CN105561517A - 一种苏丹红ⅳ的降解方法 - Google Patents

一种苏丹红ⅳ的降解方法 Download PDF

Info

Publication number
CN105561517A
CN105561517A CN201510943569.6A CN201510943569A CN105561517A CN 105561517 A CN105561517 A CN 105561517A CN 201510943569 A CN201510943569 A CN 201510943569A CN 105561517 A CN105561517 A CN 105561517A
Authority
CN
China
Prior art keywords
sudaniv
irradiation
sample
ray
degradation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510943569.6A
Other languages
English (en)
Inventor
何强
李莹
孔祥虹
刘晓盼
付骋宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHAANXI ENTRY-EXIT INSPECTION AND QUARANTINE BUREAU CHINA
Original Assignee
SHAANXI ENTRY-EXIT INSPECTION AND QUARANTINE BUREAU CHINA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHAANXI ENTRY-EXIT INSPECTION AND QUARANTINE BUREAU CHINA filed Critical SHAANXI ENTRY-EXIT INSPECTION AND QUARANTINE BUREAU CHINA
Priority to CN201510943569.6A priority Critical patent/CN105561517A/zh
Publication of CN105561517A publication Critical patent/CN105561517A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/17Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation to electromagnetic radiation, e.g. emitted by a laser
    • A62D3/172Gamma rays, i.e. radiation having a wavelength of about 0.003nm to 0.03 nm
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/17Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation to electromagnetic radiation, e.g. emitted by a laser
    • A62D3/174X-rays, i.e. radiation having a wavelength of about 0.03nm to 3nm
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/26Organic substances containing nitrogen or phosphorus
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/28Organic substances containing oxygen, sulfur, selenium or tellurium, i.e. chalcogen

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种苏丹红Ⅳ的降解方法,具体为:准备苏丹红Ⅳ固体或溶液试样;利用X-射线或γ-射线对苏丹红Ⅳ试样进行辐照降解。本发明利用X-射线或γ-射线辐照技术对致癌污染物苏丹红Ⅳ进行降解,对苏丹红Ⅳ固体的降解率达到12%以上,对苏丹红Ⅳ溶液的降解率达到73%以上,降解效果十分明显,而且成本低廉。在现有技术条件下,辐照过程是可控的,辐照射线本身不会残留,不会对环境造成二次污染,在处理水污染、土壤污染方面有良好的应用前景。

Description

一种苏丹红Ⅳ的降解方法
技术领域
本发明属于有害物降解技术领域,涉及一种苏丹红Ⅳ的降解方法。
背景技术
辐照技术,是利用射线与物质间的作用,电离和激发产生的活化原子与活化分子,使之与物质发生一系列物理、化学、生物化学变化,导致物质的降解、聚合、交联、并发生改性。常用的辐照有γ-射线辐照和X-射线辐照。
苏丹红Ⅳ,英文名称为SudanIV,CAS号85-83-6,是一种人工合成的工业染料,被用于石油、机油和其它一些工业溶剂中,也用于鞋、地板等的增光,其对人体具有致癌作用,不当使用可造成环境污染,尤其是土壤和水污染。
目前对苏丹红Ⅳ的研究主要集中在它的检测方法,利用辐照技术降解苏丹红Ⅳ的研究尚未见有相关文献报道。辐照射线虽然对人体有害,但目前已可以规范、控制的使用,而且射线本身不会存在残留,不会造成不可控的危害,水可覆舟,亦可载舟,辐照技术目前已在多个领域得到了应用,但在消除环境有害污染物方面研究和应用较少。
发明内容
本发明的目的是提供一种苏丹红Ⅳ的降解方法,为苏丹红Ⅳ的降解提供了一种新的方法。
本发明所采用的技术方案是,一种苏丹红Ⅳ的降解方法,具体按以下步骤实施:准备苏丹红Ⅳ固体或溶液试样;利用X-射线或γ-射线对苏丹红Ⅳ试样进行辐照降解。
本发明的特点还在于,
苏丹红Ⅳ溶液试样的准备,具体为:将苏丹红Ⅳ固体在乙醇中溶解,然后用超纯水稀释,得到苏丹红Ⅳ溶液试样。
苏丹红Ⅳ-乙醇溶液的浓度为100~125μg/mL,稀释后的苏丹红Ⅳ溶液试样的浓度为40~50μg/mL。
苏丹红Ⅳ固体试样X-射线辐照降解过程中,累计辐照剂量为2.7~3.3kGy。
苏丹红Ⅳ溶液试样X-射线辐照降解过程中,累计辐照剂量为2.7~3.3kGy。
苏丹红Ⅳ固体试样γ-射线辐照降解过程中,累计辐照剂量为2.7~3.3kGy。
苏丹红Ⅳ溶液试样γ-射线辐照降解过程中,累计辐照剂量为2.7~3.3kGy。
本发明的有益效果是,本发明利用X-射线或γ-射线辐照技术对致癌污染物苏丹红Ⅳ进行降解,对苏丹红Ⅳ固体的降解率达到12%以上,对苏丹红Ⅳ溶液的降解率达到73%以上,降解效果十分明显,而且成本低廉。在现有技术条件下,辐照过程是可控的,辐照射线本身不会残留,不会对环境造成二次污染,在处理水污染、土壤污染方面有良好的应用前景。
附图说明
图1是苏丹红Ⅳ固体(配制成1μg/mL)辐照前后的液相色谱对比图;
图2是苏丹红Ⅳ溶液(稀释至1μg/mL)辐照前后的液相色谱对比图;
图3是苏丹红Ⅳ溶液辐照前液相色谱-高分辨质谱离子流图;
图4是苏丹红Ⅳ溶液辐照后液相色谱-高分辨质谱离子流图;
图5是苏丹红Ⅳ高分辨质谱扫描质谱图(1μg/mL);
图6是苏丹红Ⅳ辐解产物1高分辨质谱扫描质谱图;
图7是苏丹红Ⅳ辐解产物2高分辨质谱扫描质谱图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明提供了一种苏丹红Ⅳ的降解方法,具体按以下步骤实施:
步骤1,试样准备:
固体试样的准备:称取约80~100mg苏丹红Ⅳ(纯度>99%)装于1.5mL透明塑料离心管中,待辐照。
溶液试样的准备:称取适量苏丹红Ⅳ,用乙醇溶解成浓度为100~125μg/mL的溶液,配制的溶液量不少于50mL,取40mL,用超纯水稀释至100mL,配制成40~50μg/mL的苏丹红Ⅳ溶液,样品溶液呈深红色,待辐照。
步骤2,辐照降解:
利用X-射线生物辐照仪对步骤1得到的苏丹红Ⅳ试样进行辐照,累计辐照剂量为2.7~3.3kGy,即完成苏丹红Ⅳ的降解。
或者采用钴-60产生的γ-射线对步骤1得到的苏丹红Ⅳ试样进行辐照,累计辐照剂量为2.7~3.3kGy,即完成苏丹红Ⅳ的降解。
实施例1
步骤1,试样准备:
固体试样的准备:称取80mg苏丹红Ⅳ(纯度>99%)装于1.5mL透明塑料离心管中,平行称取3份,待辐照。
溶液试样的准备:称取适量苏丹红Ⅳ,用乙醇溶解成浓度为100μg/mL的溶液,配制的溶液量不少于50mL,取40mL,用超纯水稀释至100mL,配制成40μg/mL的苏丹红Ⅳ溶液,分装于3个20mL透明塑料瓶中,每个瓶中约10~15mL,样品溶液呈深红色,待辐照。
步骤2,辐照降解:
利用X-射线生物辐照仪对步骤1得到的6个苏丹红Ⅳ试样进行辐照,固体试样和溶液试样的累计辐照剂量分别为0.9kGy、1.0kGy、1.1kGy。辐照后固体试样外观无明显变化,溶液试样颜色稍微变浅。
实施例2
步骤1,试样准备:
固体试样的准备:称取80mg苏丹红Ⅳ(纯度>99%)装于1.5mL透明塑料离心管中,平行称取2份,待辐照。
溶液试样的准备:称取适量苏丹红Ⅳ,用乙醇溶解成浓度为100μg/mL的溶液,配制的溶液量不少于50mL,取40mL,用超纯水稀释至100mL,配制成40μg/mL的苏丹红Ⅳ溶液,分装于2个20mL透明塑料瓶中,每个瓶中约10mL,样品溶液呈深红色,待辐照。
步骤2,辐照降解:
利用X-射线生物辐照仪对步骤1得到其中一个固体试样和一个溶液试样进行辐照,累计辐照剂量均为2.7kGy。辐照后固体试样外观无明显变化,溶液试样变为淡红色。
采用钴-60产生的γ-射线对步骤1得到另一个固体试样和一个溶液试样进行辐照,累计辐照剂量为2.7kGy(千戈瑞),辐照后固体试样外观无明显变化,溶液试样颜色变浅,由深红色变为淡红色。
实施例3
步骤1,试样准备:
固体试样的准备:称取90mg苏丹红Ⅳ(纯度>99%)装于1.5mL透明塑料离心管中,平行称取2份,待辐照。
溶液试样的准备:称取适量苏丹红Ⅳ,用乙醇溶解成浓度为115μg/mL的溶液,配制的溶液量不少于50mL,取40mL,用超纯水稀释至100mL,配制成45μg/mL的苏丹红Ⅳ溶液,分装于2个20mL透明塑料瓶中,每个瓶中约13mL,样品溶液呈深红色,待辐照。
步骤2,辐照降解:
利用X-射线生物辐照仪对步骤1得到其中一个固体试样和一个溶液试样进行辐照,累计辐照剂量均为3kGy。辐照后固体试样外观无明显变化,溶液试样变为淡红色。
采用钴-60产生的γ-射线对步骤1得到另一个固体试样和一个溶液试样进行辐照,累计辐照剂量为3kGy(千戈瑞),辐照后固体试样外观无明显变化,溶液试样颜色变浅,由深红色变为淡红色。
实施例4
步骤1,试样准备:
固体试样的准备:称取100mg苏丹红Ⅳ(纯度>99%)装于1.5mL透明塑料离心管中,平行称取2份,待辐照。
溶液试样的准备:称取适量苏丹红Ⅳ,用乙醇溶解成浓度为125μg/mL的溶液,配制的溶液量不少于50mL,取40mL,用超纯水稀释至100mL,配制成50μg/mL的苏丹红Ⅳ溶液,分装于2个20mL透明塑料瓶中,每个瓶中约15mL,样品溶液呈深红色,待辐照。
步骤2,辐照降解:
利用X-射线生物辐照仪对步骤1得到其中一个固体试样和一个溶液试样进行辐照,累计辐照剂量均为3.3kGy。辐照后固体试样外观无明显变化,溶液试样变为淡红色。
采用钴-60产生的γ-射线对步骤1得到另一个固体试样和一个溶液试样进行辐照,累计辐照剂量为3.3kGy(千戈瑞),辐照后固体试样外观无明显变化,溶液试样颜色变浅,由深红色变为淡红色。
对实施例中辐照后苏丹红Ⅳ的降解效果分析:
利用高效液相色谱法对辐照后的苏丹红Ⅳ固体及溶液的降解情况进行检测分析。
固体样品分析:分别称取辐照前和辐照后的苏丹红Ⅳ固体约5mg,用乙腈溶解定容,再用乙腈逐级稀释至1μg/mL的溶液,进样检测。
溶液样品分析:分别取辐照前和辐照后的苏丹红Ⅳ溶液,用乙腈稀释至1μg/mL,进样检测。
辐照剂量为2.7~3.3kGy时,辐照前后苏丹红Ⅳ固体试样和液体试样的液相色谱分别如图1和图2所示。
结果分析:(1)采用X-射线生物辐照仪进行辐照,辐照剂量分别为0.9kGy、1.0kGy、1.1kGy时,苏丹红Ⅳ固体样品的降解率为3.5%、2.9%、3.8%,苏丹红Ⅳ溶液的降解率为31.2%、28.5%、34.8%。辐照剂量分别为2.7kGy、3.0kGy、3.3kGy时,苏丹红Ⅳ固体样品的降解率为11.7%、13.8%、13.0%,苏丹红Ⅳ溶液的降解率为77.8%、75.3%、76.1%。(2)采用γ-射线辐照,辐照剂量分别为2.7kGy、3.0kGy、3.3kGy时,苏丹红Ⅳ固体样品的降解率为12.1%、13.5%、13.8%,苏丹红Ⅳ溶液的降解率为75.1%、73.2%、76.8%。
辐照降解产物分析:
利用超高效液相色谱-串联高分辨质谱分别对辐照前的苏丹红Ⅳ(如图3所示)和苏丹红Ⅳ辐照后的辐解产物进行了检测分析。经过全扫描筛查,在辐照后的苏丹红Ⅳ溶液中发现辐解产物2个,如图4所示。苏丹红Ⅳ及其辐解产物的超高效液相色谱-QExactive高分辨率质谱测定的分子离子峰质荷比见表2,可以初步确定辐解产物的精确分子量,辐解产物1的分子量为254.14,辐解产物2的分子量为240.13。接着利用高分辨质谱对苏丹红Ⅳ原药、苏丹红Ⅳ辐解产物1、苏丹红Ⅳ辐解产物2进行了二级质谱扫描,质谱碎片分别见图5、图6、图7,可以对辐解产物的化学结构式进行初步推断,辐解产物1的分子式为C16H18N2O,辐解产物2的分子式为C15H16N2O。
表2苏丹红Ⅳ及其辐解产物的UPLC-QExactiveMS测定结果

Claims (7)

1.一种苏丹红Ⅳ的降解方法,其特征在于,具体按以下步骤实施:准备苏丹红Ⅳ固体或溶液试样;利用X-射线或γ-射线对苏丹红Ⅳ试样进行辐照降解。
2.根据权利要求1所述的一种苏丹红Ⅳ的降解方法,其特征在于,所述苏丹红Ⅳ溶液试样的准备,具体为:将苏丹红Ⅳ固体在乙醇中溶解,然后用超纯水稀释,得到苏丹红Ⅳ溶液试样。
3.根据权利要求2所述的一种苏丹红Ⅳ的降解方法,其特征在于,所述苏丹红Ⅳ-乙醇溶液的浓度为100~125μg/mL,稀释后的苏丹红Ⅳ溶液试样的浓度为40~50μg/mL。
4.根据权利要求1所述的一种苏丹红Ⅳ的降解方法,其特征在于,所述苏丹红Ⅳ固体试样X-射线辐照降解过程中,累计辐照剂量为2.7~3.3kGy。
5.根据权利要求1所述的一种苏丹红Ⅳ的降解方法,其特征在于,所述苏丹红Ⅳ溶液试样X-射线辐照降解过程中,累计辐照剂量为2.7~3.3kGy。
6.根据权利要求1所述的一种苏丹红Ⅳ的降解方法,其特征在于,所述苏丹红Ⅳ固体试样γ-射线辐照降解过程中,累计辐照剂量为2.7~3.3kGy。
7.根据权利要求1所述的一种苏丹红Ⅳ的降解方法,其特征在于,所述苏丹红Ⅳ溶液试样γ-射线辐照降解过程中,累计辐照剂量为2.7~3.3kGy。
CN201510943569.6A 2015-12-16 2015-12-16 一种苏丹红ⅳ的降解方法 Pending CN105561517A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510943569.6A CN105561517A (zh) 2015-12-16 2015-12-16 一种苏丹红ⅳ的降解方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510943569.6A CN105561517A (zh) 2015-12-16 2015-12-16 一种苏丹红ⅳ的降解方法

Publications (1)

Publication Number Publication Date
CN105561517A true CN105561517A (zh) 2016-05-11

Family

ID=55872492

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510943569.6A Pending CN105561517A (zh) 2015-12-16 2015-12-16 一种苏丹红ⅳ的降解方法

Country Status (1)

Country Link
CN (1) CN105561517A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010007649A1 (en) * 2000-01-12 2001-07-12 Sony Corporation Organic compound decomposing method
CN101717170A (zh) * 2009-11-03 2010-06-02 上海大学 一种电子束辐照和生化联合处理印染废水的方法
CN103435206A (zh) * 2013-08-15 2013-12-11 清华大学 臭氧氧化与电离辐射处理有机废水的协同方法及处理系统
CN105126743A (zh) * 2015-08-20 2015-12-09 南京航空航天大学 一种磁性粘土吸附材料的制备及回收方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010007649A1 (en) * 2000-01-12 2001-07-12 Sony Corporation Organic compound decomposing method
CN101717170A (zh) * 2009-11-03 2010-06-02 上海大学 一种电子束辐照和生化联合处理印染废水的方法
CN103435206A (zh) * 2013-08-15 2013-12-11 清华大学 臭氧氧化与电离辐射处理有机废水的协同方法及处理系统
CN105126743A (zh) * 2015-08-20 2015-12-09 南京航空航天大学 一种磁性粘土吸附材料的制备及回收方法

Similar Documents

Publication Publication Date Title
Chen et al. Determination of biocides in different environmental matrices by use of ultra-high-performance liquid chromatography–tandem mass spectrometry
Vázquez et al. Solid-phase microextraction (SPME) for the determination of pyrethroids in cucumber and watermelon using liquid chromatography combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection
Shabani et al. On-line solid phase extraction system using 1, 10-phenanthroline immobilized on surfactant coated alumina for the flame atomic absorption spectrometric determination of copper and cadmium
CN102636611B (zh) 一种复杂基质水体样品中雌激素及壬基酚、辛基酚、双酚a的共检测方法
Azzouz et al. Determination of 13 endocrine disrupting chemicals in environmental solid samples using microwave-assisted solvent extraction and continuous solid-phase extraction followed by gas chromatography–mass spectrometry
CN102331468B (zh) 一种水体沉积物或土壤中雌激素结合体的检测方法
Dorival-García et al. Improved sample treatment for the determination of bisphenol A and its chlorinated derivatives in sewage sludge samples by pressurized liquid extraction and liquid chromatography–tandem mass spectrometry
Celeiro et al. Simultaneous determination of trace levels of multiclass fungicides in natural waters by solid-phase microextraction-gas chromatography-tandem mass spectrometry
Domínguez-Álvarez Capillary electrophoresis coupled to electrospray mass spectrometry for the determination of organic and inorganic arsenic compounds in water samples
Li et al. Determination of 19 anthelmintics in environmental water and sediment using an optimized PLE and SPE method coupled with UHPLC-MS/MS
Hatzistavros et al. X-ray fluorescence mercury determination using cation selective membranes at sub-ppb levels
Bulgurcuoğlu et al. Development of a switchable solvent liquid phase extraction method for the determination of chlorthiamid, ethyl parathion, penconazole and fludioxonil pesticides in well, tap and lake water samples by gas chromatography mass spectrometry
CN103235081A (zh) 一种纺织品和皮革制品中酚类化合物的测定方法
Bahramifar et al. Trace determination of bisphenol-A in landfill leachate samples by dispersive liquid-liquid microextraction followed by high performance liquid chromatography
Syakti et al. Screening of emerging pollutants in the mangrove of Segara Anakan Nature Reserve, Indonesia
Alsharaa et al. Single-step microwave assisted headspace liquid-phase microextraction of trihalomethanes and haloketones in biological samples
CN105366759A (zh) 一种罗丹明b的降解方法
Alcalde-Molina et al. Automated determination of mercury and arsenic in extracts from ancient papers by integration of solid-phase extraction and energy dispersive X-ray fluorescence detection using a lab-on-valve system
Voigt et al. Identification of pharmaceuticals in the aquatic environment using HPLC-ESI-Q-TOF-MS and elimination of erythromycin through photo-induced degradation
Triñanes et al. Development of a new sorptive extraction method based on simultaneous direct and headspace sampling modes for the screening of polycyclic aromatic hydrocarbons in water samples
CN102495145A (zh) 检测塑料产品中双酚a的方法
Alvarez et al. Sampling and analysis of emerging pollutants
CN105561517A (zh) 一种苏丹红ⅳ的降解方法
Ma et al. Simultaneous determination of nitroimidazoles and amphenicol antibiotics in water samples using ultrasound-assisted dispersive liquid–liquid microextraction coupled with ultra-high-performance liquid chromatography with tandem mass spectrometry
Chen et al. The natural degradation of benzophenone at low concentration in aquatic environments

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160511

RJ01 Rejection of invention patent application after publication