CN105532156B - 一种全天候无线智能灌溉施肥系统 - Google Patents

一种全天候无线智能灌溉施肥系统 Download PDF

Info

Publication number
CN105532156B
CN105532156B CN201610071831.7A CN201610071831A CN105532156B CN 105532156 B CN105532156 B CN 105532156B CN 201610071831 A CN201610071831 A CN 201610071831A CN 105532156 B CN105532156 B CN 105532156B
Authority
CN
China
Prior art keywords
wireless
valve
fertilizer
control device
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610071831.7A
Other languages
English (en)
Other versions
CN105532156A (zh
Inventor
和文勇
李正星
李灼宇
高进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiutian Science & Technology Co Ltd Kunming
Original Assignee
Jiutian Science & Technology Co Ltd Kunming
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiutian Science & Technology Co Ltd Kunming filed Critical Jiutian Science & Technology Co Ltd Kunming
Priority to CN201610071831.7A priority Critical patent/CN105532156B/zh
Publication of CN105532156A publication Critical patent/CN105532156A/zh
Application granted granted Critical
Publication of CN105532156B publication Critical patent/CN105532156B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C23/00Distributing devices specially adapted for liquid manure or other fertilising liquid, including ammonia, e.g. transport tanks or sprinkling wagons
    • A01C23/04Distributing under pressure; Distributing mud; Adaptation of watering systems for fertilising-liquids
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link

Abstract

本发明公开一种全天候无线智能灌溉施肥系统,土壤温湿度仪、土壤分析仪、气象分析仪、电控阀门、无线阀门控制装置和终端无线控制装置与太阳能蓄电池供电装置电连接,无线阀门控制装置和终端无线控制装置与中心接收装置无线网络连接,供肥装置和供水装置通过管道与电控阀门连通;土壤温湿度仪采集土壤温度和湿度数据、土壤分析仪采集土壤中植物生长所需元素的含量、气象分析仪采集气象信息并分别通过终端无线控制装置发送给中心控制装置;中心控制装置接收数据并处理后形成供水和施肥策略传送给无线阀门控制装置控制电控阀门供水及传送给供肥装置供肥。本发明具有组网灵活、节水省肥、供水施肥及时便捷、全天候智能化控制的特点。

Description

一种全天候无线智能灌溉施肥系统
技术领域
本发明属于自动化技术领域,涉及一种组网灵活、节水省肥、供水施肥及时便捷、全天候智能化控制的全天候无线智能灌溉施肥系统。
背景技术
我国是一个农业生产大国,农业灌溉用水需求量巨大;而且随着城镇化率的提高,绿化用水也随之急剧增加;此外,随着气候变暖、自然灾害频繁、水资源的污染,可用水资源更加显得稀缺。但是,由于技术、管理水平的落后,导致我国农业和绿化灌溉用水浪费十分严重,距世界先进水平还有较大差距,节水潜力很大。另外,由于我国传统采用凭经验翻埋、浇灌等方式施肥,不仅难以有效掌握施肥植物的养分状况,容易造成肥效过量或不足,而且集中式施肥还会形成农业面源污染,不利于农业生态发展。
灌溉施肥一体化技术作为现代集约化灌溉农业的一个关键因素,起源于无土栽培的发展,主要是随着灌溉技术发展进步。灌溉施肥是将灌溉与施肥有机结合,借助新型灌溉系统,在灌溉的同时将肥料配成肥液一起输入到作物根系土壤,从而达到精准控制灌水量、施肥量和时间,明显提高灌溉水资源和肥料的利用率同时提高作物产量。但是,传统采用人工观测田间是否需要灌水和施肥,然后手动操作添加肥料和灌溉设备实现交替灌溉及施肥。现有技术中灌溉施肥一体化一般是根据经验在灌溉储水池中手工或自动加入定量的肥料,然后根据时间间隔进行自动灌溉和施肥,即设定每天开始灌溉的时刻和灌溉时长,控制系统根据内置时钟实现灌溉阀门的自动开启和关闭;此外也有在田间地头设置土壤含水量和土壤肥料测量传感器与控制装置连接实现自动灌溉,即利用传感器实时监测灌溉区域某一点的土壤含水量和生长元素含量,利用控制装置设置土壤含水量及相应元素的最高和最低阈值,当土壤含水量低于设定最低阈值时,控制装置自动开启灌溉阀门进行灌溉和施肥,当土壤含水量高于设定最高阈值时,控制装置自动关闭灌溉阀门;另外也有设置中心控制装置,在控制装置中设置计算公式,根据计算参照作物的需水量、需肥量来推断和控制供水和施肥量。
上述传统人工观测和手工施肥及灌溉,不仅维护成本高、人工观测误差大、控制精度低,而且及时性也难以保证。其次,上述根据时间间隔实现自动灌溉的控制,不能根据作物的实际需求进行灌溉和施肥,仅能根据人为经验确定灌溉量和施肥量,往往造成过度灌溉和施肥,不仅水利用率较低,而且过多的肥料容易造成烧苗或贪青晚熟影响结实率;此外,上述根据土壤含水量和生长元素含量实现自动灌溉的控制,由于各传感器和控制阀门分布于田间地头,不仅线缆连接复杂且成本高,而且后期维护困难、组网灵活性差且影响机械化作业;另外,上述根据公式计算参照作物需水量和需肥量来计算实际作物需水量,参照作物需水量是指高度一致、生长旺盛、地面完全覆盖、土壤水分充足的绿草地的蒸发蒸腾量,一般是指在这种条件下的苜蓿草的需水量,因为这种参照作物需水量与实际的作物品种、生长期、土壤状况并不相同,而且还受气象条件的影响,不仅测量参数较多、外围设备复杂、投资大、维护困难,而且计算复杂,灌溉难以有效、准确。上述各种方法中,仅部分解决了如何灌溉和施肥的难题,而如何有效、可靠和智能化的供水、供肥,以及如何根据土壤墒情和天气来综合协调土灌溉量和施肥量,并能实现全天候控制等问题并没有解决,部分的自动化灌溉施肥一体化技术仍然存在精度差、整体协调性弱的局限性。
发明内容
本发明的目的在于提供一种组网灵活、节水省肥、供水施肥及时便捷、全天候智能化控制的全天候无线智能灌溉施肥系统。
本发明的目的是这样实现的,包括土壤温湿度仪、土壤分析仪、气象分析仪、电控阀门、无线阀门控制装置、终端无线控制装置、太阳能蓄电池供电装置、中心接收装置、中心控制装置、供肥装置、供水装置,所述土壤温湿度仪、土壤分析仪、气象分析仪、电控阀门、无线阀门控制装置和终端无线控制装置分别与就近设置的太阳能蓄电池供电装置电连接,所述无线阀门控制装置和终端无线控制装置分别与中心接收装置无线网络连接,所述中心接收装置与中心控制装置网络连接,所述电控阀门与无线阀门控制装置电连接,所述供肥装置和供水装置分别与中心控制装置电连接,所述供肥装置和供水装置通过管道与电控阀门连通;
所述土壤温湿度仪用于采集土壤温度和湿度数据,并将所述土壤温度和湿度数据通过终端无线控制装置发送给给中心控制装置;
所述土壤分析仪用于采集土壤中植物生长所需元素的含量,并将所述所需元素的含量通过终端无线控制装置发送给中心控制装置;
所述气象分析仪用于采集气象信息,并将所述气象信息通过终端无线控制装置发送给中心控制装置;
所述中心控制装置用于接收土壤温湿度仪、土壤分析仪和气象分析仪数据,并将接收数据处理后形成供水和施肥策略,所述供水策略经中心接收装置无线传送给无线阀门控制装置以控制电控阀门和直接传送给供水装置进行供水,所述供肥策略传送给供肥装置进行供肥。
本发明的有益效果如下:
1、通过各传感器和电控阀门与控制中心无线连接,避免了常规传统缆线铺设布置不灵活、维护不便且影响机械化作业的难题,节约了人力和物力成本,降低了维护的费用;
2、各传感器和电控阀门从就近布置的太阳能蓄电池供电装置供电,解决了地处偏僻的农业生产区域供电困难,以及城市绿化用地明线供电影响景观,而暗线供电成本高、维护困难的难题,实现了全天候绿色环保供电,后期增加、调整传感器及阀门灵活便捷;
3、智能控制系统按照土壤类型、天气状况、作物种类和生长期进行灌溉及施肥,有利于提高水资源的利用率和施肥精度,与传统灌溉和施肥相比可节水40~50%,比传统施肥方法相比利用率高30~70%,同时肥料随水进入作物根系附近,有利于防止肥料深层流失,不仅提高了肥效,增加了作物产量,又使地下水免受肥料及化学药剂的污染,从而缓解了农业面源污染的问题,而且还能有效降低用电成本和提高各传感器和电控阀门的寿命。
因此,本发明具有组网灵活、节水省肥、供水施肥及时便捷、全天候智能化控制的特点。
附图说明
图1为本发明原理示意图;
图2为图1之供水装置原理示意图;
图3为图1之供肥装置原理示意图;
图中:1-线缆,2-管道,3-无线网络,4-太阳能蓄电池供电装置。
具体实施方式
下面结合附图对本发明作进一步的说明,但不得以任何方式对本发明加以限制,基于本发明教导所作的任何变更或改进,均属于本发明的保护范围。
如图1所示,本发明包括土壤温湿度仪、土壤分析仪、气象分析仪、电控阀门、无线阀门控制装置、终端无线控制装置、太阳能蓄电池供电装置、中心接收装置、中心控制装置、供肥装置、供水装置,所述土壤温湿度仪、土壤分析仪、气象分析仪、电控阀门、无线阀门控制装置和终端无线控制装置分别与就近设置的太阳能蓄电池供电装置电连接,所述无线阀门控制装置和终端无线控制装置分别与中心接收装置无线网络连接,所述中心接收装置与中心控制装置网络连接,所述电控阀门与无线阀门控制装置电连接,所述供肥装置和供水装置分别与中心控制装置电连接,所述供肥装置和供水装置通过管道与电控阀门连通;
所述土壤温湿度仪用于采集土壤温度和湿度数据,并将所述土壤温度和湿度数据通过终端无线控制装置发送给给中心控制装置;
所述土壤分析仪用于采集土壤中植物生长所需元素的含量,并将所述所需元素的含量通过终端无线控制装置发送给中心控制装置;
所述气象分析仪用于采集气象信息,并将所述气象信息通过终端无线控制装置发送给中心控制装置;
所述中心控制装置用于接收土壤温湿度仪、土壤分析仪和气象分析仪数据,并将接收数据处理后形成供水和施肥策略,所述供水策略经中心接收装置无线传送给无线阀门控制装置以控制电控阀门和直接传送给供水装置进行供水,所述供肥策略传送给供肥装置进行供肥。
本发明还包括风力发电装置和风光互补控制器,所述太阳能蓄电池供电装置包括太阳能发电装置、蓄电池组件,所述太阳能发电装置和风力发电装置通过风光互补控制器与蓄电池组件电连接。
本发明还包括与风光互补控制器电连接的直流卸荷器。
如图2所示,所述供水装置包括水泵、水泵控制单元、泵端无线收发单元、蓄水池、液位探测器、池端无线控制单元、池端供电单元,所述液位探测器设置于蓄水池内并与池端无线控制单元电连接,所述池端无线控制单元的电源端口与池端供电单元电连接,所述泵端无线收发单元与池端无线控制单元无线通讯连接,所述泵端无线收发单元与水泵控制单元电连接,所述水泵控制单元根据收到的泵端无线收发单元数据控制水泵的启动和停止。
水泵控制单元的电源进线端设置有电流传感器和电压传感器,所述水泵还设置有温度传感器,所述电流传感器、电压传感器和温度传感器的输出端分别与水泵控制单元电连接,当所述电流传感器的电流值、电压传感器的电压值和/或温度传感器的温度值超过水泵控制单元预设的阈值时,所述水泵控制单元切断水泵电源并将水泵切换到待机状态。
如图3所示,所述蓄水池下部设置出水阀并通过管道与设置于灌溉支管的电控阀门连通,所述出水阀与电控阀门的管道间分设有流量传感器Ⅰ和过滤器,所述流量传感器Ⅰ和过滤器间的管道还与供肥装置的供肥管一端连通,所述供肥装置的供肥管另一端通过流量传感器Ⅱ、比例施肥器与储肥池下设的施肥阀连通,所述出水阀、流量传感器Ⅰ、施肥阀、流量传感器Ⅱ、比例施肥器分别与就近的终端无线控制装置信号连接。
所述储肥池中设置有搅拌器、加热器、温度传感器、EC(电导率,下同)值传感器、PH值传感器、添肥阀、添肥控制器,所述搅拌器、添肥阀和加热器分别与添肥控制器电连接,所述温度传感器、EC值传感器和pH值传感器分别与添肥控制器信号连接,所述添肥控制器通过终端无线控制装置及中心接收装置与中心控制装置信号连接,所述EC值传感器和pH值传感器实时检测储肥池中肥液的EC值和pH值并将检测值发送给添肥控制器,所述添肥控制器将检测的EC值和pH值肥液与中心控制装置发送的肥液理论值进行对比,当其差值超过所述肥液理论值的允许误差范围时,所述添肥控制器控制添肥阀以控制肥料的添加量使检测肥液的EC值和pH值趋于肥液的理论值,当其差值满足允许误差范围时,所述添肥控制器控制添肥阀关闭。
所述土壤温湿度仪包括土壤温度传感器、土壤湿度传感器、测量控制器,所述土壤温度传感器和土壤湿度传感器分别与测量控制器电连接,所述测量控制器分别与终端无线控制装置信号连接和太阳能蓄电池供电装置电连接;
所述土壤分析仪包括测量探头、测量分析单元,所述测量探头与测量分析单元电连接,所述测量分析单元分别与终端无线控制装置信号连接和太阳能蓄电池供电装置电连接;
所述气象分析仪包括光照强度测量单元、风速测量单元、空气温湿度测量单元、降雨量测量单元、气象分析单元,所述光照强度测量单元、风速测量单元、空气温湿度测量单元、降雨量测量单元分别与气象分析单元电连接,所述气象分析单元分别与终端无线控制装置信号连接和与太阳能蓄电池供电装置电连接。
所述中心控制装置设置有输入单元和输出单元,所述输入单元用于输入植物品种、生长阶段、各种阀值及手动或自动控制选择,所述输出单元用于输出各传感器和阀门的测量值以及控制状态信息。
所述无线阀门控制装置、终端无线控制装置和中心接收装置设置有GPRS、3G、4G、5G、WiFi、WiMax或zigbee通讯模块,所述无线阀门控制装置和终端无线控制装置分别通过各自的通讯模块与中心接收装置的通讯模块无线网络连接。
所述电控阀门分布于本发明各灌溉支管,所述电控阀门与对应布置于相应灌溉支管的土壤温湿度仪、土壤分析仪和气象分析仪形成一个灌溉单元,所述中心控制装置根据灌溉单元内的土壤温湿度仪、土壤分析仪和气象分析仪上传数据并结合作物品种、生长期信息形成灌溉和施肥策略,将所述施肥策略下传给供肥装置供肥并检测供水装置的供水状况,然后下传灌溉策略给灌溉单元对应的供水装置和电控阀门进行灌溉。
所述灌溉单元内的土壤温湿度仪、土壤分析仪和气象分析仪和电控阀门分别与同一太阳能蓄电池供电装置电连接。
所述灌溉单元为滴灌单元,所述滴灌单元的滴灌管分设于作物两侧并分别与对应的二级电控阀门连通,所述滴灌单元灌溉和施肥时设于作物两侧的二级电控阀门交替每次只开启一侧的二级电控阀门以控制作物根系分区交替灌溉。
本发明工作原理及工作过程:
本发明通过在田间地头分散布置的各土壤传感器、气象分析仪以及各灌溉支管的电控阀门与就近布置的无线阀门控制装置、终端无线控制装置连接,通过无线阀门控制装置、终端无线控制装置与中心接收装置无线网络连接,避免了常规结构中的线缆铺设不灵活、维护不便且影响机械化作业的难题,节约了人力和物力成本,降低了维修和管护的费用;然后在各土壤传感器、气象分析仪以及各灌溉支管的电控阀门就近设置太阳能蓄电池供电装置等绿色发电装置,以解决地处偏僻的农业生产区域供电困难和城市绿化用地明线供电影响景观,而暗线供电成本高、维护困难的难题,实现低成本、灵活便捷的全天候灌溉和施肥一体的目的;通过整合土壤传感器和气象分析,经中心控制装置分析,能够根据作物品种、生长期以及天气情况,智能化的形成适于的灌溉和施肥策略,无线控制相应的供水和供肥装置以及相应的电控阀门,从而实现现代化农业和绿化灌溉的智能化控制,不仅能够有效、适时的提高灌溉用水和施肥的利用率,与传统灌溉和施肥相比可节水40~50%,比传统施肥方法相比利用率高30~70%,同时肥料随水进入作物根系附近,有利于防止肥料深层流失,不仅提高了肥效,增加了作物产量,又使地下水免受肥料的污染,从而缓解了农业面源污染的问题,而且同样灌溉面积下,本发明需要的管理人员比传统灌溉施肥一体化需要的人少的多,且还能够降低用电成本和提高各传感器和电控阀门的寿命。进一步在设置风力发电装置和配套的风光互补控制器,通过风光互补控制器对蓄电池装置进行充电,从而克服单独采用太阳能和风能供电在阴雨天及风量较少情况下导致的不能稳定、持续供电的不足,而且能够充分发挥白天太阳能充足,晚上风能充足,夏天太阳能充足,冬天风能充足的互补性,提供全天候供电的能力。更进一步设置与风光互补控制器电连接的直流卸荷器,即能通过直流卸荷器保护太阳能电池和风机,而且还能减小充放电控制单元的逆变器容量要求,从而降低蓄电池装置的成本。进一步在水泵端和蓄水池端分设无线通讯组件,当液位探测器检测到蓄水池水位低于或高于预设值时,通过池端无线控制单元与泵端无线收发单元间的无线通讯,以水泵控制单元控制水泵的启动和停止,实现泵站的远程自动控制,从而克服现有技术中远程泵站有人值守运行成本高,远程有线网络控制投入成本高和维护困难、运行可靠性低的难题。更进一步在水泵的电源进线端设置电流传感器和电压传感器以及内设温度传感器,通过各传感器与水泵控制单元连接,通过水泵控制单元判定供电异常和/或电机过热时,切断电网电源并切换到待机状态,从而实现水泵的智能化保护,克服现有技术中采用热继电装置或带过流保护的空气开关乃至晶体管电机综合保护器存在的智能化保护程度不高,仍然出现电动机烧毁的难题。再进一步将供肥装置与供水装置连通,并设置出水阀、流量传感器Ⅰ、施肥阀、流量传感器Ⅱ、比例施肥器与中心控制装置无线网络连接,从而能够根据供水策略和供肥策略实现智能供水及供肥。更进一步在储肥池中设置搅拌器、加热器、温度传感器、EC值传感器、pH值传感器、添肥阀和添肥控制器,使得供肥装置收到供肥策略后,能够智能化的实时检测和调配合适的肥液以满足供肥需要。进一步将无线阀门控制装置、终端无线控制装置和中心接收装置设置GPRS、3G、4G、5G、WiFi、WiMax或zigbee通讯模块,采用GPRS、3G、4G或5G公共无线通讯网络实现电控阀门的远程控制,可以避免传统有线网络安装、维护带来的额外困难和降低网络投入成本,且能通过公共无线通信网络定时或满足条件时向其绑定的电话号码发送液位和/或水泵运行状况信息,实现泵站远程实时状态管理;采用WiFi、WiMax或zigbee无线局域网技术实现电控阀门的远程控制,可克服公共无线通讯带来的后期使用成功高的困难。综上所述,本发明具有组网灵活、节水省肥、供水施肥及时便捷、全天候智能化控制的特点。
如图1、2和3所示,在坡地上部设蓄水池并在其内设液位探测器与蓄水池上设置的池端无线控制单元信号连接,在蓄水池下部设置出水阀且在附近设置诸如太阳能蓄电池供电装置,液位探测器、池端无线控制单元和出水阀分别自太阳能蓄电池供电装置获取供电;在坡地下部水源附近设置泵站,泵站内水泵依次通过水泵控制单元、泵端无线收发单元与池端无线控制单元无线网络连接,当液位探测器探测的水位低于预设阀值时,水泵控制单元启动水泵向蓄水池供水,当液位探测器探测的水位高于预设阀值时,水泵控制单元停止水泵向蓄水池供水,从而实现自动供水;同时,在水泵的电源进线端设置电流传感器和电压传感器以及在水泵设置温度传感器,电流传感器、电压传感器和温度传感器通过与水泵控制单元连接,当电流传感器的电流值、电压传感器的电压值和/或温度传感器的温度值超过水泵控制单元预设的阈值时,水泵控制单元切断水泵电源并将水泵切换到待机状态,以保护水泵和正常时自动恢复执行供水策略。蓄水池下部的出水阀通过管道与设于灌溉单元的电控阀门连通,并在出水阀与电控阀门的管道间分设流量传感器Ⅰ和过滤器,流量传感器Ⅰ和过滤器间的管道与供肥装置的供肥管道一端连通,供肥管道的另一端通过流量传感器Ⅱ、比例施肥器与储肥池下设的施肥阀连通,出水阀、流量传感器Ⅰ、施肥阀、流量传感器Ⅱ、比例施肥器分别通过就近的终端无线控制装置与中心接收装置无线通讯连接;同时,在储肥池中设置搅拌器、加热器、温度传感器、EC值传感器、pH值传感器、添肥阀、添肥控制器,温度传感器、EC值传感器和pH值传感器分别与添肥控制器信号连接,添肥控制器通过终端无线控制装置及中心接收装置与中心控制装置信号连接,EC值传感器和pH值传感器实时检测储肥池中肥液的EC值和pH值并将检测值发送给添肥控制器,添肥控制器将检测的EC值和pH值肥液与中心控制装置发送的肥液理论值进行对比,当其差值超过所述肥液理论值的允许误差范围时,添肥控制器控制添肥阀以控制肥料添加量使检测肥液的EC值和pH值趋于肥液的理论值,当其差值满足允许误差范围时,所述添肥控制器控制添肥阀关闭,在添肥时添肥控制器必要时启动加热器加热肥液并启动搅拌器进行混匀搅拌。一个或多个土壤温湿度仪、土壤分析仪和气象分析仪呈组分布于同一灌溉单元,成片的农作物或绿化植株按品种、生长期分成多个灌溉单元,各灌溉单元通过电控阀门一端与滴灌管道连通,另一端与供水装置和供肥装置连通;电控阀门就近设置一个无线阀门控制装置并通过其及中心接收装置无线通讯与中心控制装置信号连接,各灌溉单元设置至少一个终端无线控制装置,灌溉单元内的土壤温湿度仪、土壤分析仪和气象分析仪通过终端无线控制装置及中心接收装置无线通讯与中心控制装置信号连接;各灌溉单元设置至少一个由太阳能发电装置和蓄电池组件构成的太阳能蓄电池供电装置以及风力发电装置,太阳能发电装置所发的直流电和风力发电装置所发的交流电分别通过风光互补控制器对蓄电池组件进行充放电,当蓄电池组件蓄满电后,所发的多余电量通过风光互补控制器经直流卸荷器卸荷,灌溉单元内的土壤温湿度仪、土壤分析仪、气象分析仪、电控阀门、无线阀门控制装置和终端无线控制装置,分别与灌溉单元内的风光互补控制器获取供电。中心控制装置通过获取的土壤温度、湿度及土壤中诸如N、P、K等生长元素含量和诸如光照强度、风俗、降雨量等气象信息,经内置软件分析和计算形成灌溉供水和供肥策略。中心控制装置将供水和供肥策略通过中心接收装置无线传送给相应地址的终端无线控制装置,控制施肥阀、比例施肥器、出水阀,同时将供水策略通过中心接收装置无线传送给相应地址的无线阀门控制装置以开启或关闭阀门,从而实现智能化供水与施肥一体化。

Claims (8)

1.一种全天候无线智能灌溉施肥系统,其特征在于包括土壤温湿度仪、土壤分析仪、气象分析仪、电控阀门、无线阀门控制装置、终端无线控制装置、太阳能蓄电池供电装置、中心接收装置、中心控制装置、供肥装置、供水装置,所述土壤温湿度仪、土壤分析仪、气象分析仪、电控阀门、无线阀门控制装置和终端无线控制装置分别与就近设置的太阳能蓄电池供电装置电连接,所述无线阀门控制装置和终端无线控制装置分别与中心接收装置无线网络连接,所述中心接收装置与中心控制装置网络连接,所述电控阀门与无线阀门控制装置电连接,所述供肥装置和供水装置分别与中心控制装置电连接,所述供肥装置和供水装置通过管道与电控阀门连通;
所述土壤温湿度仪用于采集土壤温度和湿度数据,并将所述土壤温度和湿度数据通过终端无线控制装置发送给中心控制装置;
所述土壤分析仪用于采集土壤中植物生长所需元素的含量,并将所述所需元素的含量通过终端无线控制装置发送给中心控制装置;
所述气象分析仪用于采集气象信息,并将所述气象信息通过终端无线控制装置发送给中心控制装置;
所述中心控制装置用于接收土壤温湿度仪、土壤分析仪和气象分析仪数据,并将接收数据处理后形成供水和施肥策略,所述供水策略经中心接收装置无线传送给无线阀门控制装置以控制电控阀门和直接传送给供水装置进行供水,所述供肥策略传送给供肥装置进行供肥;
所述供水装置包括水泵、水泵控制单元、泵端无线收发单元、蓄水池、液位探测器、池端无线控制单元、池端供电单元,所述液位探测器设置于蓄水池内并与池端无线控制单元电连接,所述池端无线控制单元的电源端口与池端供电单元电连接,所述泵端无线收发单元与池端无线控制单元无线通讯连接,所述泵端无线收发单元与水泵控制单元电连接,所述水泵控制单元根据收到的泵端无线收发单元数据控制水泵的启动和停止;所述蓄水池下部设置出水阀并通过管道与设置于灌溉支管的电控阀门连通,所述出水阀与电控阀门的管道间分设有流量传感器I和过滤器,所述流量传感器I和过滤器间的管道还与供肥装置的供肥管一端连通,所述供肥装置的供肥管另一端通过流量传感器II、比例施肥器与储肥池下设的施肥阀连通,所述出水阀、流量传感器I、施肥阀、流量传感器II、比例施肥器分别与就近的终端无线控制装置信号连接。
2.根据权利要求1所述全天候无线智能灌溉施肥系统,其特征在于还包括风力发电装置和风光互补控制器,所述太阳能蓄电池供电装置包括太阳能发电装置、蓄电池组件,所述太阳能发电装置和风力发电装置通过风光互补控制器与蓄电池组件电连接。
3.根据权利要求2所述全天候无线智能灌溉施肥系统,其特征在于还包括与风光互补控制器电连接的直流卸荷器。
4.根据权利要求1所述全天候无线智能灌溉施肥系统,其特征在于所述水泵控制单元的电源进线端设置有电流传感器和电压传感器,所述水泵还设置有温度传感器,所述电流传感器、电压传感器和温度传感器的输出端分别与水泵控制单元电连接,当所述电流传感器的电流值、电压传感器的电压值和/或温度传感器的温度值超过水泵控制单元预设的阈值时,所述水泵控制单元切断水泵电源并将水泵切换到待机状态。
5.根据权利要求1所述全天候无线智能灌溉施肥系统,其特征在于所述储肥池中设置有搅拌器、加热器、温度传感器、EC值传感器、pH值传感器、添肥阀、添肥控制器,所述搅拌器、添肥阀和加热器分别与添肥控制器电连接,所述温度传感器、EC值传感器和pH值传感器分别与添肥控制器信号连接,所述添肥控制器通过终端无线控制装置及中心接收装置与中心控制装置信号连接,所述EC值传感器和pH值传感器实时检测储肥池中肥液的EC值和pH值并将检测值发送给添肥控制器,所述添肥控制器将检测的EC值和pH值肥液与中心控制装置发送的肥液理论值进行对比,当其差值超过所述肥液理论值的允许误差范围时,所述添肥控制器控制添肥阀以控制肥料的添加量使检测肥液的EC值和pH值趋于肥液的理论值,当其差值满足允许误差范围时,所述添肥控制器控制添肥阀关闭。
6.根据权利要求1所述全天候无线智能灌溉施肥系统,其特征在于所述土壤温湿度仪包括土壤温度传感器、土壤湿度传感器、测量控制器,所述土壤温度传感器和土壤湿度传感器分别与测量控制器电连接,所述测量控制器分别与终端无线控制装置信号连接和太阳能蓄电池供电装置电连接;
所述土壤分析仪包括测量探头、测量分析单元,所述测量探头与测量分析单元电连接,所述测量分析单元分别与终端无线控制装置信号连接和太阳能蓄电池供电装置电连接;
所述气象分析仪包括光照强度测量单元、风速测量单元、空气温湿度测量单元、降雨量测量单元、气象分析单元,所述光照强度测量单元、风速测量单元、空气温湿度测量单元、降雨量测量单元分别与气象分析单元电连接,所述气象分析单元分别与终端无线控制装置信号连接和与太阳能蓄电池供电装置电连接。
7.根据权利要求1所述全天候无线智能灌溉施肥系统,其特征在于所述中心控制装置设置有输入单元和输出单元,所述输入单元用于输入植物品种、生长阶段、各种阀值及手动或自动控制选择,所述输出单元用于输出各传感器和阀门的测量值以及控制状态信息。
8.根据权利要求1所述全天候无线智能灌溉施肥系统,其特征在于所述无线阀门控制装置、终端无线控制装置和中心接收装置设置有GPRS、3G、4G、5G、WiFi、WiMax或zigbee通讯模块,所述无线阀门控制装置和终端无线控制装置分别通过各自的通讯模块与中心接收装置的通讯模块无线网络连接。
CN201610071831.7A 2016-02-02 2016-02-02 一种全天候无线智能灌溉施肥系统 Expired - Fee Related CN105532156B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610071831.7A CN105532156B (zh) 2016-02-02 2016-02-02 一种全天候无线智能灌溉施肥系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610071831.7A CN105532156B (zh) 2016-02-02 2016-02-02 一种全天候无线智能灌溉施肥系统

Publications (2)

Publication Number Publication Date
CN105532156A CN105532156A (zh) 2016-05-04
CN105532156B true CN105532156B (zh) 2018-03-13

Family

ID=55812168

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610071831.7A Expired - Fee Related CN105532156B (zh) 2016-02-02 2016-02-02 一种全天候无线智能灌溉施肥系统

Country Status (1)

Country Link
CN (1) CN105532156B (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105941101B (zh) * 2016-06-21 2022-05-31 天津市土壤肥料工作站 智能灌溉施肥控制方法、装置及系统
CN106171913A (zh) * 2016-06-30 2016-12-07 宾川县华侨庄园农业科技开发有限公司 一种椰糠无土栽培葡萄节水节肥的灌溉方法
CN106171227B (zh) * 2016-07-08 2018-02-02 山东农业大学 一种水肥一体化适用的固体肥精准变量配肥装置及控制方法
CN106105532A (zh) * 2016-07-15 2016-11-16 成都锦汇绿源环保技术有限公司 一种智能肥水一体节水灌溉系统
CN106358997A (zh) * 2016-08-28 2017-02-01 中国农业科学院农田灌溉研究所 一种基于云计算的智能灌溉施肥系统及方法
CN106613761B (zh) * 2016-12-21 2020-08-25 河海大学 一种“风光互补”的山丘区节水灌溉综合调控系统
CN106508233A (zh) * 2016-12-28 2017-03-22 钦州市中航科技咨询有限公司 一种山地种植香蕉的施肥控制系统
CN106500774A (zh) * 2016-12-28 2017-03-15 钦州市中航科技咨询有限公司 一种山地种植香蕉的环境监测系统
CN106647528B (zh) * 2017-01-17 2021-05-04 成都信息工程大学 一种随天气变化的一体化控制装置
CN106664937A (zh) * 2017-03-20 2017-05-17 浙江省农业科学院 水肥一体化四控灌溉施肥系统
CN108781690A (zh) * 2017-05-03 2018-11-13 贵港市厚顺信息技术有限公司 一种种植大棚冬季灌溉系统
CN107181870A (zh) * 2017-06-08 2017-09-19 武汉梦之蓝科技有限公司 一种基于移动终端的无土草坪垂直绿化控制系统
CN107483566A (zh) * 2017-08-02 2017-12-15 深圳市盛路物联通讯技术有限公司 一种基于物联网的城市绿化的方法及装置
CN109254540B (zh) * 2018-10-22 2023-03-17 山东农业大学 一种基于设施水肥药热气一体化地下渗灌管控系统及方法
CN109235392A (zh) * 2018-10-23 2019-01-18 山东农业大学 一种管井结合风光电互补排水改盐系统及其使用方法
CN109451948A (zh) * 2018-12-11 2019-03-12 山东省农业科学院科技信息研究所 一种智能灌溉系统
CN110140703B (zh) * 2019-04-22 2022-02-22 许祥洪 一种智能化物理杀菌灭虫装置及方法
CN111264161B (zh) * 2020-02-10 2021-09-07 重庆图强工程技术咨询有限公司 水肥一体化系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4545396A (en) * 1985-02-25 1985-10-08 Miller Richard N System for optimum irrigating and fertilizing
CN203181698U (zh) * 2013-03-22 2013-09-11 深圳市赛瑞景观工程设计有限公司 太阳能无线灌溉系统
CN203640949U (zh) * 2013-12-11 2014-06-11 陕西大禹节水设备工程有限责任公司 太阳能发电提水系统
CN103918528B (zh) * 2014-04-04 2016-02-24 中工武大设计研究有限公司 一种精准化灌溉施肥智能控制方法
CN105248252B (zh) * 2015-10-16 2019-05-17 河北省农林科学院旱作农业研究所 一种测墒灌溉水肥一体化智能控制系统及控制方法
CN205584783U (zh) * 2016-02-02 2016-09-21 昆明九天科技有限公司 一种全天候无线智能灌溉施肥系统

Also Published As

Publication number Publication date
CN105532156A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
CN105532156B (zh) 一种全天候无线智能灌溉施肥系统
CN205584783U (zh) 一种全天候无线智能灌溉施肥系统
CN103250614B (zh) 光伏电脑自动微灌溉系统
CN105580716A (zh) 大区域多田块自动节水灌溉三级控制系统及其使用方法
CN105075701A (zh) 一种智能种植箱
CN109601334A (zh) 基于物联网的水肥滴灌系统
CN208506618U (zh) 一种大棚内环境监控系统
CN206078414U (zh) 用于苗木灌溉的太阳能智能节水控制系统
CN106804384A (zh) 一种农业田间智能感应灌溉系统
CN109983949A (zh) 一种天桥绿化实时监测与远程灌溉操控系统及其工作方法
CN203884284U (zh) 一种智能种植箱
AU2020100749A4 (en) Intelligent supplementary grassland irrigation management system
KR20140072588A (ko) 근거리 무선통신 기반의 자동 관수제어를 통한 관비재배 시스템
CN204613723U (zh) 新型智能灌溉系统
CN207505624U (zh) 一种红心猕猴桃智能化灌溉系统
CN206611933U (zh) 田间智能灌溉系统
CN210042844U (zh) 一种天桥绿化实时监测与远程灌溉操控系统
CN108934366A (zh) 一种智能化集雨灌溉施肥系统
CN211322185U (zh) 一种室顶用的绿化装置
CN205176552U (zh) 一种阳台种植智能控制器
CN211745771U (zh) 一种植物栽培系统
CN203120608U (zh) 坡地自动集雨滴灌装置
CN108934363A (zh) 一种香榧水肥一体化灌溉系统
CN209768482U (zh) 一种种植用滴灌装置
CN112772248A (zh) 一种古木大树一体化自动监测管理方法和设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180313

Termination date: 20190202