CN105552123B - 丝网印刷型自参比-石墨烯场效应晶体管生化传感器 - Google Patents

丝网印刷型自参比-石墨烯场效应晶体管生化传感器 Download PDF

Info

Publication number
CN105552123B
CN105552123B CN201610051087.4A CN201610051087A CN105552123B CN 105552123 B CN105552123 B CN 105552123B CN 201610051087 A CN201610051087 A CN 201610051087A CN 105552123 B CN105552123 B CN 105552123B
Authority
CN
China
Prior art keywords
field effect
effect transistor
graphene field
graphene
graphene film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610051087.4A
Other languages
English (en)
Other versions
CN105552123A (zh
Inventor
贾芸芳
邵晨
郭智勇
盛博文
琚成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN201610051087.4A priority Critical patent/CN105552123B/zh
Publication of CN105552123A publication Critical patent/CN105552123A/zh
Application granted granted Critical
Publication of CN105552123B publication Critical patent/CN105552123B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明创造提供了一种丝网印刷型自参比‑石墨烯场效应晶体管生化传感器,该石墨烯场效应晶体管传感器采用丝网印刷技术制备,既具有石墨烯场效应晶体管的器件优势,又可满足液体环境中生物化学传感器三电极检测的需求,工艺简单、成本低廉;此外,自参比的结构设计,不同于现有液栅石墨烯场效应晶体管,采用了将参比电极、石墨烯场效应晶体管集成为一体的设计方案,具有全固态、易操作的优势;最后,由于采用了对石墨烯材料和衬底分别进行羧基化和氨基化处理,有利于提高器件的稳定性。

Description

丝网印刷型自参比-石墨烯场效应晶体管生化传感器
技术领域
本发明创造属于生物化学传感器领域,尤其是涉及一种器件结构及工艺设计。
背景技术
场效应晶体管时电子产品中应用最多的元器件,这些器件的产生和应用都具有划时代的意义。它的出现引发了电子工业的一场巨大革命,这种元器件的在电子产品中的应用及其发展使集成电路成为可能,是电子元器件小型化成为趋势。第一代可应用的场效应晶体管是基于单晶硅的金属-氧化物-半导体场效应晶体管,被称作金属-氧化物半导体场效应晶体管(metal-oxide-semiconductor field effect transistor,简称MOSFET)。贝尔实验室于1960年制造出第一个MOSFET。MOSFET在现代记忆元件、集成电路记忆计算机的处理器中都有着至关重要的作用。比如:MOSFET可用于数字电路与逻辑电路中的加法器、转移器、换流器、算法逻辑单元以及用于构造序列逻辑电路等。将空穴传输的MOSFET(PFET)与电子传输的MOSFET(NFET)结合起来作用制作在同一块晶片上,就组成了互补型金属氧化物半导体场效应晶体管(complementary metal-oxide-semiconducor,简称CMOS)。COMS是各类逻辑电路的基本单元,它时电路中元器件的尺寸变小、功耗降低、稳健性提高、噪音减小。
由于量子效应的存在,发展到纳米尺寸的硅场效应晶体管若要再进一步地微型化,就会非常困难并且要付出昂贵代价,一般认为小于10纳米后不太可能生产出性能稳定、集成度更高的产品。然而石墨烯场效应晶体管的出现将延长摩尔定律的寿命。石墨烯场效应晶体管的出现在生物检测领域也有着重要意义,下面主要介绍生化量检测中常用的液栅石墨烯场效应晶体管的两种结构以及它们的工作原理。
液栅的结构被广泛使用在聚合物型场效应晶体管中[1,2],也被成功应用于碳纳米管场效应晶体管中[3,4]。现在,随着对石墨烯材料研究的深入以及其在生物传感器中的广泛应用,基于液栅的石墨烯场效应晶体管开始引起科研人员的兴趣。液栅石墨烯场效应晶体管的结构如图1所示。在这种结构中,溶液3充当晶体管的介质层,当通过参比电极4给晶体管施加偏压VRE时,在石墨烯薄膜2与溶液3的界面处形成双电层,其厚度分别约为和几个[5];该双电层的厚度特别小,电容很大,所以液栅石墨烯场效应晶体管可以在较低的偏压下在石墨烯薄膜2中产生大量导电载流子;当源极5和漏极6之间施加稳定源漏电压VDS时,可形成稳定的源漏电流IDS。
这种液栅石墨烯场效应晶体管生化传感器最主要的一个功能就是作为生物检测元件,其生化敏感机制可以简述如下:首先,当被测生化物质通过一定方式附着到石墨烯表面时,会对石墨烯薄膜2与溶液3的双电层产生影响;其次,当界面双电层随被测生化物质改变时,将导致在相同参比电极4的偏压VRE作用下,石墨烯薄膜中载流子浓度随之改变;最终,石墨烯薄膜2中载流子浓度的变化将导致,相同源漏电压VDS时,源漏电流IDS随被测生化物质而变化。
液栅石墨烯场效应晶体管的制备方法,以早期的机械剥离法[6,7,8]、化学气相沉积法[9]及外延生长法[10,11]为主,此类方法得到的石墨烯薄膜2纯度高、结构理想,因此采用此类方法制备的石墨烯场效应晶体管性能较好,在科研领域广泛使用,但其成本高、不适于量产;近年来又出现了基于化学液相工艺的旋涂法和微成型法[12,13],此类方法以改进Hummers法[14]为基础,具有工艺简单、成本低廉、适于工业化生产的优势,但是此类工艺制备的石墨烯场效应晶体管性能不高、存在石墨烯薄膜2与绝缘衬底1粘附性差的问题。
综上所述,检索文献发现现有液栅石墨烯场效应晶体管制备方法均存在一个重要问题:液栅石墨烯场效应晶体管中的参比电极4无法与石墨烯薄膜2、源极5、漏极6即成为一体,从而导致在实际生化检测中参比电极4与石墨烯薄膜2之间的距离不固定,影响测量结果。
发明内容
有鉴于此,本发明创造旨在提出一种丝网印刷型自参比-石墨烯场效应晶体管生化传感器,该石墨烯场效应晶体管传感器采用丝网印刷技术制备,既具有石墨烯场效应晶体管的器件优势,又可满足液体环境中生物化学传感器三电极检测的需求,工艺简单、成本低廉;此外,自参比的结构设计,不同于现有液栅石墨烯场效应晶体管,采用了将参比电极、石墨烯场效应晶体管集成为一体的设计方案,具有全固态、易操作的优势;最后,由于采用了对石墨烯材料和衬底分别进行羧基化和氨基化处理,有利于提高器件的稳定性。
为达到上述目的,本发明创造的技术方案是这样实现的:
一种丝网印刷型自参比-石墨烯场效应晶体管生化传感器,包括源极5、漏极6、绝缘保护层7、Ag/AgCl箔片8、底部PET绝缘膜片9、羧基化石墨烯薄膜10、导电银浆印制11、顶部PET绝缘膜片12、压焊点13、接触窗口14,其特征为,羧基化石墨烯薄膜10、源极5、漏极6位于底部PET绝缘膜片9上表面,且源极5和漏极6分立于羧基化石墨烯薄膜10两侧;绝缘保护层7分别与源极5和漏极6的上表面相连,且在羧基化石墨烯薄膜10的上表面中间区域设置有接触窗口14;羧基化石墨烯薄膜10的上部悬置有Ag/AgCl箔片8,Ag/AgCl箔片8的上表面与导电银浆导线11相连;导电银浆导线11的上表面与顶部PET绝缘膜片12的下表面相连,下表面的远离Ag/AgCl箔片8一侧与绝缘绝缘保护层7相连。
本发明的技术特点:
(1)Ag/AgCl箔片8作为参比电极悬置于羧基化石墨烯薄膜10上部,具有自参比的结构、全固态生化传感器的特点。
(2)本发明中的底部PET绝缘膜片9的上表面被氨基化处理,同时采用了羧基化石墨烯薄膜10,替代传统液栅石墨烯场效应晶体管中的石墨烯薄膜2。
(3)本发明中绝缘保护层7采用柔性透明绝缘材料聚二甲基硅氧烷(PDMS)薄膜,绝缘保护层7覆盖在源极5、漏极6、羟基化石墨烯10、导电银浆印制导线11所在区域,且其中间区域设有接触窗口14,接触窗口14穿透底部绝缘保护层7,使羧基化石墨烯薄膜10的中间部分暴露于绝缘保护层7之外。
(4)本发明提出的自参比-石墨烯场效应晶体管,具有完全采用丝网印刷技术的特点,不同于现有液栅石墨烯场效应晶体管的制备方法。
本发明的有益效果:
(1)本发明所提出的自参比-石墨烯场效应晶体管生化传感器,与现有液栅石墨烯场效应晶体管中参比电极4与石墨烯场效应晶体管(由绝缘衬底1、石墨烯薄膜2、源极5、漏极6组成)相互独立的设计结构相比较,由于无需外加参比电极4,解决了传统液栅石墨烯场效应晶体管中,由于参比电极4与石墨烯薄膜2之间距离不固定而引入的测量误差问题。
(2)本发明所提出的自参比-石墨烯场效应晶体管生化传感器,对底部PET绝缘膜片9进行了氨基化处理,同时采用了羧基化的石墨烯薄膜10,与传统液栅石墨烯场效应晶体管相比较,有利于增强石墨烯薄膜2与绝缘衬底1之间的粘附性。
(3)本发明所提出的自参比-石墨烯场效应晶体管生化传感器采用了在绝缘保护层7中设置接触窗口14的设计方案,其有益效果在于,既可使羧基化石墨烯薄膜10上表面暴露于待测溶液,又为Ag/AgCl箔片8悬浮于羧基化石墨烯薄膜10上部提供了支撑。
本发明所提出的自参比-石墨烯场效应晶体管生化传感器,采用了基于丝网印刷技术、全固态化的设计方案,具有工艺简单、成本低廉、易于批量化生产和便于操作的优点。
附图说明
构成本发明创造的一部分的附图用来提供对本发明创造的进一步理解,本发明创造的示意性实施例及其说明用于解释本发明创造,并不构成对本发明创造的不当限定。在附图中:
图1为本发明创造实施例所述的液栅石墨烯场效应晶体管的结构示意图;
图2为本发明创造实施例所述的丝网印刷型自参比-石墨烯场效应晶体管生化传感器的剖面结构示意图;
图3为本发明创造实施例所述的丝网印刷型自参比-石墨烯场效应晶体管生化传感器的俯视结构示意图。
附图标记说明:
1-绝缘衬底;2-石墨烯薄膜;3-溶液;4-参比电极;5-源极;6-漏极;7-绝缘保护层;8-Ag/AgCl箔片;9-底部PET绝缘膜片;10-羧基化石墨烯薄膜;11-导电银浆印制导线;12-顶部PET绝缘膜片;13-电极压焊点;14-接触窗口。
具体实施方式
需要说明的是,在不冲突的情况下,本发明创造中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本发明创造。
(1)在固定有压焊点13的底部PET绝缘膜片9以及顶部PET绝缘膜片12的上表面,分别制备导电银浆印制导线11;
(2)制备导电银浆印制导线11后,在底部PET绝缘膜片9的上表面中需要印制羧基化石墨烯薄膜10的区域,使用APTES试剂进行氨基化处理;
(3)氨基化处理的区域中,印制羧基化石墨烯薄膜10;
(4)印制源极5和漏极6;
(5)将绝缘保护层7按照图2和图3的要求,覆盖在器件的上表面;
(6)按照图2的要求,将Ag/AgCl箔片8固定于顶部PET绝缘膜片12上印制有导电银浆印制导线11的一面;
(7)按照图3的要求,将固定有Ag/AgCl箔片8的顶部PET绝缘膜片12,与底部PET绝缘膜片9连接,且顶部PET绝缘膜片12上固定有Ag/AgCl箔片8的一面向下,与绝缘保护层7连接。
以上所述仅为本发明创造的较佳实施例而已,并不用以限制本发明创造,凡在本发明创造的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明创造的保护范围之内。

Claims (1)

1.丝网印刷型自参比-石墨烯场效应晶体管生化传感器,包括源极、漏极、绝缘保护层、Ag/AgCl箔片、底部PET绝缘膜片、羧基化石墨烯薄膜、导电银浆印制导线、顶部PET绝缘膜片、压焊点、接触窗口,其特征为,羧基化石墨烯薄膜、源极、漏极位于底部PET绝缘膜片上表面,且源极和漏极分立于羧基化石墨烯薄膜两侧;绝缘保护层分别与源极和漏极的上表面相连,且在羧基化石墨烯薄膜的上表面中间区域设置有接触窗口;羧基化石墨烯薄膜的上部悬置有Ag/AgCl箔片,Ag/AgCl箔片的上表面固定于顶部PET绝缘膜片上印刷有导电银浆印制导线的下表面,导电银浆印制导线的下表面的远离Ag/AgCl箔片一侧与绝缘保护层相连。
CN201610051087.4A 2016-01-25 2016-01-25 丝网印刷型自参比-石墨烯场效应晶体管生化传感器 Active CN105552123B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610051087.4A CN105552123B (zh) 2016-01-25 2016-01-25 丝网印刷型自参比-石墨烯场效应晶体管生化传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610051087.4A CN105552123B (zh) 2016-01-25 2016-01-25 丝网印刷型自参比-石墨烯场效应晶体管生化传感器

Publications (2)

Publication Number Publication Date
CN105552123A CN105552123A (zh) 2016-05-04
CN105552123B true CN105552123B (zh) 2018-12-11

Family

ID=55831204

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610051087.4A Active CN105552123B (zh) 2016-01-25 2016-01-25 丝网印刷型自参比-石墨烯场效应晶体管生化传感器

Country Status (1)

Country Link
CN (1) CN105552123B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110398528B (zh) * 2019-06-10 2022-04-12 深圳大学 一种基于液栅型igzo薄膜晶体管的抗结核类药物筛选装置及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621210A (zh) * 2012-04-01 2012-08-01 东北师范大学 以空气间隙为绝缘层的场效应气体传感器及其制备方法
CN103293209A (zh) * 2013-05-06 2013-09-11 中国科学院苏州纳米技术与纳米仿生研究所 一种离子敏传感器及其制作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012150884A1 (en) * 2011-05-05 2012-11-08 Sensic Ab Field effect transistor for chemical sensing using graphene, chemical sensor using the transistor and method for producing the transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621210A (zh) * 2012-04-01 2012-08-01 东北师范大学 以空气间隙为绝缘层的场效应气体传感器及其制备方法
CN103293209A (zh) * 2013-05-06 2013-09-11 中国科学院苏州纳米技术与纳米仿生研究所 一种离子敏传感器及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A novel biomedical sensor for tumor marker based on Flexible supported solution gated graphene field effective transistor;Cheng Ju et al;《Proceedings of 2015 International Conference on Materials,Environmental and Biological Engineering(MEBE 2015)》;20150328;第429页第1段-第430页最后1段,图1 *

Also Published As

Publication number Publication date
CN105552123A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
Xiang et al. Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces
CN109682863B (zh) 基于TMDCs-SFOI异质结的气体传感器及其制备方法
Liu et al. van der Waals contact engineering of graphene field-effect transistors for large-area flexible electronics
Khodagholy et al. High transconductance organic electrochemical transistors
Kim et al. Disposable chemical sensors and biosensors made on cellulose paper
Maiolo et al. Flexible pH sensors based on polysilicon thin film transistors and ZnO nanowalls
Mailly-Giacchetti et al. pH sensing properties of graphene solution-gated field-effect transistors
Noh et al. Key issues with printed flexible thin film transistors and their application in disposable RF sensors
Kang et al. pH measurements with single ZnO nanorods integrated with a microchannel
TWI222742B (en) Fabrication and structure of carbon nanotube-gate transistor
CN109580725A (zh) 基于天线结构的二维过渡金属硫化物气体传感器及制备
WO2010125717A1 (ja) 化学センサ
Zhao et al. Intrinsically stretchable organic-tribotronic-transistor for tactile sensing
CN107462350A (zh) 一种压电传感器、压力检测装置、制作方法及检测方法
CN207038541U (zh) 一种高响应的石墨烯‑二硫化钼柔性光电传感器及光电检测设备
CN104792848B (zh) 一种基于印刷晶体管的pH检测标签
Polyravas et al. Effect of channel thickness on noise in organic electrochemical transistors
Han et al. Improving chemical vapor deposition graphene conductivity using molybdenum trioxide: An in-situ field effect transistor study
CN108490043B (zh) 一种气体传感器及其制备方法
CN105552123B (zh) 丝网印刷型自参比-石墨烯场效应晶体管生化传感器
Haur Kao et al. Multianalyte biosensor based on pH-sensitive ZnO electrolyte–insulator–semiconductor structures
Ahmed et al. Development of EGFET-based ITO pH sensors using epoxy free membrane
TWI637903B (zh) 生物感測系統
CN108120752B (zh) 一种具有空气桥参比电极遮光结构的传感器芯片及制备方法
CN101995424A (zh) 塑料电位离子选择感测器及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant