤,烘干并在空气气氛下以升温速率为1℃/min至500℃焙烧4h去除模板,即得到菱片状介孔铝酸锌纳米晶催化剂。产物的形貌和结晶性和实施例1得到的相似。
实施例4
称取0.94g苯酚,将其10ml水中,得到苯酚溶液,然后在苯酚溶液中加入80mg的制备的菱片状介孔铝酸锌纳米晶催化剂。将含有催化剂的苯酚溶液加热至反应温度80℃后,滴加0.5ml的双氧水(30wt.%)并搅拌反应360分钟后,离心除去催化剂,得到苯二酚的水溶液。产物采用装有FID检测器和色谱柱的气相色谱仪进行分析。羟基化反应的收率化率和选择性数据如图5所示。

Claims (7)

1.一种菱片状介孔铝酸锌纳米晶催化剂的制备方法,其特征是它包括下列步骤:
步骤1、将摩尔比为1:2的氯化锌和氯化铝溶解于挥发性极性有机溶剂中配制成锌离子浓度为0.25-0.50mol/L的前体溶液;
步骤2、称取非离子型表面活性剂溶解于步骤1所制备的前体溶液中,使非离子型表面活性剂的浓度为1.25-8.33g/L;
步骤3、将步骤2中制备的前体和模板的混合溶液转移到培养皿中,然后将培养皿放置在40-60℃的真空干燥箱内,先在0.05大气压下保持1h,然后在0.01大气压下保持1h得到前体和模板的混合物凝胶;
步骤4、将步骤3得到的混合凝胶转移至水热釜中,加氨水,在100-180℃下进行水热处理48h;
步骤5、将步骤4中得到的水热处理后的凝胶进行洗涤烘干并在空气气氛下直接焙烧去除模板得到菱片状介孔铝酸锌纳米晶催化剂。
2.根据权利要求1所述的菱片状介孔铝酸锌纳米晶催化剂的制备方法,其特征是:步骤1所述的挥发 性极性有机溶剂为无水乙醇、丙酮或四氢呋喃。
3.根据权利要求1所述的菱片状介孔铝酸锌纳米晶催化剂的制备方法,其特征是:步骤2所述的非离子型表面活性剂为P123,F127或F108。
4.根据权利要求1所述的菱片状介孔铝酸锌纳米晶催化剂的制备方法,其特征是:步骤5所述的焙烧温度为500℃,升温速率为1℃/min。
5.一种权利要求1所述的菱片状介孔铝酸锌纳米晶催化剂制备方法制得的菱片状介孔铝酸锌纳米晶催化剂。
6.权利要求5所述的菱片状介孔铝酸锌纳米晶催化剂在催化苯酚羟基化制备苯二酚中的应用。
7.一种采用权利要求5所述的菱片状介孔铝酸锌纳米晶催化剂催化苯酚羟基化制备苯二酚的方法,其特征是它包括下列步骤:
步骤1、将0.94g苯酚溶解于10 mL 水中,在苯酚溶液中加入80mg的上述的菱片状介孔铝酸锌纳米晶催化剂;
步骤2、将步骤1的混合物加热至反应温度80℃后,滴加0.5 mL 的双氧水并搅拌反应360分钟后,离心除去催化剂,得到苯二酚的水溶液。
CN201610014678.4A 2016-01-11 2016-01-11 介孔铝酸锌纳米晶催化剂及其制法和在催化苯酚羟基化中的应用 Expired - Fee Related CN105561966B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610014678.4A CN105561966B (zh) 2016-01-11 2016-01-11 介孔铝酸锌纳米晶催化剂及其制法和在催化苯酚羟基化中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610014678.4A CN105561966B (zh) 2016-01-11 2016-01-11 介孔铝酸锌纳米晶催化剂及其制法和在催化苯酚羟基化中的应用

Publications (2)

Publication Number Publication Date
CN105561966A CN105561966A (zh) 2016-05-11
CN105561966B true CN105561966B (zh) 2018-02-13

Family

ID=55872922

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610014678.4A Expired - Fee Related CN105561966B (zh) 2016-01-11 2016-01-11 介孔铝酸锌纳米晶催化剂及其制法和在催化苯酚羟基化中的应用

Country Status (1)

Country Link
CN (1) CN105561966B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1328873A (zh) * 2000-06-15 2002-01-02 中国石油化工集团公司 苯酚氧化制备苯二酚的催化剂
CN101157454A (zh) * 2007-09-15 2008-04-09 太原理工大学 球形杂原子介孔分子筛及其制备方法
CN104986795A (zh) * 2015-07-19 2015-10-21 北京工业大学 水热条件下相分离法获得Na0.5Bi0.5TiO3及Na-Ti-O纳米线的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1328873A (zh) * 2000-06-15 2002-01-02 中国石油化工集团公司 苯酚氧化制备苯二酚的催化剂
CN101157454A (zh) * 2007-09-15 2008-04-09 太原理工大学 球形杂原子介孔分子筛及其制备方法
CN104986795A (zh) * 2015-07-19 2015-10-21 北京工业大学 水热条件下相分离法获得Na0.5Bi0.5TiO3及Na-Ti-O纳米线的方法

Also Published As

Publication number Publication date
CN105561966A (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
CN101229510B (zh) 一种含铋的硅酸盐的合成和应用
Chaemchuen et al. Robust and efficient catalyst derived from bimetallic Zn/Co zeolitic imidazolate frameworks for CO2 conversion
Fang et al. Encapsulation of ultrafine metal-oxide nanoparticles within mesopores for biomass-derived catalytic applications
CN109304476A (zh) 碳包覆过渡金属纳米复合材料及其制备方法和应用
Du et al. Highly dispersed Pt in MIL-101: An efficient catalyst for the hydrogenation of nitroarenes
Zhang et al. Synthesis of highly loaded and well dispersed CuO/SBA-15 via an ultrasonic post-grafting method and its application as a catalyst for the direct hydroxylation of benzene to phenol
EP2256088A1 (en) Method of preparing mesoporous silica nanoparticles using transition metal salt
CN112337461B (zh) 锶掺杂有序介孔锰酸镧负载贵金属钯的复合材料及其制备方法与在催化氧化甲苯中的应用
CN105170151A (zh) 一种核壳结构铜基催化剂及制备方法和应用
Lu et al. Ionic liquid-mediated synthesis of meso-scale porous lanthanum-transition-metal perovskites with high CO oxidation performance
Li et al. Tricobalt tetraoxide-supported palladium catalyst derived from metal organic frameworks for complete benzene oxidation
CN109261146B (zh) 一种负载不同金属的纳米多孔空心笼状钛氧化物的制备方法
CN105381812B (zh) 一种制备具有介孔结构的复合半导体材料的方法
CN102125847A (zh) 一种用于制备乙二醇的铜镍硅催化剂及其制备方法
CN107572585B (zh) 一种溴氧化铋可见光催化剂及其制备方法
Yue et al. Selective catalytic oxidation of ammonia to nitrogen over orderly mesoporous CuFe 2 O 4 with high specific surface area
CN108380203B (zh) 一种介孔壁中空核壳球形LaMnO3钙钛矿催化剂及其制备方法
Zhao et al. A novel Cu–Mn/Ca–Zr catalyst for the synthesis of methyl formate from syngas
CN109847756A (zh) 一种中空结构的镍基纳米催化剂及其制备方法与应用
CN105727980A (zh) 一种丙烷氧化脱氢制丙烯催化剂的制备方法
CN105561966B (zh) 介孔铝酸锌纳米晶催化剂及其制法和在催化苯酚羟基化中的应用
CN117160463A (zh) 一种氧化铈负载铜基催化剂的制备方法及其应用
Yang et al. Mesoporous vanadium oxide as catalyst for liquid-phase selective oxidation of diphenylmethane to benzophenone
CN107522611B (zh) 一种愈创木酚制备甲酸的方法
CN109433207A (zh) 负载型多元过渡金属催化剂及其制备方法与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180213

Termination date: 20220111

CF01 Termination of patent right due to non-payment of annual fee