CN105543248A - 基于优化MERS-CoV棘突蛋白编码基因的重组5型腺病毒载体疫苗 - Google Patents

基于优化MERS-CoV棘突蛋白编码基因的重组5型腺病毒载体疫苗 Download PDF

Info

Publication number
CN105543248A
CN105543248A CN201510109558.8A CN201510109558A CN105543248A CN 105543248 A CN105543248 A CN 105543248A CN 201510109558 A CN201510109558 A CN 201510109558A CN 105543248 A CN105543248 A CN 105543248A
Authority
CN
China
Prior art keywords
mers
cov
vaccine
coding gene
adenovirus vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510109558.8A
Other languages
English (en)
Inventor
谭文杰
鲁茁壮
郭小娟
蓝佳明
邓瑶
陈红
洪涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Viral Disease Control and Prevention Chinese Center for Disease Control and Prevention
Original Assignee
National Institute for Viral Disease Control and Prevention Chinese Center for Disease Control and Prevention
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Viral Disease Control and Prevention Chinese Center for Disease Control and Prevention filed Critical National Institute for Viral Disease Control and Prevention Chinese Center for Disease Control and Prevention
Priority to CN201510109558.8A priority Critical patent/CN105543248A/zh
Publication of CN105543248A publication Critical patent/CN105543248A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

发明名称:基于优化MERS-CoV棘突蛋白编码基因的重组5型腺病毒载体疫苗。本发明首先优化合成了中东呼吸综合症冠状病毒(MERS-CoV)棘突蛋白(S)的编码基因,将其插入pShuttle-CMV载体,获得重组质粒pAd5-MERS-S;转染HEK293细胞,获得拯救病毒Ad5-MERS-S。证实S蛋白高效表达后制备纯化的病毒Ad5-MERS-S,经肌肉注射或灌胃途径免疫B?ALB/c小鼠,通过ELISPot、IgG及中和抗体检测,证明该重组腺病毒载体疫苗有较强免疫原性,可在小鼠体内诱导有效的免疫应答(体液免疫,细胞免疫及粘膜免疫),可作为理想的疫苗用于预防或治疗MERS-CoV感染。

Description

基于优化MERS-CoV棘突蛋白编码基因的重组5型腺病毒载体疫苗
技术领域本发明涉及一种可表达MERS-CoV棘突蛋白的重组5型腺病毒载体疫苗
背景技术中东呼吸系统综合症冠状病毒(MiddleEastRespiratorySyndromeCoranavirus,MERS-CoV)是2012年4月在中东地区,从一名患有急性呼吸窘迫综合征病人体内分离获得的一种新型冠状病毒,其病死率较高。据WHO官方数据显示,截止至2015年2月26日,全球实验室确诊MERS-CoV感染者共计1030例,其中包括381例死亡病例。研究表明单峰驼可能为该病毒的动物传染源和储存宿主,但其传染途径尚不明确,目前亦无有效药物对抗其感染,因此研制一种有效疫苗预防MERS-CoV感染迫在眉睫。
MERS-CoV与其他冠状病毒相似,是一种有包膜的单股正链RNA病毒。病毒表面的棘突蛋白S蛋白是病毒包膜上特异性的组织结构,在病毒的表面形成大量刺突,在病毒入侵靶细胞以及病毒与细胞发生交互作用时发挥着重要的作用。多项研究表明,S蛋白疫苗可以产生高效价的抗SARS-CoV病毒中和抗体,有效的预防SARS-CoV感染。因此冠状病毒疫苗的研发通常以S抗原作为主要靶抗原。
人腺病毒载体具有高效价、易构建的特性,并且其基因组中有合适的基因插入位点,因此,被广泛地用于基因治疗或疫苗研制。用腺病毒载体研制的预防急性呼吸综合症的疫苗,已经过临床测验.目前,已知人腺病毒50余种,分为7个亚型(A-G),其中人腺病毒5型是一种呼吸道病原体,是目前为止应用最多,效果最为理想的一种腺病毒载体。为评价应用人腺病毒载体制备抗MERS-CoV重组疫苗,本发明构建了载有MERS-CoVS基因的复制缺陷型重组5型腺病毒载体疫苗rAd5/MERS-S。大量扩增和纯化后,经肌肉注射或灌胃途径免疫,6-8周龄的雌性BALB/c小鼠,通过细胞免疫和体液免疫指标的检测,在小鼠体内评估该重组疫苗的免疫原性。
发明内容:
研发一种表达MERS-CoV棘突蛋白的重组5型腺病毒载体疫苗,并在小鼠体内检测该疫苗的免疫效果。
附图说明
图1:Ad5-GFP及Ad5-MERS-S的构建
图2Ad5-GFP及Ad5-MERS-S的westernblot(A)和免疫荧光(B)鉴定结果
图3:动物免疫和标本检测示意图
图4:免疫后4w(A)和16w(B)血清IgG抗体检测
图5:免疫后4w(A)和16w(B)血清IgA抗体检测
图6:图6免疫后4w和16w肺泡灌洗液(A,B),小肠灌洗液(C,D)和大肠灌洗液(E,F)IgA抗体检测
图7:免疫后4w(A)和16w(B)血清中和抗体检测
图8:免疫后4w和16w脾细胞ELISpot检测
具体实施方式:
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。以下实施例中未注明具体条件的实验方法,通常按照常规条件如《分子克隆实验指南》(第三版,科学出版社,2005)等本领域常用工具书中所述的条件,或按试剂生产厂家所建议的条件进行。
实施例1:携带优化的MERS-CoVS基因的重组5型腺病毒的包装及鉴定
依据GenBank(JX869059)中MERS-CoV基因序列,优化并人工合成S基因。将优化后的S基因插入到pShuttle-CMV载体构建重组质粒pSh5-MERS-S(见图1)。将其线性化处理后与pAdEasy-1共同转染大肠杆菌BJ5183,获得重组质粒pAd5-MERS-S.。PacI线性化处理重组质粒pAd5-MERS-S后,用脂质体2000转染HEK293细胞,获得重组病毒Ad5-MERS-S。经过2次CsCl梯度离心后,获得纯化的重组病毒Ad5-MERS-S。同样方法获得重组病毒Ad5-GFP用于对照。
重组病毒Ad5-MERS-S感染HEK293细胞,剂量为10vp/细胞。转染48小时后,提取细胞总蛋白,经SDS-PAGE电泳后,电转至PVDF膜,用1∶200兔抗MERS-CoV抗体及1∶200的山羊抗兔二抗鉴定S蛋白的表达。转染重组病毒Ad5-MERS-S的HEK293细胞经固定后,用兔抗MERS-CoV一抗以及FITC标记山羊抗兔二抗结合后,荧光显微镜下观察蛋白的表达情况。同时用重组病毒Ad5-GFP转染HEK293细胞做对照。WesternBlot和免疫荧光均见S目的蛋白的表达(见图2)。
实施例2:动物免疫与样品收集:
2.1以BALB/c小鼠为实验动物,将纯化后的重组病毒免疫小鼠,以检测其所诱导的体液免疫和细胞免疫应答,具体的免疫方案如下
选取4-6周龄雌性BALB/c小鼠,如表1所示随机分为5组,每组10只,分别肌肉或灌胃注射免疫重组病毒Ad5-MERS-S或Ad5-GFP。免疫后4周,每组随机抽取5只小鼠,处死后分离小鼠血清,肺泡灌洗液,大肠和小肠灌洗液以及脾脏淋巴细胞。用于检测疫苗所诱导的体液免疫和细胞免疫水平。免疫后16周,处死剩余小鼠,分离血清,肺泡灌洗液,大肠和小肠灌洗液以及脾脏淋巴细胞。用于疫苗诱导的长效免疫效果检测(见图3)。
表1动物免疫分组
实施例3:免疫血清中抗原特异性抗体的检测:
3.1免疫血清中抗原特异性IgG的ELISA测定:受体结合结构域(Receptorbingdingdomain,RBD)为棘突蛋白S的部分片段,采用重组RBD蛋白包被ELISA板,100ng/孔。将免疫血清用稀释液从1∶100作倍比稀释,二抗为辣根过氧化物酶HRP标记的山羊抗小鼠IgG二抗,以未免疫小鼠血清稀释后检测的A450/630值的平均值的2.1倍作为界值,各组实验动物血清检测IgG抗体见图4。由图可见,重组病毒Ad5-MERS-S免疫后,无论肌肉注射还是灌胃途径,均在小鼠体内诱导了高效价的抗原特异性IgG抗体,抗体在小鼠体内可持续至少16w。短期内(4w)肌肉注射可诱导较高水平的IgG抗体(见图4A),长期后(16w)两种免疫方式诱导的特异性IgG抗体未见明显差别(见图4B)。
3.2系统和粘膜抗原特异性IgA的ELISA测定:采用重组RBD蛋白包被ELISA板,100ng/孔。检测免疫后小鼠血清,肺泡灌洗液,大肠和小肠灌洗液中IgA的表达。二抗为HRP标记的山羊抗小鼠IgA二抗。如图5所示,重组病毒Ad5-MERS-S经灌胃途径免疫小鼠,可在其体内诱导系统(血清)抗原特异性IgA的表达,且IgA抗体在小鼠血清中可持续至少16w。同样,在重组病毒Ad5-MERS-S灌胃途径免疫小鼠的大肠和小肠灌洗液中均检测到IgA的表达,且在体内持续时间至少达免疫后16w。
实施例4.免疫血清中和抗体的检测:
4.1假病毒中和实验:
免疫小鼠血清以PBS进行倍比稀释,各取50ul与等体积的MERS-CoV假病毒悬液(病毒含量为200TCID50)混匀,37℃孵育1h后加入于96孔培养的Huh7细胞培养板中进行感染。37℃5%CO2孵育48h后,将所感染的细胞裂解并进行荧光素酶活性分析。每个样本均做3孔进行重复,避免误差。血清的中和活性采用以下计算方法获得:
将阴性对照血清与MERS-CoV假病毒悬液共孵育所获得的相对荧光素酶读值作为RLU1,以免疫血清与MERS-CoV假病毒悬液共孵育所获得的相对荧光素酶读值作为RLU2,则各血清的中和率(NeutralisationRate)NR=(RLU1-RLU2)/RLU1。
将血清中和率达50%时,抗体的稀释倍数计算于图7,可见重组病毒Ad5-MERS-S无论经肌肉注射或经灌胃途径免疫小鼠,均可诱导小鼠中和抗体的产生,且该中和抗体在小鼠血清中可持续至少16w。
实施例4.免疫小鼠细胞免疫水平检测:
采用ELISpot实验:处死小鼠,无菌条件下分离脾细胞,调整淋巴细胞浓度至1X107/ml。用稀释的PurifiedAnti-mouseIFN-γ包被ELISpot板过夜。将小鼠淋巴细胞(5X105/孔)加入到包含抗原肽的肽池(终浓度4μg/ml)中刺激24h后,用BiotinylatedAnti-mouseIFN-γ做二抗,ELISPOT计数仪读数分析产生IFN-γ的细胞数。如图8所示,重组病毒Ad5-MERS-S经灌胃途径免疫小鼠则未能在小鼠体内诱导有效的细胞免疫应答。经肌肉注射免疫小鼠,可在其体内诱导较高水平的细胞免疫应答,且该细胞免疫应答在小鼠体内可持续至少16w。

Claims (3)

1.一种优化的编码中东呼吸系统综合症冠状病毒(MERS-CoV)S蛋白的合成基因。
2.高效表达MERS-CoVS蛋白的重组5型腺病毒载体疫苗的制备。
3.该制剂作为常规疫苗(肌肉注射)或粘膜疫苗(口服或灌胃)在MERS-CoV预防与治疗中的应用。
CN201510109558.8A 2015-03-13 2015-03-13 基于优化MERS-CoV棘突蛋白编码基因的重组5型腺病毒载体疫苗 Pending CN105543248A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510109558.8A CN105543248A (zh) 2015-03-13 2015-03-13 基于优化MERS-CoV棘突蛋白编码基因的重组5型腺病毒载体疫苗

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510109558.8A CN105543248A (zh) 2015-03-13 2015-03-13 基于优化MERS-CoV棘突蛋白编码基因的重组5型腺病毒载体疫苗

Publications (1)

Publication Number Publication Date
CN105543248A true CN105543248A (zh) 2016-05-04

Family

ID=55822806

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510109558.8A Pending CN105543248A (zh) 2015-03-13 2015-03-13 基于优化MERS-CoV棘突蛋白编码基因的重组5型腺病毒载体疫苗

Country Status (1)

Country Link
CN (1) CN105543248A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108018298A (zh) * 2016-10-31 2018-05-11 天津康希诺生物技术有限公司 一种脂化Ag85A蛋白
WO2018215766A1 (en) * 2017-05-26 2018-11-29 Oxford University Innovation Limited Compositions and methods for inducing an immune response
CN110616198A (zh) * 2018-06-19 2019-12-27 清华大学 一种基于黑猩猩腺病毒68型和MERS-CoV全长膜蛋白的新型冠状病毒疫苗
CN110974950A (zh) * 2020-03-05 2020-04-10 广州恩宝生物医药科技有限公司 一种用于预防SARS-CoV-2感染的腺病毒载体疫苗
WO2021244120A1 (zh) * 2020-06-01 2021-12-09 康希诺生物股份公司 一种SARS-CoV-2疫苗
WO2022077591A1 (zh) * 2020-10-15 2022-04-21 广州达博生物制品有限公司 一种重组腺病毒在制备预防病毒的药物中的用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103724406A (zh) * 2013-11-20 2014-04-16 中国疾病预防控制中心病毒病预防控制所 一种具有中和活性的MERS-CoV合成肽疫苗及其应用
WO2014134439A1 (en) * 2013-03-01 2014-09-04 New York Blood Center, Inc. Immunogenic composition for mers coronavirus infection
WO2016138160A1 (en) * 2015-02-24 2016-09-01 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Middle east respiratory syndrome coronavirus immunogens, antibodies, and their use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014134439A1 (en) * 2013-03-01 2014-09-04 New York Blood Center, Inc. Immunogenic composition for mers coronavirus infection
CN103724406A (zh) * 2013-11-20 2014-04-16 中国疾病预防控制中心病毒病预防控制所 一种具有中和活性的MERS-CoV合成肽疫苗及其应用
WO2016138160A1 (en) * 2015-02-24 2016-09-01 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Middle east respiratory syndrome coronavirus immunogens, antibodies, and their use

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EUN KIM等: "Immunogenicity of an adenoviral-based Middle East RespiratorySyndrome coronavirus vaccine in BALB/c mice", 《VACCINE》 *
李琳: "中东呼吸综合征冠状病毒S1蛋白的重组表达与免疫学功能研究", 《中国优秀硕士学位论文全文数据库 医药卫生科技辑》 *
王平兴等: "表达中东呼吸综合征冠状病毒S蛋白的重组痘苗病毒的构建及免疫效果初步评价", 《生物技术通讯》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108018298A (zh) * 2016-10-31 2018-05-11 天津康希诺生物技术有限公司 一种脂化Ag85A蛋白
WO2018215766A1 (en) * 2017-05-26 2018-11-29 Oxford University Innovation Limited Compositions and methods for inducing an immune response
CN110616198A (zh) * 2018-06-19 2019-12-27 清华大学 一种基于黑猩猩腺病毒68型和MERS-CoV全长膜蛋白的新型冠状病毒疫苗
CN110616198B (zh) * 2018-06-19 2021-02-19 清华大学 一种基于黑猩猩腺病毒68型和MERS-CoV全长膜蛋白的新型冠状病毒疫苗
CN110974950A (zh) * 2020-03-05 2020-04-10 广州恩宝生物医药科技有限公司 一种用于预防SARS-CoV-2感染的腺病毒载体疫苗
CN110974950B (zh) * 2020-03-05 2020-08-07 广州恩宝生物医药科技有限公司 一种用于预防SARS-CoV-2感染的腺病毒载体疫苗
WO2021244120A1 (zh) * 2020-06-01 2021-12-09 康希诺生物股份公司 一种SARS-CoV-2疫苗
WO2022077591A1 (zh) * 2020-10-15 2022-04-21 广州达博生物制品有限公司 一种重组腺病毒在制备预防病毒的药物中的用途

Similar Documents

Publication Publication Date Title
CN105543248A (zh) 基于优化MERS-CoV棘突蛋白编码基因的重组5型腺病毒载体疫苗
Du et al. Recombinant receptor-binding domain of SARS-CoV spike protein expressed in mammalian, insect and E. coli cells elicits potent neutralizing antibody and protective immunity
Chi et al. DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice
Takasuka et al. A subcutaneously injected UV-inactivated SARS coronavirus vaccine elicits systemic humoral immunity in mice
Parida Vaccination against foot-and-mouth disease virus: strategies and effectiveness
Kreijtz et al. Recombinant modified vaccinia virus Ankara–based vaccine induces protective immunity in mice against infection with influenza virus H5N1
Casais et al. Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism
Kim et al. Original antigenic sin responses to influenza viruses
Zhang et al. Receptor-binding domain-based subunit vaccines against MERS-CoV
Deng et al. Enhanced protection in mice induced by immunization with inactivated whole viruses compare to spike protein of middle east respiratory syndrome coronavirus
Zeng et al. Characterization of humoral responses in mice immunized with plasmid DNAs encoding SARS-CoV spike gene fragments
Soi et al. Protection of sheep against Rift Valley fever virus and sheep poxvirus with a recombinant capripoxvirus vaccine
Ying et al. Boosting with Omicron-matched or historical mRNA vaccines increases neutralizing antibody responses and protection against B. 1.1. 529 infection in mice
Lappalainen et al. Comparative immunogenicity in mice of rotavirus VP6 tubular structures and virus-like particles
McPherson et al. Development of a SARS coronavirus vaccine from recombinant spike protein plus delta inulin adjuvant
Karamloo et al. SARS‐CoV‐2 immunogenicity at the crossroads
CN105273067A (zh) 一种编码MERS-CoV棘突蛋白的重组41型腺病毒载体疫苗
Choi et al. Progress of Middle East respiratory syndrome coronavirus vaccines: a patent review
Pitcovski et al. Oral subunit SARS-CoV-2 vaccine induces systemic neutralizing IgG, IgA and cellular immune responses and can boost neutralizing antibody responses primed by an injected vaccine
Xu et al. Recombinant chimpanzee adenovirus AdC7 expressing dimeric tandem-repeat spike protein RBD protects mice against COVID-19
Gullberg et al. A prime-boost vaccination strategy in cattle to prevent foot-and-mouth disease using a “single-cycle” alphavirus vector and empty capsid particles
Stadler et al. SARS vaccine protective in mice
Sreenivasa et al. Recombinant human adenovirus-5 expressing capsid proteins of Indian vaccine strains of foot-and-mouth disease virus elicits effective antibody response in cattle
Liu et al. A new vaccination regimen using adenovirus-vectored vaccine confers effective protection against African swine fever virus in swine
Bonam et al. Next-generation vaccines against COVID-19 variants: beyond the spike protein

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160504

WD01 Invention patent application deemed withdrawn after publication