CN105560190B - 基于磁纳米颗粒的新型双靶向基因输送体系及其制备方法 - Google Patents

基于磁纳米颗粒的新型双靶向基因输送体系及其制备方法 Download PDF

Info

Publication number
CN105560190B
CN105560190B CN201610046465.XA CN201610046465A CN105560190B CN 105560190 B CN105560190 B CN 105560190B CN 201610046465 A CN201610046465 A CN 201610046465A CN 105560190 B CN105560190 B CN 105560190B
Authority
CN
China
Prior art keywords
spio
nps
tpp
pei
cmcs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610046465.XA
Other languages
English (en)
Other versions
CN105560190A (zh
Inventor
王雪琴
伊艳杰
李瑞芳
张慧茹
景红娟
李翠香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN201610046465.XA priority Critical patent/CN105560190B/zh
Publication of CN105560190A publication Critical patent/CN105560190A/zh
Application granted granted Critical
Publication of CN105560190B publication Critical patent/CN105560190B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/146Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/143Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with inorganic compounds

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了基于磁纳米颗粒的新型双靶向基因输送体系及其制备方法,基因输送体系以超顺磁性纳米颗粒作为磁核,以羧甲基壳聚糖为包被材料,并在羧甲基壳聚糖表面修饰靶向分子CD133抗体及阳离子转染剂聚乙烯亚胺。本发明的双靶向基因纳米输送体系具有生物相容性好、稳定性高及靶向性特异的特点,使得该体系对肿瘤细胞具有高度的靶向选择性,可定向释放输送靶基因于肿瘤部位,进而发挥靶向抑制和杀死肿瘤细胞的作用,为肿瘤靶向治疗提供一个新策略。本发明纳米载体和基因输送体系的制备方法操作简便、反应条件温和,制备产物可作为基因的广泛载体,为高效的基因靶向输送载体研究提供了一种新的策略。

Description

基于磁纳米颗粒的新型双靶向基因输送体系及其制备方法
技术领域
本发明涉及生物纳米载药材料及基因靶向输送领域,具体涉及一种基于磁纳米颗粒的新型双靶向基因输送体系及其制备方法。
背景技术
恶性肿瘤(癌症)具有发病率高、死亡率高、治疗困难及易复发等特点。据世界卫生组织最新《世界癌症报告》,2012年全球有1400万新增癌症病例,癌症死亡人数达820万。我国新诊断癌症病例为307万,占全球总数的21.8%,癌症死亡人数约220万,占全球癌症死亡人数的26.9%。而且根据目前的癌症发病趋势,到2020年全世界癌症发病率将比现在增加50%。肿瘤常规治疗方法主要是手术切除、放疗以及化疗,然而无论放疗化疗还是手术治疗患者生存期限都不超过12个月。因此,肿瘤治疗面临更加艰巨的任务,而目前RNA干扰(RNAinterference, RNAi)因具有序列和结构的特异性、高效性以及放大效应等特点,为恶性肿瘤治疗提供一条新途径,通过RNAi手段可以沉默肿瘤特异性基因,从而达到治疗肿瘤的目的。然而,易被核酸酶降解、半衰期短、不能有效的穿过细胞膜、稳定性及靶向性差等因素限制了siRNA的有效应用。因此,如何将siRNA安全、高效地输送到靶细胞或靶组织成为RNAi应用的主要瓶颈问题。也就是说,输送载体能否安全、有效地将siRNA基因系统运输到指定部位,并转入细胞质中发挥作用,是RNAi发挥基因沉默功能的重要前提。目前,以病毒和脂质体为载体输送siRNA都存在一定缺陷。例如,病毒载体转染效率高,但具有潜在的致癌性和免疫原性;脂质体则具有较强的细胞毒性和不稳定性。因此,理想的siRNA运输载体是将RNAi技术成功应用于肿瘤靶向治疗的关键前提。无毒、高效的基因转染载体构建是一个急需解决、非常关键的问题。从理论上讲,理想的siRNA输送载体应具有较高的转染效率、良好的靶向性和稳定性、生物相容性无毒或低细胞毒性等特点。磁性纳米颗粒因具有这些特性,因而成为siRNA抑制系统的理想输送载体。
siRNA作为沉默基因的新方法已成功用于肿瘤学研究,为恶性肿瘤治疗提供了一条非常有效的途径。然而,由于靶细胞转染效率低、稳定性及靶向性差等问题,在一定程度上影响了siRNA作用效果。因此,在利用siRNA基因抑制系统进行肿瘤靶向治疗时,如何高效、特异地将siRNA基因运送到肿瘤靶细胞并选择性的在“病灶”部位发挥作用,以及如何实时、原位追踪siRNA体内行为,以便于实时了解肿瘤的发展及治疗情况等,这些都是需要考虑和亟待解决的问题。
发明内容
本发明的目的在于针对目前基因转染效率低、易降解、稳定性及靶向性差等迫切需要解决的问题,构建一种具有抗体及阳离子转染剂特异性双靶向功能的纳米基因输送体系。
本发明的技术方案为:基于磁纳米颗粒的新型双靶向基因输送体系,基因输送体系以超顺磁性氧化铁纳米颗粒作为磁核,以羧甲基壳聚糖为包被材料,并在羧甲基壳聚糖表面修饰靶向分子CD133抗体及阳离子转染剂聚乙烯亚胺。
进一步地,所述磁核为超顺磁性能的γ-Fe2O3纳米颗粒。
进一步地,所述基因为小干扰RNA。
基于磁纳米颗粒的新型双靶向基因输送体系的制备方法,包括以下步骤:
①磁核的制备:利用部分还原三氯化铁溶液共沉淀法制备四氧化三铁纳米颗粒作为前提材料,以盐酸酸化、空气氧化法制备γ-Fe2O3纳米颗粒;
②磁核包被:通过多聚磷酸钠介导的离子凝胶法在γ-Fe2O3纳米颗粒表面包被羧甲基壳聚糖,得到CTS -TPP@SPIO NPs;
③聚乙烯亚胺修饰CTS-TPP@SPIO NPs:采用EDC/NHS交联法制备PEI修饰的CTS -TPP@SPIO NPs,得到PEI-CTS-TPP@SPIO NPs;
④CD133抗体偶联:利用Traut's Reagent及异源双功能交联剂Sulfo-SMCC将CD133抗体与载体PEI-CTS-TPP@SPIO NPs偶联,得到CD133-PEI-CTS-TPP@SPIO NPs。
进一步地,基于磁纳米颗粒的新型双靶向基因输送体系的制备方法,包括以下步骤:
①利用部分还原三氯化铁(FeCl3)溶液共沉淀法,磁力搅拌条件下制备载体核的前体材料四氧化三铁纳米颗粒溶液,然后利用稀盐酸酸化、空气氧化法制备γ-Fe2O3纳米颗粒;去离子水洗涤、真空干燥、研磨过滤即得γ-Fe2O3纳米颗粒纳米颗粒;
②羧甲基壳聚糖(CMC)作为磁核包被材料,利用多聚磷酸钠(TPP)介导的离子凝胶法在超声乳化分散器的超声状态下,进行包被羧甲基壳聚糖(CTS),所得产物在外加磁场的条件下用PBS缓冲液进行磁分离洗涤,即可得CTS-TPP@SPIO NPs;
③利用EDC/NHS交联法制备聚乙烯亚胺(PEI)修饰的CTS-TPP@SPIO NPs,首先在MES缓冲液中利用EDC/NHS活化CTS -TPP@SPIO NPs。然后在PBS缓冲液中交联PEI,将制备的产物用 PBS缓冲液洗涤,即得PEI-CTS-TPP@SPIO NPs;
④CD133抗体与载体PEI-CTS-TPP@SPIO NPs的偶联采用Traut’s Reagent及异源双功能交联剂Sulfo-SMCC:首先在含EDTA的硼酸缓冲液中利用Traut’s Reagent试剂,在室温条件下对CD133抗体进行硫醇化修饰;同时,制备Sulfo-SMCC与PEI-CTS-TPP@SPIO NPs交联物;然后,将硫醇化的CD133抗体加入Sulfo-SMCC交联的PEI-CTS-TPP@SPIO NPs,将得到的反应产物用PBS缓冲液洗涤,即得CD133-PEI-CTS-TPP@SPIO NPs。
进一步地,步骤④中CD133抗体硫醇化修饰的方法为: 取240 μL CD133抗体,加入含EDTA的硼酸缓冲液,然后加入Traut’s Reagent, 室温下,振荡反应;Sulfo-SMCC交联物的制备方法为: 另取适量PEI-CTS-TPP@SPIO NPs,加入sufo-SMCC;将混合液在室温下振荡反应;将得到的产物用含EDTA的PBS缓冲液洗涤2-3次;将硫醇化的CD133抗体加入Sulfo-SMCC交联的PEI-CTS-TPP@SPIO NPs,室温下振荡反应;将得到的反应产物用PBS缓冲液洗涤2-3次,即得CD133-PEI-CTS-TPP@SPIO NPs。
CD133是细胞表面一种糖蛋白抗原,又称AC133,也被称为proinin-1,是一种相对分子量为120kD具有独特五次跨膜蛋白结构域和两个大的N-糖基化细胞外环的跨膜糖蛋白。
CD133是脑肿瘤干细胞特异性表面标志物,具有很高的脑胶质瘤特异性。正常脑组织中CD133表达水平很低,在恶性程度较高的肿瘤中CD133呈强表达。因此,CD133是一个非常具有前景的脑肿瘤靶向诊断和治疗标志物。
因此,我们选择CD133抗体作为修饰磁纳米颗粒的靶向分子,通过CD133抗原与CD133抗体在细胞膜上特异性结合,构建CD133抗体靶向的磁纳米颗粒作为基因输送载体,提高基因的靶向性和选择性。
聚乙烯亚胺 (PEI) 是一种阳离子聚合物,是最为常见的非病毒载体,常用于基因的体内递送。PEI这种材料被称为“proton sponge”,说明该材料具有很强的吸附性。又因其带正电,故能和带负电的核酸相结合。PEI的表面结构决定了这种聚合物的高转染效率。
本发明以磁纳米颗粒为载体、以CD133抗体及阳离子转染剂聚乙烯亚胺(PEI)为靶向分子,构建了一种无毒、高效、特异的双靶向纳米基因输送体系。该体系以超顺磁性氧化铁纳米颗粒作为磁核,以羧甲基壳聚糖为包被材料,并在羧甲基壳聚糖表面修饰靶向分子CD133抗体及阳离子转染剂PEI。本发明的双靶向基因纳米输送体系具有生物相容性好、稳定性高及靶向性特异的特点,使得该体系对肿瘤细胞具有高度的靶向选择性,可定向释放输送靶基因于肿瘤部位,进而发挥靶向抑制和杀死肿瘤细胞的作用,为肿瘤靶向治疗提供一个新策略。本发明纳米载体和基因输送体系的制备方法操作简便、反应条件温和,制备产物可作为基因的广泛载体,为高效的基因靶向输送载体研究提供了一种新的策略。
本发明与现有技术相比具有如下优点:
本发明制备的基于磁纳米颗粒的阳离子转染剂PEI及CD133抗体双靶向基因输送载体,具有高度的靶向选择性,相比非靶向的基因体系,显著提高基因的利用效率,减少对正常组织细胞的毒副作用。本发明纳米载体和基因输送体系的制备方法操作简便、反应条件温和,制备产物可作为基因运载的广泛载体,为高效的基因靶向输送载体研究提供了一种新方法。
附图说明
图1为基于磁纳米颗粒的新型双靶向基因输送体系的构建示意图。
图2为实施例1所构建纳米基因输送体系载体核的透射电子显微镜(TEM)图。
图3为实施例1 基于磁纳米颗粒的新型双靶向基因输送体系红外光谱(FT-IR)图。
图4为实施例1 基于磁纳米颗粒的新型双靶向基因输送体系XRD图。
图5为实施例1 基于磁纳米颗粒的新型双靶向基因输送体系的磁化曲线图。
图6为实施例1 基于磁纳米颗粒的新型双靶向基因输送体系的磁响应图。
图7为实施例1 基于磁纳米颗粒的新型双靶向基因输送体系的PEI含量图。
图8为实施例1 CD133抗体偶联载体的活性分析图。
图9为实施例3 基于磁纳米颗粒的新型双靶向基因输送体系的细胞吸收图。
图10为实施例4 基于磁纳米颗粒的双靶向基因输送载体对细胞增殖的影响。
图11为实施例5基于磁纳米颗粒的新型双靶向基因输送体系对肿瘤干细胞活性影响。
图12为实施例6基于磁纳米颗粒的新型双靶向基因输送体系对肿瘤干细胞细胞周期影响。
图13为实施例7纳米载体与siRNA的结合能力与凝胶阻滞分析图。
图14为实施例8 siRNA转染分析图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
一种基于磁纳米颗粒的新型双靶向基因输送体系的构建示意图参见图1,其具体的制备步骤如下:
(1)磁核即超顺磁性氧化铁纳米颗粒(SPIO NPs)的制备: 吸取10.33 mL的去离子水加入到三口烧瓶中,加入3 mL 2 mol/L的FeCl3溶液,将其固定于磁力架上进行搅拌。然后匀速滴加2 mL 1 mol/L的Na2SO3溶液,在一分钟内滴加完毕,当颜色由红棕色变为黄色时,缓慢滴加80 mL 0.85 mol/L的NH3·H2O,并进行剧烈搅拌,将会有黑色沉淀产生,继续搅拌40 min。用无氧水洗涤沉淀至pH小于7.5,并用无氧水将前体材料稀释至3 mg/mL。然后用0.1 mol/L的HCl调pH至3.0,并保持此状态5 min。5 min内使其温度上升至90 ℃,并在110℃的条件下搅拌90 min,使其充分被氧化,溶液有黑色变为赤褐色,用去离子水洗涤2—3次,真空干燥,研磨过滤即可得到SPIO NPs即γ-Fe2O3纳米颗粒。
(2)利用多聚磷酸钠(TPP)介导的离子凝胶法制备羧甲基壳聚糖(CTS)-TPP@SPIONPs:将上述制备的SPIO NPs转移至三口烧瓶中,将其固定在磁力搅拌架上,进行搅拌,向其中加入20-25 mL的TPP(0.1-1 mg/mL)溶液,在60 ℃条件下磁力搅拌30 min,然后将其在室温下静置12 h。将得到的产物用蒸馏水清洗2-3次。即可制得TPP@SPIO NPs。取60 mg TPP-SPIO NPs于试剂瓶中,并加入30 mL去离子水,进行超声均置,并缓慢加入6 mL浓度为1%的羧甲基壳聚糖(CTS),在超声乳化分散器的超声状态下使其反应30 min。将得到的产物用PBS缓冲液洗涤2-3次。即可制得CTS -TPP@SPIO NPs。
(3)利用EDC/NHS交联法制备聚乙烯亚胺(PEI)修饰的CTS -TPP@SPIO NPs,具体方法为: 首先第一步: 活化CTS -TPP@SPIO NPs,向上述制得的CTS -TPP@SPIO NPs加入8 mLMES缓冲液(PH=6.0), 超声混匀,并在超声条件下加入1.6 mg EDC和2.4 mg NHS,混合液在室温下振荡反应15 -30min,产物磁力沉淀并用PBS洗涤2次。第二步:交联PEI,活化的CTS -TPP@SPIO NPs 加入30 mL PBS缓冲液(PH 7.2);超声混匀,并在连续超声下加入24 mg聚乙烯亚胺(PEI)交联反5min,加入300 μL盐酸羟胺(1 M)反应1 min终止没有反应的NHS,将制备的产物用 PBS缓冲液清洗3次, 并悬浮于PBS缓冲液,即得PEI-CTS -TPP@SPIO NPs;
(4)CD133抗体与载体PEI-CTS-TPP@SPIO NPs的偶联采用Traut’s Reagent及异源双功能交联剂Sulfo-SMCC,具体包括以下三个步骤:
①CD133抗体的硫醇化: 取240 μL CD133抗体(0.5 mg/mL),加入含EDTA的硼酸缓冲液500 μL,然后加入适量2 mg/mL的Traut’s Reagent, 室温下,振荡反应1 h。
②Sulfo-SMCC交联物的制备: 另取适量PEI-CTS-TPP@SPIO NPs,加入530 μLsufo- SMCC(2 mg/mL);将混合液在室温下振荡反应30 min;将得到的产物用含1-5 mMEDTA的PBS缓冲液洗涤2-3次。
③将硫醇化的CD133抗体加入Sulfo-SMCC交联的PEI-CTS-TPP@SPIO NPs,室温下振荡反应30 min-1h;将得到的反应产物用PBS缓冲液洗涤2-3次,最后悬浮于PBS缓冲液中,即得CD133-PEI-CTS-TPP@SPIO NPs。
将制得的载体CTS-TPP@SPIO NPs采用透射电子显微镜(TEM)进行表征,可观察到图2的现象。图2表明样品的形貌为球形或椭圆形纳米颗粒,平均粒径为±30 nm(图2)。
将制得的PEI-CTS-TPP@SPIO NPs采用红外光谱表征产物的组成,可观察到图3的结果。图3表明成功制备超顺磁性载体核SPIO NPs(Fe-O特征吸收峰在595 cm-1附近);羧甲基壳聚糖(CMC)成功包被超顺磁性载体核SPIO NPs,且PEI成功修饰。
将制得的SPIO NPs、CTS-TPP@SPIO NPs及PEI-CTS-TPP@SPIO NPs利用XRD衍射图谱分析其衍射性质。结果表明SPIO NPs(γ-Fe2O3)具有六个特征衍射峰,且六个衍射峰的位置与标准品的基本一致,峰型尖锐,说明我们成功合成SPIO NPs。CTS-TPP@SPIO NPs和PEI-CTS-TPP@SPIO NPs的衍射图样基本与SPIO NPs保持一致,但峰型不再那么尖锐,说明我们成功的在γ-Fe2O3表面偶联了一些物质(图4)。
利用震动样本磁强计分析SPIO NPs、CTS-TPP@SPIO NPs及PEI-CTS-TPP@SPIO NPs磁性能。结果表明, SPIO NPs、CTS-TPP@SPIO NPs及PEI-CTS-TPP@SPIO NPs饱和磁化强度分别为Ms=56.3、47.8、 45.5 emu/g。 矫顽力都非常小,符合超顺磁性材料的特性(图5)。
磁响应性及悬浮稳定性能分析: 取5 mg/mL CD133-PEI-CTS-TPP@SPIO NPs分散于DI水、PBS、RPMI-1640中,在外加磁场和自然状态下,每隔10 min利用紫外-可见光分光光度计测量并记录其550 nm处吸光度和透过率的变化。通过吸光度和透过率的变化,观察纳米颗粒磁响应能力及在自然状态下的悬浮稳定性。实验重复3次。图6是CD133-PEI-CTS-TPP@SPIO NPs在自然状态和磁场状态下的磁响应图,从图中可以看出,CD133-PEI-CTS-TPP @SPIO NPs体系自然状态下在不同介质中均具有良好的分散性稳定性,放入磁场中均具有良好的磁响应性。
PEI含量测定:PEI含量利用茚三酮显色法建立标准曲线并测量。在试管中加入不同量的PEI以建立标准曲线,加水补齐至2 mL,取CTS-TPP@SPIO NPs和PEI-CTS-TPP@SPIONPs各0.4 mg加水补齐至2 mL,加入0.1%的茚三酮1mL ,95℃水浴5min,使用微孔扫描分光光度计测定570 nm吸光度并计算PEI含量,重复测定三次。计算可得对应实验组组所含PEI的量分别为29.5%和27.2%(图7)。
CD133抗体偶联PEI-CTS-TPP@SPIO NPs活性分析:利用间接荧光免疫分析法检测制备CD133-PEI-CTS-TPP@SPIO NPs 的活性。 取1 mg CD133-PEI-CTS-TPP@SPIO NPs并用抗体稀释液调节体积至100 μL,然后加入5 μL Alexa flour 594,避光振荡反应1 h;用无菌PBS缓冲液洗涤2-3次, 荧光显微镜下观察。 实验以未偶联CD133抗体的PEI-CTS-TPP@SPIO NPs为对照。结果表明:CD133-PEI-CTS-TPP@SPIO NPs具有明显的红色荧光,而对照组无荧光,说明CD133 抗体成功偶联(图8)。
实施例2
细胞培养实验
胶质瘤U251细胞在5%CO2和37℃环境下使用含10%新生牛血清、100 U/mL青霉素以及100 µg/mL链霉素的RPMI-1640细胞培养液进行常规培养。当细胞生长达90% 汇合时,按1:3比例进行常规传代,以保证细胞处于对数生长期。
采用无血清悬浮培养联合细胞周期特异性药物长春新碱(vincristine, VCR)富集分离多形性胶质母细胞瘤U251细胞系中的肿瘤干细胞。细胞临用前,采用0.25 % 胰蛋白酶消化细胞,1000 rpm离心5 min收集细胞并用添加生长因子(rhEGF、bFGF、LIF、 B27)的含VCR(8 ng/mL)或无VCR无血清DMEM/F12培养基重新悬浮,计数,待用。将细胞至合适的密度,接种至24孔板,2 x 104细胞/孔,培养24 h后,弃去三分之一的培养基,重新加入等量的新鲜无血清培养基,接种48 h后重复相同的操作;接种72 h后,弃去所有的培养基,重新加入600 μL新鲜无血清培养基培养。胶质瘤球采用胰酶消化联合机械吹打的方式进行传代:首先收集胶质瘤球,1000 rpm离心5 min,吸弃上清液,加入0.25 % 胰酶消化3 min,然后机械吹打离散呈单细胞悬液,然后过200目的细胞筛以去除未离散的肿瘤球,过滤后用含生长因子的SFM调整至合适的密度,重新接种培养,以进行后续试验。
实施例3
双靶向纳米载体细胞吸收实验:为了验证所制备的双靶向纳米载体能否成功进入细胞,我们将制备的载体材料用荧光染料RBITC标记后进行细胞吸收实验。结果表明CD133-PEI-CTS-TPP@SPIO NPs或PEI-CTS-TPP@SPIO NPs均能够成功的进入细胞,而CD133-PEI-CTS-TPP@SPIO NPs因为CD133的主动靶向作用,使得CD133-PEI-CTS-TPP@SPIO NPs更加容易进入细胞,呈现更加强烈的红色荧光(图9)。
实施例4
双靶向纳米载体细胞毒性分析实验:利用MTT分析纳米载体的细胞毒性,将肿瘤干细胞以每孔约104个细胞传至96孔细胞培养板,将肿瘤干细胞培养至每个球大约10个细胞时,按照20 μg/mL 加入CD133-PEI-CTS-TPP@SPIO NPs或PEI-CTS-TPP@SPIO NPs,24h后更换新鲜的DMEM培养基,分别培养24h,48h,3d,4d,使用 MTT检测其细胞活性,每孔细胞加入20 μL MTT(5 mg/mL ),培养4h,弃去培养基保留紫色结晶物,然后每孔加入150 μL DMSO,震摇10 min 使用微孔板分光光度计测定570 nm吸光度。从图10中可以看出,与未处理的对照相比,CD133-PEI-CTS-TPP@SPIO NPs对细胞的毒性比PEI-CTS-TPP@SPIO NPs要弱一些并且和control 组比较接近。因此, 载体材料对干细胞增殖基本没有影响。
实施例5
双靶向纳米载体细胞活性分析实验
利用FDA(二乙酸荧光素)/PI(碘化丙啶)双染分析纳米载体对肿瘤干细胞活性的影响,FDA本身没有荧光,但是FDA无极性,可自由通过活细胞的细胞膜,并在进入细胞后存在与活细胞中的一种酯酶分解产生一种可在蓝色激发光下显示绿色荧光的物质,从而观察活细胞的形态和数量。PI是一种双链DNA荧光染料,可在绿色激发光下显示红色荧光,但是PI本身具有极性不能通过正常细胞的细胞膜,只能在细胞死亡后,或细胞膜破损的情况下,进入细胞膜,并与双链DNA相结合,使细胞显示红色荧光。将肿瘤干细胞培养至每个球大约10个细胞时,按照20 μg/mL 加入CD133-PEI-CTS-TPP@SPIO NPs或PEI-CTS-TPP@SPIO NPs,24h后更换新鲜的DMEM培养基,培养至肿瘤球大约含有200个细胞时,接种至RPMI-1640完全培养基中,分别培养1d,2d,3d,4d,5d,7d后,使用1 μg/mL 的PI染色5 min,PBS洗涤一次,加入1 μg/mL 的FDA染色5 min后观察并用荧光显微镜观察并采集图像。从图11可以看出细胞在重新贴壁生长后,加载体材料和对照组之间基本没有差异且生长到7 d的时候肿瘤球已基本完全分化,形态与富集前胶质瘤U251形态基本一致。因此,载体材料对GSCs的活力基本上没有影响。
实施例6
细胞周期分析实验
利用流式细胞仪检测双靶向纳米载体体系对肿瘤干细胞周期影响,将肿瘤干细胞培养至每个球大约10个细胞时,按照20 μg/mL 加入CD133-PEI-CTS-TPP@SPIO NPs或PEI-CTS-TPP@SPIO NPs,24h后更换新鲜的DMEM培养基,培养至肿瘤球大约含有200个细胞时,用胰酶消化至单个细胞;缓慢加入1 mL -20℃预冷的70%乙醇固定4h,PI染液37℃染色30min,BD FACSCalibur流式细胞仪收集荧光信号,并用ModFit进行周期分析。结果表明,CD133-PEI-CTS-TPP@SPIO NPs或PEI-CTS-TPP@SPIO NPs处理的细胞均在S期和G2/M期有少量的阻滞效应,但是细胞周期整体良好,峰型尖锐,说明纳米材料只有微弱的毒性(图12)。
实施例7
siRNA的结合能力与凝胶阻滞分析实验
双靶向基因输送载体与siRNA结合能力利用紫外分光光度计法和凝胶阻滞法进行分析:首先将RNA配制成20 μ mol/L 水溶液,CD133-PEI-CTS-TPP@SPIO NPs及CTS-TPP@SPIO NPs稀释成1 mg/mL,然后每个离心管加入2 μL 的RNA(即40pmol)以及0 μL、2 μL、4 μL、6 μL、8 μL CD133-PEI-CTS-TPP@SPIO NPs及CTS-TPP@SPIO NPs,加DEPC处理水补充至10μL,静置15 min之后,磁力沉淀,取上清测定220nm到30nm吸光光谱,计算RNA的量。剩余样本在2%的含有1×goldview的琼脂糖30 v电泳30 min,利用凝胶成像系统观察。
纳米颗粒中含有聚乙烯亚胺可与核算相结合,从而到达交联RNA的目的,通过凝胶阻滞实验,我们可以看出纳米材料交联RNA能力大小以及交联RNA的比例。通过核酸蛋白分析仪测定。通过以上两幅凝胶图谱不难看出,随着加入纳米材料的量的增加,凝胶阻滞图谱中的条带逐渐变暗,从这些可以看出,随着加入偶联CD133和PEI包被的载体的量的增加,上清液中的RNA的量逐渐变小,可见我们所制备的载体具有良好的RNA运载能力(图13)。
实施例8
siRNA转染分析实验
利用FAM-siRNA与CD133-PEI-CTS-TPP@SPIO NPs和PEI-CTS-TPP@SPIO NPs结合,通过荧光显微镜观察了CD133-PEI-CTS-TPP@SPIO NPs和PEI-CTS-TPP@SPIO NPs结合FAM-siRNA并转染进入细胞的情况。将肿瘤干细胞培养至每个球大约10个细胞时,按照10 μg/mL加入RBITC-CD133-PEI-CTS-TPP@SPIO NPs、FAM-siRNA/ CD133-PEI-CTS-TPP @SPIO NPs(FAM-siRNA 按照每10 μg MNPs 加入80 pmol FAM-siRNA) 24h后更换新鲜的DMEM培养基,继续培养24h后观察并用荧光显微镜观察照相。结果如图14,CD133-PEI-CTS-TPP@SPIO NPs和PEI-CTS-TPP@SPIO NPs均能够结合和引导FAM-siRNA进入细胞,而且CD133-PEI-CTS-TPP@SPIO NPs主动靶向作用使得这个效果更加明显,说明我们的材料具备引导siRNA进入细胞的能力。
以上所述实施例仅表达了本申请的具体实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请保护范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请技术方案构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。

Claims (4)

1.基于磁纳米颗粒的新型双靶向基因输送体系,其特征在于,基因输送体系以具有超顺磁性能的γ-Fe2O3纳米颗粒作为磁核,以羧甲基壳聚糖为包被材料,并在羧甲基壳聚糖表面修饰靶向分子CD133抗体及阳离子转染剂聚乙烯亚胺,所述的基因为小干扰RNA;
所述基因输送体系的制备方法包括以下步骤:
①磁核的制备:利用部分还原三氯化铁溶液共沉淀法制备四氧化三铁纳米颗粒作为前体 材料,以盐酸酸化、空气氧化法制备γ-Fe2O3纳米颗粒;
②磁核包被:通过多聚磷酸钠介导的离子凝胶法在γ-Fe2O3纳米颗粒表面包被羧甲基壳聚糖,得到CMCS-TPP@SPIO NPs;
③聚乙烯亚胺修饰CMCS-TPP@SPIO NPs:采用EDC/NHS交联法制备聚乙烯亚胺修饰的CMCS-TPP@SPIO NPs,得到PEI-CMCS-TPP@SPIO NPs;
④CD133抗体偶联:利用Traut's Reagent及异源双功能交联剂Sulfo-SMCC将CD133抗体与载体PEI-CMCS-TPP@SPIO NPs偶联,得到CD133-PEI-CMCS-TPP@SPIO NPs。
2.根据权利要求1所述的基于磁纳米颗粒的新型双靶向基因输送体系,其特征在于,包括以下步骤:
①利用部分还原三氯化铁溶液共沉淀法,磁力搅拌条件下制备载体核的前体材料四氧化三铁纳米颗粒溶液,然后利用稀盐酸酸化、空气氧化法制备γ-Fe2O3纳米颗粒,去离子水洗涤、真空干燥、研磨过滤即得γ-Fe2O3纳米颗粒;
②羧甲基壳聚糖作为磁核包被材料,利用多聚磷酸钠介导的离子凝胶法在超声乳化分散器的超声状态下,进行包被羧甲基壳聚糖,所得产物在外加磁场的条件下用PBS缓冲液进行磁分离洗涤,即可得CMCS-TPP@SPIO NPs;
③利用EDC/NHS交联法制备聚乙烯亚胺修饰的CMCS-TPP@SPIO NPs,首先在MES缓冲液中利用EDC/NHS活化CMCS-TPP@SPIO NPs,然后在PBS缓冲液中交联PEI,将制备的产物用PBS缓冲液洗涤,即得PEI-CMCS-TPP@SPIO NPs;
④CD133抗体与载体PEI-CMCS-TPP@SPIO NPs的偶联采用Traut’s Reagent及异源双功能交联剂Sulfo-SMCC:首先在含EDTA的硼酸缓冲液中利用Traut’s Reagent试剂,在室温条件下对CD133抗体进行硫醇化修饰;同时,制备Sulfo-SMCC与PEI-CMCS-TPP@SPIO NPs交联物;然后,将硫醇化的CD133抗体加入Sulfo-SMCC交联的PEI-CMCS-TPP@SPIO NPs,将得到的反应产物用PBS缓冲液洗涤,即得CD133-PEI-CMCS-TPP@SPIO NPs。
3.根据权利要求2所述的基于磁纳米颗粒的新型双靶向基因输送体系,其特征在于,步骤④中CD133抗体硫醇化修饰的方法为:取240μL CD133抗体,加入含EDTA的硼酸缓冲液,然后加入Traut’s Reagent,室温下,振荡反应;Sulfo-SMCC交联物的制备方法为:另取适量PEI-CMCS-TPP@SPIO NPs,加入sufo-SMCC;将混合液在室温下振荡反应;将得到的产物用含EDTA的PBS缓冲液洗涤2-3次;将硫醇化的CD133抗体加入Sulfo-SMCC交联的PEI-CMCS-TPP@SPIO NPs,室温下振荡反应;将得到的反应产物用PBS缓冲液洗涤2-3次,即得CD133-PEI-CMCS-TPP@SPIO NPs。
4.根据权利要求1所述的基于磁纳米颗粒的新型双靶向基因输送体系在制备治疗肿瘤的基因靶向的药物的应用。
CN201610046465.XA 2016-01-25 2016-01-25 基于磁纳米颗粒的新型双靶向基因输送体系及其制备方法 Expired - Fee Related CN105560190B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610046465.XA CN105560190B (zh) 2016-01-25 2016-01-25 基于磁纳米颗粒的新型双靶向基因输送体系及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610046465.XA CN105560190B (zh) 2016-01-25 2016-01-25 基于磁纳米颗粒的新型双靶向基因输送体系及其制备方法

Publications (2)

Publication Number Publication Date
CN105560190A CN105560190A (zh) 2016-05-11
CN105560190B true CN105560190B (zh) 2018-09-14

Family

ID=55871217

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610046465.XA Expired - Fee Related CN105560190B (zh) 2016-01-25 2016-01-25 基于磁纳米颗粒的新型双靶向基因输送体系及其制备方法

Country Status (1)

Country Link
CN (1) CN105560190B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108148867A (zh) * 2017-12-29 2018-06-12 佛山科学技术学院 一种核壳结构的磁性壳聚糖聚乙酰亚胺纳米基因载体及其制备方法
CN112826941A (zh) * 2020-08-14 2021-05-25 南京邮电大学 一种用于递送蛋白药物的磁性血小板复合物的制备方法
CN113960308A (zh) * 2021-09-09 2022-01-21 深圳市人民医院 一种基于MNPs的神经胶质肉瘤标志物筛选方法
CN114392361B (zh) * 2022-01-23 2023-06-02 重庆医科大学附属儿童医院 一种羧甲基壳聚糖-腺病毒混合物及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103933584A (zh) * 2014-04-30 2014-07-23 东华大学 一种叶酸修饰的超顺磁氧化铁纳米颗粒的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110135577A1 (en) * 2009-12-03 2011-06-09 National Taiwan University Superparamagnetic nanoparticles IN MEDICAL THERAPEUTICS and manufacturing method THEREOF
US20150316544A1 (en) * 2013-01-14 2015-11-05 Northeastern University Releasable magnetic cell capture system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103933584A (zh) * 2014-04-30 2014-07-23 东华大学 一种叶酸修饰的超顺磁氧化铁纳米颗粒的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CD133基因表达与人脑胶质瘤恶性程度相关性分析;许亮,等;《中国微侵袭神经外科杂志》;20081231(第3期);第128-131页,尤其是摘要 *
Polyethylenimine mediated magnetic nanoparticles for combined intracellular imaging, siRNA delivery and anti-tumor therapy;Xueqin Wang,et al;《RSC advance》;20151117(第5期);第101569-101581页,尤其是摘要、第101570页右栏最后1段,101571页图表1,第101572页左栏第2段 *
聚乙烯亚胺与壳聚糖在基因载体中的应用;朱青,等;《药学服务与研究》;20131231;第13卷(第6期);第445-448页,尤其是第447页右栏第1段 *

Also Published As

Publication number Publication date
CN105560190A (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
Song et al. Lactoferrin modified graphene oxide iron oxide nanocomposite for glioma-targeted drug delivery
CN105560190B (zh) 基于磁纳米颗粒的新型双靶向基因输送体系及其制备方法
Gambhir et al. Multifunctional surface functionalized magnetic iron oxide nanoparticles for biomedical applications: A review
Liao et al. Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia
Kumar et al. Multifunctional magnetic nanoparticles for targeted delivery
Wu et al. Prostate stem cell antigen antibody-conjugated multiwalled carbon nanotubes for targeted ultrasound imaging and drug delivery
CN107029252B (zh) 一种特异性磁性Endoglin适配体成像探针系统的制备方法
CN106237947A (zh) 高密度羧基修饰的磁性微球及其制备方法
Sun et al. Targeting and regulating of an oncogene via nanovector delivery of MicroRNA using patient-derived xenografts
CN106890343B (zh) 一种靶向型多肽纳米基因载体复合物
Khmara et al. Preparation of poly-L-lysine functionalized magnetic nanoparticles and their influence on viability of cancer cells
CN105802998B (zh) 一种层层包覆结构的磁性纳米球及其制备方法和应用
Zhao et al. Morphology, structure and function characterization of PEI modified magnetic nanoparticles gene delivery system
Ferraz et al. Biotechnological approach to induce human fibroblast apoptosis using superparamagnetic iron oxide nanoparticles
CN103769018A (zh) 改性凝集素包裹的磁性大分子脂质体纳米微球、制备方法及应用
Li et al. Nanoparticle delivery of anti-metastatic NM23-H1 gene improves chemotherapy in a mouse tumor model
Borghei et al. Engineering in modern medicine using ‘magnetic nanoparticles’ in understanding physicochemical interactions at the nano–bio interfaces
CN114479090B (zh) 一种氟化聚乙二醇-聚乙烯亚胺及其制备方法和应用
CN104288791A (zh) 一种携带Notch-1 shRNA的靶向磁性荧光纳米载体及其制备方法和应用
Yang et al. Microfluidic one-step synthesis of a metal− organic framework for osteoarthritis therapeutic microRNAs delivery
CN108567983B (zh) 一种纳米复合材料、其制备方法及应用
Xie et al. Low aggregation magnetic polyethyleneimine complexes with different saturation magnetization for efficient gene transfection in vitro and in vivo
Bakhtiar et al. Intracellular delivery of p53 gene and MAPK siRNA into breast cancer cells utilizing barium salt nanoparticles
Chávez-Guajardo et al. Use of magnetic and fluorescent polystyrene/tetraphenylporphyrin/maghemite nanocomposites for the photoinactivation of pathogenic bacteria
CN114225044B (zh) 一种修饰细胞外囊泡的试剂及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180914

CF01 Termination of patent right due to non-payment of annual fee