CN105548081A - 一种测定水中溶解性腐殖酸分子量分布的方法 - Google Patents
一种测定水中溶解性腐殖酸分子量分布的方法 Download PDFInfo
- Publication number
- CN105548081A CN105548081A CN201510885108.8A CN201510885108A CN105548081A CN 105548081 A CN105548081 A CN 105548081A CN 201510885108 A CN201510885108 A CN 201510885108A CN 105548081 A CN105548081 A CN 105548081A
- Authority
- CN
- China
- Prior art keywords
- humic acid
- visible light
- molecular weight
- ultraviolet
- weight distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- QJZYHAIUNVAGQP-UHFFFAOYSA-N 3-nitrobicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid Chemical compound C1C2C=CC1C(C(=O)O)C2(C(O)=O)[N+]([O-])=O QJZYHAIUNVAGQP-UHFFFAOYSA-N 0.000 title claims abstract description 43
- 239000004021 humic acid Substances 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 19
- 238000000926 separation method Methods 0.000 claims abstract description 16
- 239000000243 solution Substances 0.000 claims abstract description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 8
- 238000000569 multi-angle light scattering Methods 0.000 claims abstract description 8
- 238000000149 argon plasma sintering Methods 0.000 claims abstract description 4
- 239000008367 deionised water Substances 0.000 claims abstract description 4
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 4
- 238000001514 detection method Methods 0.000 claims abstract description 4
- 238000010586 diagram Methods 0.000 claims abstract description 4
- 239000007864 aqueous solution Substances 0.000 claims description 9
- 238000010828 elution Methods 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 239000012528 membrane Substances 0.000 claims description 5
- 239000004695 Polyether sulfone Substances 0.000 claims description 3
- 238000010521 absorption reaction Methods 0.000 claims description 3
- 229920006393 polyether sulfone Polymers 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 2
- 230000007423 decrease Effects 0.000 claims 3
- 239000002245 particle Substances 0.000 abstract description 6
- 230000005526 G1 to G0 transition Effects 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 4
- 239000000945 filler Substances 0.000 abstract description 2
- 238000010008 shearing Methods 0.000 abstract description 2
- 238000010790 dilution Methods 0.000 abstract 1
- 239000012895 dilution Substances 0.000 abstract 1
- 230000003247 decreasing effect Effects 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000007717 exclusion Effects 0.000 description 3
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/33—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N2021/4704—Angular selective
- G01N2021/4711—Multiangle measurement
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明公开了一种测定水中溶解性腐殖酸分子量分布的方法,包括如下步骤:1)用总有机碳分析仪测定水溶液中溶解性腐殖酸的总有机碳值;取溶解性腐殖酸水溶液,用去离子水分别稀释;2)用进样器取10ml注入后面串联有多角度激光光散射仪和紫外可见光检测器的非对称场流分析仪中,进行检测;3)利用非对称场流分析仪自带软件对多角度激光光散射仪检测得到的光散射信号峰和紫外可见光检测器检测得到的紫外可见光信号峰进行积分,得腐殖酸分子量分布图。本发明的方法根据粒子大小进行分离,分离过程没有固定相填料,不存在固定相与样品的剪切作用,有利于保留颗粒的完整性。能够获得溶解性腐殖酸的连续性分布,操作简单,成本低。
Description
技术领域
本发明涉及水体溶解性有机物的测定,具体涉及一种测定水中溶解性腐殖酸分子量分布的方法。
背景技术
腐殖酸是水体有机污染物的主要组成部分,主要来源于动植物残体的分解。腐殖酸在天然水体中主要以胶体形式存在,含量约数十毫克每升。它是以多元酚及醌为芳香中心的多聚物,结构十分复杂,没有固定的分子式和分子量,具有疏松的“海绵状”结构,所以具有巨大的表面积和表面能;对痕量金属具有较强的络合能力,可以与众多金属离子形成络合物或鳌合物,对水体其他污染物的迁移转化和毒性具有重要影响。腐殖酸含有较多的活性官能团,其形态特征容易受水环境条件(pH、浓度、阴阳离子浓度、固体颗粒等)的影响,腐殖酸本身的特性是影响其与其他物质络合的根本因素。了解腐殖酸在水环境中的大小及分布对于腐殖酸的特性及其迁移转化规律具有十分重要的意义。
有机物分子量分布常采用凝胶尺寸排阻法进行测定,其原理主要是根据溶液中样品组分的流体力学体积大小进行分离的,由于不同分子量组分所拥有的流体力学体积不同,其在色谱柱中所受到的固定相的阻力也不同,使得被分离样品组分按分子量大小先后流出色谱柱。然而,对于高分子量粒子的分离,尺寸排阻法由于孔径排阻的作用不能将其完全分开。
非对称流动场场流分析仪,是用一个没有固定相的、空心的、扁平的分离通道代替了传统的凝胶渗透色谱柱,同时在垂直于样品流的方向上施加一个分离力,从而实现对样品的分离。目前,尚未有用非对称流动场场流分析仪对水中溶解性腐殖酸分子量分布测定的报道。
发明内容
本发明的目的是克服现有技术的不足,提供一种测定水中溶解性腐殖酸分子量分布的方法。
本发明的技术方案概述如下:
一种测定水中溶解性腐殖酸分子量分布的方法,包括如下步骤:
1)用总有机碳分析仪测定溶解性腐殖酸水溶液中溶解性腐殖酸的总有机碳值;取溶解性腐殖酸水溶液,用去离子水分别稀释至溶解性腐殖酸浓度为10mg/L-20mg/L;
2)用进样器取10ml步骤1)所得溶液注入后面串联有多角度激光光散射仪和紫外可见光检测器的非对称场流分析仪中,进行检测;
3)利用非对称场流分析仪自带软件对多角度激光光散射仪检测得到的光散射信号峰和紫外可见光检测器检测得到的紫外可见光信号峰进行积分,得腐殖酸分子量分布图。
非对称场流分析仪采用300DaPES(聚醚砜)膜;分离系统的参数:进样过程主流流速为0.5ml/min,交叉流流速为3.0ml/min;洗脱过程采用梯度洗脱,交叉流流速在20min内从3ml/min线性降为0.25ml/min,又在2.5min内降至0.1ml/min,最后在3.5min内降到0.01ml/min后保持恒定。
步骤1)所得溶液在多角度激光光散射器和紫外可见光检测器内的流速均为0.4ml/min,紫外可见光检测器的吸收波长设为254nm。
本发明具有以下优点:
1.根据粒子大小进行分离,分离过程没有固定相填料,不存在固定相与样品的剪切作用,有利于保留颗粒的完整性。
2.能够获得溶解性腐殖酸的连续性分布,了解溶解性腐殖酸的分子量分布及其相对含量,且操作简单,成本低。
附图说明
图1为溶解性腐殖酸分子量分布(图1A:10mg/L;图1B:15mg/L;图1C:20mg/L)
具体实施方式
下面结合具体实施例对本发明作进一步地说明。
实施例1
溶解性腐殖酸水溶液的配制:准确称取腐殖酸样品0.5g,加入0.1mol/LNaOH水溶液20ml;搅拌24小时,通过孔径为0.45μm的滤膜过滤,得滤液;加水定容至1000毫升得溶解性腐殖酸水溶液。所述腐殖酸样品购自天津市莱博生物公司。
实施例2
一种测定水中溶解性腐殖酸分子量分布的方法,包括如下步骤:
1)用总有机碳分析仪(TOC-VCPH)测定溶解性腐殖酸水溶液中溶解性腐殖酸的总有机碳值(TOC);取溶解性腐殖酸水溶液,用去离子水分别稀释至溶解性腐殖酸浓度为10mg/L、15mg/L、20mg/L;
2)三个浓度的样品分别测定,用进样器取10ml步骤1)所得其中一种溶液注入后面串联有多角度激光光散射仪和紫外可见光检测器的非对称场流分析仪中,进行检测;
3)利用非对称场流分析仪自带软件对多角度激光光散射仪检测得到的光散射信号峰和紫外可见光检测器检测得到的紫外可见光信号峰进行积分,得腐殖酸分子量分布图,结果见图1,结果表明,溶解性腐殖酸浓度为10mg/L时,分子量主要在104-107范围内,其中105-106范围内含量最大;当腐殖酸浓度为15mg/L时,分子量基本都集中在105-106范围内;腐殖酸浓度为20mg/L时,分子量分布与浓度为15mg/L时相似。
优选的,非对称场流分析仪采用300Da聚醚砜膜;分离系统的参数:进样过程主流流速为0.5ml/min,交叉流流速为3.0ml/min;洗脱过程采用梯度洗脱,交叉流流速在20min内从3.0ml/min线性降为0.25ml/min,又在2.5min内降至0.1ml/min,最后在3.5min内降到0.01ml/min后保持恒定。
步骤1)所得溶液在多角度激光光散射器和紫外可见光检测器内的流速均为0.4ml/min,紫外可见光检查器的吸收波长设为254nm。
非对称场流分离技术原理:非对称场流分离是依靠流体力学作用进行分离,它将流体与外场联合作用于待分离物质,利用样品质量、大小和密度等性质的差异实现分离。最初是在1986年提出,样品的分离通道为长为25-90cm,宽为2cm左右,厚度在50-500μm之间的扁平带状流道,流动相由泵从流道的入口注入,在流道中携带样品以抛物线型的层流流动,流道上壁面是透明的玻璃板,下壁面由多孔的熔块和其上面溶剂可以透过的半透膜组成,在交叉流泵的抽力作用下形成垂直主流的交叉流;样品在交叉流的作用下向下壁面积聚。由于扩散作用,使得不同大小的样品分子离开累积壁的距离不同,其在主流方向上的流速也不同,距离累积壁面较远的组分速度较大,会先被洗脱出来,这样不同的样品组分就会被分离开。
Claims (3)
1.一种测定水中溶解性腐殖酸分子量分布的方法,其特征是包括如下步骤:
1)用总有机碳分析仪测定溶解性腐殖酸水溶液中溶解性腐殖酸的总有机碳值;取溶解性腐殖酸水溶液,用去离子水分别稀释至溶解性腐殖酸浓度为10mg/L-20mg/L;
2)用进样器取10ml步骤1)所得溶液注入后面串联有多角度激光光散射仪和紫外可见光检测器的非对称场流分析仪中,进行检测;
3)利用非对称场流分析仪自带软件对多角度激光光散射仪检测得到的光散射信号峰和紫外可见光检测器检测得到的紫外可见光信号峰进行积分,得腐殖酸分子量分布图。
2.根据权利要求1所述的方法,其特征是非对称场流分析仪采用300Da聚醚砜膜;
分离系统的参数:进样过程主流流速为0.5ml/min,交叉流流速为3.0ml/min;
洗脱过程采用梯度洗脱,交叉流流速在20min内从3ml/min线性降为0.25ml/min,又在2.5min内降至0.1ml/min,最后在3.5min内降到0.01ml/min后保持恒定。
3.根据权利要求1所述的方法,其特征是步骤1)所得溶液在多角度激光光散射器和紫外可见光检测器内的流速均为0.4ml/min,紫外可见光检查器的吸收波长设为254nm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510885108.8A CN105548081A (zh) | 2015-12-04 | 2015-12-04 | 一种测定水中溶解性腐殖酸分子量分布的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510885108.8A CN105548081A (zh) | 2015-12-04 | 2015-12-04 | 一种测定水中溶解性腐殖酸分子量分布的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105548081A true CN105548081A (zh) | 2016-05-04 |
Family
ID=55827422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510885108.8A Pending CN105548081A (zh) | 2015-12-04 | 2015-12-04 | 一种测定水中溶解性腐殖酸分子量分布的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105548081A (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6136899A (en) * | 1999-09-14 | 2000-10-24 | The Goodyear Tire & Rubber Company | SBR for asphalt cement modification |
JP2013221069A (ja) * | 2012-04-16 | 2013-10-28 | Bridgestone Corp | 天然ゴム、天然ゴムを含むゴム組成物及びタイヤ |
US20130303681A1 (en) * | 2012-05-09 | 2013-11-14 | Bridgestone Corporation | Natural rubber, rubber composition containing natural rubber, and the production process of the same, and tire |
CN103940940A (zh) * | 2014-04-25 | 2014-07-23 | 李绍平 | 一种多糖及其组份定量方法 |
CN104297369A (zh) * | 2014-09-28 | 2015-01-21 | 中国科学院生态环境研究中心 | 一种中空纤维流场流分离测定纳米材料的装置和方法 |
CN104483245A (zh) * | 2014-09-28 | 2015-04-01 | 上海交通大学 | 一种利用非对称场流仪分离c60纳米晶体颗粒尺度分布的方法 |
CN104777081A (zh) * | 2015-04-01 | 2015-07-15 | 上海交通大学 | 一种纳米颗粒物的分离检测方法 |
-
2015
- 2015-12-04 CN CN201510885108.8A patent/CN105548081A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6136899A (en) * | 1999-09-14 | 2000-10-24 | The Goodyear Tire & Rubber Company | SBR for asphalt cement modification |
JP2013221069A (ja) * | 2012-04-16 | 2013-10-28 | Bridgestone Corp | 天然ゴム、天然ゴムを含むゴム組成物及びタイヤ |
US20130303681A1 (en) * | 2012-05-09 | 2013-11-14 | Bridgestone Corporation | Natural rubber, rubber composition containing natural rubber, and the production process of the same, and tire |
CN103940940A (zh) * | 2014-04-25 | 2014-07-23 | 李绍平 | 一种多糖及其组份定量方法 |
CN104297369A (zh) * | 2014-09-28 | 2015-01-21 | 中国科学院生态环境研究中心 | 一种中空纤维流场流分离测定纳米材料的装置和方法 |
CN104483245A (zh) * | 2014-09-28 | 2015-04-01 | 上海交通大学 | 一种利用非对称场流仪分离c60纳米晶体颗粒尺度分布的方法 |
CN104777081A (zh) * | 2015-04-01 | 2015-07-15 | 上海交通大学 | 一种纳米颗粒物的分离检测方法 |
Non-Patent Citations (4)
Title |
---|
E.BOLEA: "Multielement characterization of metal-humic substances complexation by size exclusion chromatography, asymmetrical flow field-flow fractionation, ultrafiltration and inductively coupled plasma-mass spectrometry detection: A comparative approach", 《J.CHROMATOGR.A》 * |
ENRICA ALASONATI等: "Characterization of the colloidal organic matter from the Amazonian basin by asymmetrical flow field-flow fractionation and size exclusion chromatography", 《WATER RESEARCH》 * |
MARTIN E. SCHIMPF等: "Asymmetrical Flow Field-Flow Fractionation as a Method to Study the Behavior of Humic Acids in Solution", 《J. MICROCOLUMN SEPARATIONS》 * |
MATS ANDERSSON: "Ultrahigh Molar Mass Component Detected in Ethylhydroxyethyl Cellulose by Asymmetrical Flow Field-Flow Fractionation Coupled to Multiangle Light Scattering", 《ANAL.CHEM.》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102585119B (zh) | 关于雌激素的磁性纳米分子印迹复合材料的制备方法 | |
Jafari et al. | Developing a highly sensitive electrochemical sensor using thiourea-imprinted polymers based on an MWCNT modified carbon ceramic electrode | |
CN104090039A (zh) | 同时测定盐湖卤水中无机阴离子和有机酸根离子的方法 | |
Kumar et al. | Glassy carbon electrodes modified with multiwalled carbon nanotubes for the determination of ascorbic acid by square-wave voltammetry | |
Si et al. | Solid‐phase extraction of phenoxyacetic acid herbicides in complex samples with a zirconium (IV)‐based metal–organic framework | |
Li et al. | Synthesis and evaluation of a magnetic molecularly imprinted polymer sorbent for determination of trace trichlorfon residue in vegetables by capillary electrophoresis | |
CN102435703A (zh) | 一种同时检测水中多种微囊藻毒素的方法 | |
CN104407087A (zh) | 一种同时检测桃金娘根中没食子酸和鞣花酸的方法 | |
Wei et al. | Impact of origin and structure on the aggregation behavior of natural organic matter | |
Song et al. | Adoption of new strategy for molecularly imprinted polymer based in-tube solid phase microextraction to improve specific recognition performance and extraction efficiency | |
CN105067722A (zh) | 一种快速检测阳离子聚丙烯酰胺中残留丙烯酰胺单体含量的方法 | |
CN104316509B (zh) | 利用石墨烯纳米银复合物增强拉曼散射检测水中2‑mib的方法 | |
Tian et al. | Ultrasensitive hydrogel grating detector for real-time continuous-flow detection of trace threat Pb2+ | |
Duran et al. | Carrier element-free coprecipitation with 3-phenly-4-o-hydroxybenzylidenamino-4, 5-dihydro-1, 2, 4-triazole-5-one for separation/preconcentration of Cr (III), Fe (III), Pb (II) and Zn (II) from aqueous solutions | |
CN102944551B (zh) | 一种Cd2+的检测方法 | |
Qi et al. | Off-line hyphenation of molecularly imprinted magnetic nanoparticle-based extraction with large volume sample stacking capillary electrophoresis for high-sensitivity detection of trace chloro-phenols | |
CN102735639B (zh) | 非标记型均相比色检测铅离子的方法 | |
CN105548081A (zh) | 一种测定水中溶解性腐殖酸分子量分布的方法 | |
CN104483245A (zh) | 一种利用非对称场流仪分离c60纳米晶体颗粒尺度分布的方法 | |
CN112763642A (zh) | 一种水体中苯系污染物的高效液相检测方法 | |
Kryvshenko et al. | A highly permeable membrane for separation of quercetin obtained by nickel (II) ion-mediated molecular imprinting | |
CN110220856A (zh) | 流动注射法检测电解铜箔的电沉积液中氯离子含量的方法 | |
CN104977282B (zh) | 分子印迹选择激光诱导荧光法测量水体中硒的装置及方法 | |
CN104297371A (zh) | 提高凝胶色谱法测定水溶性聚合物分子量准确度的方法 | |
Wang et al. | Development of a chemiluminescence sensor based on molecular imprinting technology for the determination of trace monocrotophos in vegetables |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160504 |
|
WD01 | Invention patent application deemed withdrawn after publication |