CN105525332A - 一种降低钎料键合热应力的方法及封装芯片 - Google Patents

一种降低钎料键合热应力的方法及封装芯片 Download PDF

Info

Publication number
CN105525332A
CN105525332A CN201410577345.3A CN201410577345A CN105525332A CN 105525332 A CN105525332 A CN 105525332A CN 201410577345 A CN201410577345 A CN 201410577345A CN 105525332 A CN105525332 A CN 105525332A
Authority
CN
China
Prior art keywords
solder
micro
insoluble particle
particle
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410577345.3A
Other languages
English (en)
Other versions
CN105525332B (zh
Inventor
俞挺
丁海舰
王敏锐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Original Assignee
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Institute of Nano Tech and Nano Bionics of CAS filed Critical Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority to CN201410577345.3A priority Critical patent/CN105525332B/zh
Publication of CN105525332A publication Critical patent/CN105525332A/zh
Application granted granted Critical
Publication of CN105525332B publication Critical patent/CN105525332B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种降低钎料键合热应力的方法及封装芯片,所述方法包括采用电镀的方法在芯片和基板上制作钎料,所使用的电镀液中添加有微纳级导电不溶性颗粒。该降低钎料键合热应力的方法简单有效,由于微纳级导电不溶性颗粒的热膨胀系数介于基板和钎料之间,进行高温键合时,该微纳级导电不溶性颗粒能够对因热膨胀系数差异导致芯片和基板之间产生的热应力进行有效缓冲。另外本发明还可有效改善镀层的表面形貌,增强镀层的耐磨性,同时不影响后续的高温键合质量。

Description

一种降低钎料键合热应力的方法及封装芯片
技术领域
本发明属于电子封装特别是半导体芯片封装领域,具体的涉及一种降低钎料键合热应力的方法以及具备低热应力的封装芯片。
背景技术
电镀(Electroplating)就是利用电解原理在某些导电材料表面镀上一薄层其它金属或合金的过程,是利用电解作用使金属或其它材料制件的表面附着一层金属膜的工艺。目前,在电子封装领域,因电镀的成本低、效率高等优点,键合钎料经常采用电镀的方法制作,并且一般通过电镀多层单金属或直接电镀钎料合金。电镀后的金属通过高温、加压的方式将芯片与基板焊接起来,最终实现芯片晶圆级键合的目的。
封装芯片中的芯片和基板属于不同的材料,在将芯片与基板焊接时,基于热胀冷缩的属性,两种材料分别发生体积变化,因为这种材料的热膨胀系数不相同,体积变化不同步,在结合处会产生界面热应力,如果两种材料结合紧密,会导致复合材料弯曲,如果两种材料结合力小于热应力,两种材料的界面会发生变形错配,导致脱层。
在半导体芯片封装过程中,往往需要在较高的温度下进行键合,而芯片、钎料和基板因热膨胀系数不同会在界面处产生热应力,导致芯片变形甚至断裂,从而极大地影响器件的可靠性和使用性。因此,降低芯片与基板键合时产生的热应力是十分必要的。
发明内容
本发明的目的在于提供一种能有效降低钎料键合热应力的方法,其通过在电镀液中添加导电不溶性物质作为缓冲剂,来缓冲高温键合时因热膨胀系数不同而产生的热应力。
本发明的目的还在于提供一种具备良好键合稳定性的封装芯片,该封装芯片的热稳定性高,并且镀层的耐磨性强。
本发明所采用的技术方案如下:
一种降低钎料键合热应力的方法,包括:
采用电镀的方法在芯片和基板上制作钎料,所使用的电镀液中添加有微纳级导电不溶性颗粒。
进一步的,所述微纳级导电不溶性颗粒的颗粒直径优选为0.01~10μm,颗粒形状包括但不限于球形、椭球形和不规则形状。
优选的,所述电镀液中微纳级导电不溶性颗粒的溶解度小于或等于1g/L。
优选的,所述微纳级导电不溶性颗粒的热膨胀系数介于钎料与基体的热膨胀系数之间。
优选的,所述微纳级导电不溶性颗粒的电阻率小于或等于0.1Ω·m。
进一步的,所述微纳级导电不溶性颗粒包括但不限于碳化硅或银。
进一步,所述方法包括:在进行电镀时,使微纳级导电不溶性颗粒于电镀液中均匀分布。
本发明还提供了一种封装芯片,半导体芯片和基板间通过电镀的钎料进行键合,其特征在于所述钎料中含有微纳级导电不溶性颗粒,该微纳级导电不溶性颗粒的颗粒直径为0.01~10μm。
优选的,所述微纳级导电不溶性颗粒的电阻率小于或等于0.1Ω·m。
优选的,所述微纳级导电不溶性颗粒的热膨胀系数介于钎料与基体的热膨胀系数之间。
本发明中,微纳级导电不溶性颗粒作为缓冲剂添加在电镀液中,该微纳级导电不溶性颗粒一般采用热膨胀系数介于不同合金元素之间的物质,或者该微纳级导电不溶性颗粒的热膨胀系数介于合金钎料与基体的热膨胀系数之间。导电不溶性颗粒制作成微米或纳米级,颗粒的直径范围可以为0.01~10μm。为保证该微纳级导电不溶性颗粒以该微纳级颗粒存在于电镀层中,要求该微纳级导电不溶颗粒在电镀液中的溶解度应较低,一般要求其溶解度小于或等于1g/L,并且电阻率小于或等于0.1Ω·m。一般常用的该微纳级导电不溶性颗粒可以选用碳化硅、银等导电、基本不溶物质。微纳级导电不溶性颗粒于电镀液中的添加浓度小于或等于10g/L,为保证微纳级导电不溶性颗粒在电镀液中的分配均匀度,可以采用搅拌方式使其均匀分布。
与现有技术相比,本发明的有益效果包括:该降低钎料键合热应力的方法简单有效,由于微纳级导电不溶性颗粒的热膨胀系数介于基板和钎料之间,进行高温键合时,该微纳级导电不溶性颗粒能够对因热膨胀系数差异导致芯片和基板之间产生的热应力得到有效缓冲。另外本发明还可有效改善镀层的表面形貌,增强镀层的耐磨性,同时不影响后续的高温键合质量。
下面结合具体实施方式对本发明做进一步的阐述。
具体实施方式
实施例1:
采用碳化硅作为微纳级导电不溶性颗粒作为铜电镀液的缓冲剂。
其中,铜电镀液可由市售途径获取或自制,其组分如下:硫酸铜(CuSO4.5H2O),硫酸(H2SO4),氯离子(Cl-)添加剂,以及余量的水。
将基本不溶于铜电镀液的微纳级导电不溶性颗粒碳化硅添加至铜电镀液中,添加的浓度为2.5g/L,碳化硅的颗粒直径为0.01~10μm,碳化硅在铜电镀液中的溶解度小于1g/L。碳化硅的电阻率为0.002Ω·m。
搅拌铜电镀液至碳化硅颗粒均匀分布于电镀液中。
采用电镀的方法在芯片和基板上制备Sn-Cu钎料,将芯片和基本在高温下加压进行键合。
对照组:取与实施例1相同的铜电镀液,但不添加碳化硅,并按照实施例1的方式进行电镀和键合。
对实施例1和对照组键合后产品进行应力测试,其中采用的测试仪器为Dektak150,扫描长度2cm,经多次试验后,可以获知:
对照组产品的最大形变值约6微米,而实施例1产品的形变值约3微米,换言之,对照组产品的最大形变值是实施例1产品的2倍。由此可以证明,该钎料键合后的热稳定性明显高于不添加微纳级导电不溶性颗粒碳化硅的同类钎料。
并且,本发明电镀得到的镀层的表面具有较好的摩擦力和抗磨性,对高温压力键合无影响。
实施例2:
采用银作为微纳级导电不溶性颗粒作为铜电镀液的缓冲剂。该铜电镀液的组分与实施例1基本相同。
将基本不溶于锡电镀液的微纳级导电不溶性颗粒银添加至锡电镀液中,添加的浓度为5g/L,银的颗粒直径为0.01~10μm,银在锡电镀液中的溶解度小于1g/L。银的电阻率为1.65×10-8Ω·m。
搅拌铜电镀液至碳化硅颗粒均匀分布于电镀液中。
采用电镀的方法在芯片和基板上制备Sn-Ag-Cu钎料,将芯片和基本在高温下加压进行键合。
经检测,该钎料键合后的热稳定性明显高于不添加微纳级导电不溶性颗粒银的同类钎料。并且本发明电镀得到的镀层的表面具有较好的摩擦力和抗磨性,对高温压力键合无影响。
以上仅是本发明的两个较佳应用范例,对本发明的保护范围不构成任何限制。实际上,本领域技术人员经由本发明技术方案之启示,亦可想到采用上述方案制备不同的钎料体系,或采用不同的方式向钎料中添加缓冲剂。但是,凡采用等同变换或者等效替换而形成的技术方案,均落在本发明权利保护范围之内。

Claims (10)

1.一种降低钎料键合热应力的方法,其特征在于所述方法包括:采用电镀的方法在芯片和基板上制作钎料,所使用的电镀液中添加有微纳级导电不溶性颗粒。
2.根据权利要求1所述的降低钎料键合热应力的方法,其特征在于所述微纳级导电不溶性颗粒的颗粒直径为0.01~10μm,颗粒形状包括球形、椭球形或不规则形状。
3.根据权利要求1所述的降低钎料键合热应力的方法,其特征在于所述电镀液中微纳级导电不溶性颗粒的溶解度小于或等于1g/L。
4.根据权利要求1所述的降低钎料键合热应力的方法,其特征在于所述微纳级导电不溶性颗粒的热膨胀系数介于钎料与基体的热膨胀系数之间。
5.根据权利要求1所述的降低钎料键合热应力的方法,其特征在于所述微纳级导电不溶性颗粒的电阻率小于或等于0.1Ω·m。
6.根据权利要求1所述的降低钎料键合热应力的方法,其特征在于所述微纳级导电不溶性颗粒包括碳化硅或银。
7.根据权利要求1所述的降低钎料键合热应力的方法,其特征在于所述方法进一步包括:在进行电镀时,使微纳级导电不溶性颗粒于电镀液中均匀分布。
8.一种封装芯片,其中半导体芯片和基板间通过电镀的钎料进行键合,其特征在于所述钎料中含有微纳级导电不溶性颗粒,所述微纳级导电不溶性颗粒的颗粒直径为0.01~10μm。
9.根据权利要求8所述的封装芯片,其特征在于所述微纳级导电不溶性颗粒的电阻率小于或等于0.1Ω·m。
10.根据权利要求8所述的封装芯片,其特征在于所述微纳级导电不溶性颗粒的热膨胀系数介于钎料与基体的热膨胀系数之间。
CN201410577345.3A 2014-10-24 2014-10-24 一种降低钎料键合热应力的方法及封装芯片 Active CN105525332B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410577345.3A CN105525332B (zh) 2014-10-24 2014-10-24 一种降低钎料键合热应力的方法及封装芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410577345.3A CN105525332B (zh) 2014-10-24 2014-10-24 一种降低钎料键合热应力的方法及封装芯片

Publications (2)

Publication Number Publication Date
CN105525332A true CN105525332A (zh) 2016-04-27
CN105525332B CN105525332B (zh) 2018-11-09

Family

ID=55767847

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410577345.3A Active CN105525332B (zh) 2014-10-24 2014-10-24 一种降低钎料键合热应力的方法及封装芯片

Country Status (1)

Country Link
CN (1) CN105525332B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107881534A (zh) * 2017-11-10 2018-04-06 广州东有电子科技有限公司 一种具备金属电极的器件与基板的互连方法
CN111424303A (zh) * 2020-05-19 2020-07-17 暨南大学 一种SiC纳米银复合电沉积涂层及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1318655A (zh) * 2000-02-28 2001-10-24 古河电气工业株式会社 电镀方法
CN102051657A (zh) * 2011-01-21 2011-05-11 哈尔滨工业大学 一种纳米级Sn/SiC复合镀层的制备方法
CN102157630A (zh) * 2010-12-28 2011-08-17 哈尔滨工业大学 单基板多芯片组大功率led封装一次键合方法
CN102937663A (zh) * 2011-08-16 2013-02-20 北京天中磊智能科技有限公司 智能电表核心模块的封装结构及封装方法
CN103132113A (zh) * 2013-03-08 2013-06-05 大连理工大学 一种弱碱性锡基无铅钎料复合镀液及其应用
CN103887300A (zh) * 2012-12-20 2014-06-25 浙江大学 具有高可靠性导热绝缘基板的功率igbt模块

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1318655A (zh) * 2000-02-28 2001-10-24 古河电气工业株式会社 电镀方法
CN102157630A (zh) * 2010-12-28 2011-08-17 哈尔滨工业大学 单基板多芯片组大功率led封装一次键合方法
CN102051657A (zh) * 2011-01-21 2011-05-11 哈尔滨工业大学 一种纳米级Sn/SiC复合镀层的制备方法
CN102937663A (zh) * 2011-08-16 2013-02-20 北京天中磊智能科技有限公司 智能电表核心模块的封装结构及封装方法
CN103887300A (zh) * 2012-12-20 2014-06-25 浙江大学 具有高可靠性导热绝缘基板的功率igbt模块
CN103132113A (zh) * 2013-03-08 2013-06-05 大连理工大学 一种弱碱性锡基无铅钎料复合镀液及其应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107881534A (zh) * 2017-11-10 2018-04-06 广州东有电子科技有限公司 一种具备金属电极的器件与基板的互连方法
CN111424303A (zh) * 2020-05-19 2020-07-17 暨南大学 一种SiC纳米银复合电沉积涂层及其制备方法与应用
CN111424303B (zh) * 2020-05-19 2021-06-11 暨南大学 一种SiC纳米银复合电沉积涂层及其制备方法与应用

Also Published As

Publication number Publication date
CN105525332B (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
Suganuma et al. Low-temperature low-pressure die attach with hybrid silver particle paste
CN104993041B (zh) 一种led倒装芯片固晶导电粘接结构及其安装方法
CN106271177B (zh) 一种互连钎料及其互连成形方法
CN104690383B (zh) 一种全金属间化合物互连焊点的制备方法及结构
Sharma et al. Pulse electrodeposition of lead-free tin-based composites for microelectronic packaging
CN102891240B (zh) 倒装结构的发光二极管及其制备方法
CN105290418A (zh) 一种微纳米铜球表面镀附具有可焊性厚度的厚锡层的镀附方法
CN105525332A (zh) 一种降低钎料键合热应力的方法及封装芯片
Yao et al. Investigation on shear fracture of different strain rates for Cu/Cu 3 Sn/Cu solder joints derived from Cu–15μm Sn–Cu sandwich structure
Boettge et al. Packaging material issues in high temperature power electronics
KR101141762B1 (ko) 반도체 패키지에 사용되는 구리 코어의 무연 솔더볼 및 이를 포함한 반도체 패키지
CN112745636A (zh) 一种聚合物基金属气凝胶复合热界面材料及其制备方法
CN104112707B (zh) 一种基于镍和铜微针锥异种结构的固态超声键合方法
Zhang et al. Thermal properties of silver nanoparticle sintering bonding paste for high-power led packaging
CN109590633A (zh) 用于集成电路封装的引线焊接钎料及其制备方法和应用
CN203179893U (zh) 一种硅片背面金属化共晶结构
Wang et al. Optimization and simulation of nano-silver paste sintered copper interconnection process
Zhang et al. A Review: Solder Joint Cracks at Sn-Bi58 Solder ACFs Joints
Tseng et al. Wire bonding of Au-coated Ag wire: Bondwire properties, bondability and IMCs formation
Zandén et al. Fabrication and characterization of a metal matrix polymer fibre composite for thermal interface material applications
Yang Study on the preparation process and sintering performance of doped nano-silver paste
CN104392773B (zh) 铜合金导电线和制造方法
CN105489515A (zh) 半导体芯片的共晶焊接方法
Tian et al. Investigation of microstructure and growth behavior of CoSn 3 full intermetallic joints in electronic packaging
CN102717161A (zh) 一种通过表面多孔结构实现钎焊性可调的工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant