CN105543570B - 一种低温塑性变形纳米晶化镍基合金及其制备方法 - Google Patents
一种低温塑性变形纳米晶化镍基合金及其制备方法 Download PDFInfo
- Publication number
- CN105543570B CN105543570B CN201610066433.6A CN201610066433A CN105543570B CN 105543570 B CN105543570 B CN 105543570B CN 201610066433 A CN201610066433 A CN 201610066433A CN 105543570 B CN105543570 B CN 105543570B
- Authority
- CN
- China
- Prior art keywords
- base alloy
- nickel
- nano
- cold plasticity
- crystallization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/056—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/023—Alloys based on nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/002—Alloys based on nickel or cobalt with copper as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明涉及一种低温塑性变形纳米晶化镍基合金,同时还涉及其制备方法,属于金属材料技术领域。该镍基合金各组分的质量百分比分别为:Ni 52‑56%、Cu 19.5‑20.5%、Cr 14.5‑15.5%、Mo 4.8‑5.2%、Ti 1.8‑2.2%、Al 0.9‑1.1%、Nb% 1.0‑5.0%,其余为不可避免的杂质,具有‑150℃以下变形后的纳米晶相。与已有镍基合金相比,本发明在超低温环境下具有良好的低温塑性变形能力,以及较高的塑性和强度;不发生任何相变,具有较高的结构稳定性和尺寸稳定性;发生塑性变形后,可以形成纳米晶相,从而显著提高合金的力学性能,具有很高的耐腐蚀性。
Description
技术领域
本发明涉及一种低温塑性变形纳米晶化镍基合金,同时还涉及其制备方法,属于金属材料技术领域。
背景技术
随着液化天然气(LNG)作为一种新兴能源的广泛应用,使得LNG用超低温阀门的需求量迅速增加。由于LNG常压下的温度为-162℃,且易燃易爆,因此在设计LNG超低温阀门时,对其密封性能提出了更高和更严格的要求。低温下,金属材料通常强度和硬度提高,塑性和韧性降低,表现出不同程度的低温冷脆现象,因为严重影响到阀门的性能和安全。
据申请人了解,目前低温阀门用金属材料主要采用具有面心立方晶格的奥氏体不锈钢、镍基合金、铜及铜合金和铝及铝合金。然而,铝和铜及其合金的硬度不高,密封面的耐磨、耐擦伤性能较差,所以在低温阀门中应用极少。得到应用的诸如Inconel 718、Hastelloy C 726和X-750之类的镍基合金主要应用于高温环境,因其具有良好的结构稳定性和耐蚀性,有时也转用于低温环境,但由于价格昂贵,基本只应用于阀门密封圈的弹性支撑元件。一般超低温阀门使用奥氏体不锈钢材料居多,常用的有302、304和316L等,这些材料没有低温冷脆临界温度,在低温条件下仍能保持较高的韧性。然而,此类奥氏体不锈钢用作低温阀门的金属密封副材料时也存在不足之处,主要表现在这类材料大部分在常温下处于亚稳定状态,当温度降低到相变点(马氏体相变开始温度Ms)以下时,材料中面心立方结构的奥氏体会发生相变,转变成体心立方结构的马氏体。这种相变引起的体积变化将引起材料内部应力的增加,使原本经研磨后达到密封要求的密封面产生翘曲变形,造成密封失效。所以,超低温阀门在精加工前均需进行深冷处理,将材料的奥氏体转变成马氏体,防止该类变形的发生。然而,一旦深冷处理得不完全,仍可能会发生不同程度的变形。另外,由于零件各部分的温度差异或不同材料间物理性能的差异,还会引起收缩不均导致的温变应力。这些应力会在密封面产生可逆性的弹性扭曲或不可逆转的扭曲变形,结果容易造成密封面的失效,影响密封效果。
发明内容
本发明的目的在于:针对上述现有阀门材料存在的各种局限,提出一种可在低温环境下发生塑性变形实现纳米晶化的低温塑性变形纳米晶化镍基合金,从而同时具有理想的低温强度、低温塑性、低温韧性,并且耐蚀性、结构稳定性俱佳,切实满足低温阀门的包括安全性在内各种性能的要求。
为了达到上述目的,本发明的低温塑性变形纳米晶化镍基合金:
以Ni、Cu、Cr、Mo作为主要元素,辅加Ti、Al、Nb作为强化元素,各组分的质量百分比分别为:
Ni 52-56%
Cu 19.5~20.5%,
Cr 14.5~15.5%,
Mo 4.8~5.2%,
Ti 1.8~2.2%,
Al 0.9~1.1%,
Nb% 1.0~5.0%,
其余为不可避免的杂质,
具有-150℃以下变形后的纳米晶相。
本发明低温塑性变形纳米晶化镍基合金的制备方法包括以下步骤:
第一步、将Ni、Cu、Cr、Mo、Ti、Al和Nb按配比配料后,放入熔炼设备;
第二步、加热至1800~1900℃,使各组分熔融,再使熔化后的合金冷却成镍基合金锭;
第三步、翻转镍基合金锭,再加热至1800~1900℃,使各组分熔融,再冷却成锭;
第四步、重复第三步,反复翻转、熔炼至少三次,熔炼均匀;
第五步、将熔炼均匀的镍基合金锭在-150℃下进行变形程度为60%的低温压缩变形,成为低温塑性变形纳米晶化镍基合金。
研究表明,某些镍基合金在低温环境下位错滑移和变形孪生交替进行,在原有的粗大晶粒内部形成位错胞和亚晶粒,从而使粗大晶粒不断细化,最终形成具有大角度晶界的纳米晶粒。这些纳米晶相的形成将显著提高镍基合金的低温力学性能和相结构的稳定性。
本发明与已有技术相比,具有以下显著优点:
1.与已有镍基合金相比,本发明的镍基合金在超低温环境下具有良好的低温塑性变形能力,以及较高的塑性和强度。
2.本发明的镍基合金在低温环境下不发生任何相变,具有较高的结构稳定性和尺寸稳定性。
3.本发明的镍基合金在低温环境下发生塑性变形后,可以形成纳米晶相,从而显著提高合金的力学性能,因而经过大塑性变形后的使用性能更好。
4.本发明的镍基合金在低温环境下具有很高的耐腐蚀性。
附图说明
下面结合附图对本发明作进一步的说明。
图1为本发明实施例一的纳米晶镍基合金透射电镜照片暗场像。
图2为本发明实施例一的纳米晶镍基合金的透射电镜照片衍射斑点影像。
具体实施方式
实施例一
本实施例高压低温塑性变形纳米晶化镍基合金化学成分按质量百分比为:Cu:20%,Cr:15%,Mo:5%,Ti:2%,Al:1%,Nb:1.0%,其余为Ni,以及一些不可避免的杂质,金相组织在-150℃变形后存在很多纳米晶相,因此低温综合性能不低于常用的低温合金。
本实施例低温塑性变形纳米晶化镍基合金的制备方法包括以下步骤:
第一步、将电解Ni、单质Cu、单质Cr、单质Mo、高纯Ti、单质Al和单质Nb按上述配比配料后,放入真空电弧炉,较高熔点的组分Cr、Mo、Nb在上,其它易熔组分在下;
第二步、加热至1800~1900℃,使各组分熔融,在使经电弧熔化后的合金冷却成镍基合金锭;
第三步、翻转镍基合金锭,再加热至1800~1900℃,使各组分熔融,再冷却成锭;
第四步、重复第三步,反复翻转、熔炼三次,以使合金元素熔炼均匀,减轻偏析;
第五步、将熔炼均匀的镍基合金锭转移到电弧炉内底部带孔的铜坩埚中,加热至1430~1470℃使其熔化,并使熔化后的合金液通过铜坩埚下方的孔流入到电弧炉下方带有Φ10mm圆柱孔的铜模中,得到直径为10mm的圆棒;
采用线切割法从上述圆棒镍基合金锭切取Φ4mm×6mm小圆柱在-150℃下进行变形程度为60%的低温压缩变形,成为存在很多纳米晶相的低温塑性变形纳米晶化镍基合金。
再将压缩后的试样从中间切取一个厚度为0.5mm的薄片,将其制成透射电镜试样进行观察,可以看到该合金的基体上存在大量的纳米晶相,如图1、图2所示。这些纳米晶相的形成将显著提高该合金的低温力学性能和相结构的稳定性,因而非常适合在高压下使用。
实施例2
本实施例高压低温塑性变形纳米晶化镍基合金化学成分按质量百分比为:Cu:20%,Cr:15%,Mo:5%,Ti:2%,Al:1%,Nb:3.0%,其余为Ni,以及及一些不可避免的杂质。其它情况与实施例一该合金的低温综合性能不低于常用的低温合金,且压缩强度高于实施例1,在-150℃变形后得到的纳米晶相也比实施例1多。
实施例3
本实施例高压低温塑性变形纳米晶化镍基合金化学成分按质量百分比为:Cu:20%,Cr:15%,Mo:5%,Ti:2%,Al:1%,Nb:5.0%,其余为Ni,以及一些不可避免的杂质。试验证明,该合金的低温综合性能不仅不低于常用的低温合金,且压缩强度高于实施例1和实施例2,屈服强度等性能指标相对于其纳米晶化前提高了50%以上,因为在-150℃变形后得到的纳米晶相也比前两个实施例都多,因此该实施例为优选实施例。
Claims (4)
1.一种低温塑性变形纳米晶化镍基合金,以Ni、Cu、Cr、Mo作为主要元素,辅加Ti、Al、Nb作为强化元素,各组分的质量百分比分别为:
Ni 52-56%
Cu 19.5-20.5%,
Cr 14.5-15.5%,
Mo 4.8-5.2%,
Ti 1.8-2.2%,
Al 0.9-1.1%,
Nb% 1.0-5.0%,
其余为不可避免的杂质,
具有-150℃以下变形后的纳米晶相。
2.根据权利要求1所述的低温塑性变形纳米晶化镍基合金,其特征在于:所述各组分的化学成分按质量百分比为:Cu:20%,Cr:15%,Mo:5%,Ti:2%,Al:1%,Nb:5.0%,其余为Ni,以及一些不可避免的杂质。
3.权利要求1或2所述的低温塑性变形纳米晶化镍基合金的制备方法,其特征在于包括以下步骤:
第一步、将Ni、Cu、Cr、Mo、Ti、Al和Nb按配比配料后,放入熔炼设备;
第二步、加热至1800-1900℃,使各组分熔融,再使熔化后的合金冷却成镍基合金锭;
第三步、翻转镍基合金锭,再加热至1800-1900℃,使各组分熔融,再冷却成锭;
第四步、重复第三步,反复翻转、熔炼至少三次,熔炼均匀;
第五步、将熔炼均匀的镍基合金锭在-150℃下进行变形程度为60%的低温压缩变形,成为低温塑性变形纳米晶化镍基合金。
4.根据权利要求3所述的低温塑性变形纳米晶化镍基合金的制备方法,其特征在于:所述第一步中,将各组分放入真空电弧炉,Cr、Mo、Nb在上,其它组分在下。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610066433.6A CN105543570B (zh) | 2016-01-29 | 2016-01-29 | 一种低温塑性变形纳米晶化镍基合金及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610066433.6A CN105543570B (zh) | 2016-01-29 | 2016-01-29 | 一种低温塑性变形纳米晶化镍基合金及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105543570A CN105543570A (zh) | 2016-05-04 |
CN105543570B true CN105543570B (zh) | 2017-03-29 |
Family
ID=55823125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610066433.6A Active CN105543570B (zh) | 2016-01-29 | 2016-01-29 | 一种低温塑性变形纳米晶化镍基合金及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105543570B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN88100065A (zh) * | 1987-01-09 | 1988-10-05 | 株式会社日立制作所 | 耐热钢和用该耐热钢制成的燃气轮机 |
US5120614A (en) * | 1988-10-21 | 1992-06-09 | Inco Alloys International, Inc. | Corrosion resistant nickel-base alloy |
EP0570270A1 (fr) * | 1992-05-13 | 1993-11-18 | Societe Europeenne De Propulsion | Superalliage monocristallin à base de nickel notamment pour aubes de turbines de moteurs-fusées, et procédé d'obtention |
CN1505549A (zh) * | 2001-05-15 | 2004-06-16 | 用各向同性石墨模具浇铸合金的方法 | |
CN101429609A (zh) * | 2008-12-08 | 2009-05-13 | 昆明贵金属研究所 | 新型高温合金及其制备方法 |
-
2016
- 2016-01-29 CN CN201610066433.6A patent/CN105543570B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN88100065A (zh) * | 1987-01-09 | 1988-10-05 | 株式会社日立制作所 | 耐热钢和用该耐热钢制成的燃气轮机 |
US5120614A (en) * | 1988-10-21 | 1992-06-09 | Inco Alloys International, Inc. | Corrosion resistant nickel-base alloy |
EP0570270A1 (fr) * | 1992-05-13 | 1993-11-18 | Societe Europeenne De Propulsion | Superalliage monocristallin à base de nickel notamment pour aubes de turbines de moteurs-fusées, et procédé d'obtention |
CN1505549A (zh) * | 2001-05-15 | 2004-06-16 | 用各向同性石墨模具浇铸合金的方法 | |
CN101429609A (zh) * | 2008-12-08 | 2009-05-13 | 昆明贵金属研究所 | 新型高温合金及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105543570A (zh) | 2016-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rabadia et al. | Deformation and strength characteristics of Laves phases in titanium alloys | |
Huang et al. | Effect of Ti content on microstructure and properties of Ti x ZrVNb refractory high-entropy alloys | |
Ma et al. | Microstructural features and tensile behaviors of the Al0. 5CrCuFeNi2 high-entropy alloys by cold rolling and subsequent annealing | |
Wang et al. | Dynamic tensile mechanisms and constitutive relationship in CrFeNi medium entropy alloys at room and cryogenic temperatures | |
Yamanaka et al. | Enhanced mechanical properties of as-forged Co-Cr-Mo-N alloys with ultrafine-grained structures | |
Choi et al. | Tensile and microstructural characteristics of Fe-24Mn steel welds for cryogenic applications | |
Panina et al. | Structures and mechanical properties of Ti-Nb-Cr-V-Ni-Al refractory high entropy alloys | |
Průša et al. | Mechanical properties and thermal stability of Al–Fe–Ni alloys prepared by centrifugal atomisation and hot extrusion | |
KR101913029B1 (ko) | 응력 감응 다단변형기구 발현가능 합금 및 그 제조방법 | |
CN107075645A (zh) | Ni合金包层钢板及其制造方法 | |
JP2013503265A (ja) | 鉄クロム合金の製造法 | |
Shabani et al. | Investigation of microstructure, texture, and mechanical properties of FeCrCuMnNi multiphase high entropy alloy during recrystallization | |
Bewerse et al. | Microstructure and mechanical properties of as-cast quasibinary NiTi–Nb eutectic alloy | |
Yang et al. | Microstructure characterization, stress–strain behavior, superelasticity and shape memory effect of Cu–Al–Mn–Cr shape memory alloys | |
Tian et al. | Temperature-dependent tensile properties of ultrafine-grained C-doped CoCrFeMnNi high-entropy alloy | |
CN105861935A (zh) | 一种热塑性优良的Fe-36Ni因瓦合金材料及其制备方法 | |
Mabuchi et al. | An investigation of shear deformation in a semi-solid state of a high strain rate superplastic Si3N4p/Al–Mg–Si composite | |
Kul et al. | The relationship of hot and cold rolling processes with the structure and properties of invar 36 | |
Peng et al. | A novel strengthening strategy for diffusion bonded joint of AlCoCrFeNi2. 1 eutectic high entropy alloy to 304 stainless steel | |
CN102086496B (zh) | 一种Fe-Ni基沉淀强化型奥氏体合金及其制备方法 | |
IZLO et al. | Influence of thermomechanical treatment on the grain-growth behaviour of new Fe-Al based alloys with fine Al2O3 precipitates | |
CN105543570B (zh) | 一种低温塑性变形纳米晶化镍基合金及其制备方法 | |
Bechtold et al. | Mechanical Properties of Arc‐Cast and Powder Metallurgy Molybdenum | |
Matsuda et al. | Ductility enhancement in B2-type Zr-Co-Ni alloys with martensitic transformation | |
Kumar et al. | Hot deformation behavior and microstructural evolution of dual phase Ni48. 6 Al10. 3 Co17 Cr7. 5 Fe9 Ti5. 8 Ta0. 6 Mo0. 8 W0. 4 high entropy alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder |
Address after: Yangzhong City, Jiangsu province Zhenjiang City West 212221 town Gangbei Road No. 34 Patentee after: Jiangsu billion valve Limited by Share Ltd Address before: Yangzhong City, Jiangsu province Zhenjiang City West 212221 town Gangbei Road No. 34 Patentee before: JIANGSU EVALVE GROUP CO., LTD. |
|
CP01 | Change in the name or title of a patent holder |