CN105525179A - 一种稀土镁合金大尺寸高强锻件的制备方法 - Google Patents

一种稀土镁合金大尺寸高强锻件的制备方法 Download PDF

Info

Publication number
CN105525179A
CN105525179A CN201510965351.0A CN201510965351A CN105525179A CN 105525179 A CN105525179 A CN 105525179A CN 201510965351 A CN201510965351 A CN 201510965351A CN 105525179 A CN105525179 A CN 105525179A
Authority
CN
China
Prior art keywords
forging
magnesium
rare earth
preparation
large size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510965351.0A
Other languages
English (en)
Inventor
薛志勇
任宇
张小燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING HUADIAN XINRUN TECHNOLOGY Co Ltd
North China Electric Power University
Original Assignee
BEIJING HUADIAN XINRUN TECHNOLOGY Co Ltd
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING HUADIAN XINRUN TECHNOLOGY Co Ltd, North China Electric Power University filed Critical BEIJING HUADIAN XINRUN TECHNOLOGY Co Ltd
Priority to CN201510965351.0A priority Critical patent/CN105525179A/zh
Publication of CN105525179A publication Critical patent/CN105525179A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/002Hybrid process, e.g. forging following casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Abstract

一种稀土镁合金大尺寸高强锻件的制备方法,包括熔炼铸造获得稀土镁合金铸锭的步骤,对稀土镁合金铸锭进行均匀化退火处理的步骤;对均匀化退火后的稀土镁合金铸锭进行热挤压制备锻坯的步骤;以及对热挤压制备的锻坯进行锻造,获得稀土镁合金锻件的步骤,本发明中的制备方法使合金的铸造态组织得到显著细化,改善了稀土镁合金的热加工工艺塑性,降低了锻坯在锻造过程中开裂的几率,提高了大尺寸稀土镁合金锻件的成品率。

Description

一种稀土镁合金大尺寸高强锻件的制备方法
技术领域
本发明涉及一种锻件的制备方法,特别是一种稀土镁合金大尺寸高强锻件的制备方法,属于金属材料加工技术领域。
背景技术
镁合金是目前已应用最轻的金属结构材料,具有比强度和比模量高、导热性好、电磁屏蔽能力强、阻尼减振性好等优点,被誉为“21世纪绿色工程金属”。因此,镁合金在国防、航空航天、汽车等工业领域具有广阔的应用前景。在国防及航空航天领域,镁合金应用于飞行器可降低结构质量,提高其射程和精度,还可降低能量消耗;应用于防御装甲可提高装甲车辆的机动性,降低其能耗。汽车工业领域使用镁合金制造汽车零部件,不仅能够减轻汽车质量、降低油耗,而且有助于汽车减振,从而改善汽车的舒适性和安全性。
镁合金主要分为两大类:铸造镁合金和变形镁合金,现在所使用的镁合金中大多为铸造态。相较于铸造产品,镁合金经热变形后组织得到显著细化,铸造组织中的缺陷被消除,材料的综合力学性能得到极大提高,可以满足不同条件下结构件的使用要求。然而,镁合金结构件,尤其是大尺寸构件的生产还存在许多技术问题,例如:(1)镁合金绝对力学性能仍然偏低,虽然目前通过一定手段可以提高其强度,但往往以牺牲塑性为代价;(2)镁合金热成形能力较差,远不如铝合金及钢铁等材料,其在锻造过程中容易开裂,一般只能利用挤压等极少数方法进行加工。因此,目前变形镁合金的应用远不如铝合金那么广泛。
镁没有同素异构变化,缺乏有效的强化相,这是导致镁合金力学性能较差的主要原因之一。稀土(RE)元素具有特殊的价电子结构,Gd、Y等重稀土元素在镁中具有较大固溶度,能形成细小弥散的强化相,可大幅度提高镁合金的力学性能。因此,Drits等人通过在镁中添加稀土元素Gd和Y试制出Mg-9Gd-4Y-0.6Mn合金后,高性能稀土镁合金的研究成为镁合金发展的重要方向。本世纪初,Anyanwu等人以Zr替代Mn试制出Mg-9Gd-4Y-0.6Zr合金。该合金具有显优于WE54和WE43合金的力学性能,引起了国内外学者的广泛关注。
目前对稀土镁合金的锻造主要方法为:先获得稀土镁合金铸锭并进行均匀化退火处理,然后直接对均匀化退火后的稀土镁合金铸锭进行锻造,采用这样的方法进行大尺寸镁合金锻件加工时,锻坯在锻造过程中开裂的几率很高,导致大尺寸稀土镁合金锻件的成品率较低。
此外,采用现有的包含Gd、Y、Zr元素的稀土镁合金进行大尺寸镁合金锻件加工时,得到的大尺寸稀土镁合金锻件强度有限,无法满足室温抗拉强度350MPa以上的需求。
发明内容
本发明的技术解决问题是:克服现有技术的不足,提供了一种稀土镁合金大尺寸高强锻件的制备方法,均匀化退火后对稀土镁合金铸锭进行热挤压锻坯成型,实现了大尺寸稀土镁合金结构件的锻造,锻造过程中锻件不开裂,此外,本发明中的锻件具有较高的室温及高温力学性能。
本发明的技术解决方案是:一种稀土镁合金大尺寸高强锻件的制备方法,包括:
熔炼铸造获得稀土镁合金铸锭的步骤,所述稀土镁合金包括Gd、Y、Zr三种合金元素;
对稀土镁合金铸锭进行均匀化退火处理的步骤;
对均匀化退火后的稀土镁合金铸锭进行热挤压制备锻坯的步骤;以及
对热挤压制备的锻坯进行锻造,获得稀土镁合金锻件的步骤。
所述制备方法还包括在锻造后进行时效热处理的步骤。
所述热挤压的温度为400~450℃,挤压比为(50~70):1。
所述稀土镁合金中各元素质量百分比为:Gd:7.5~9.5%,Y:3.5~5.0%,Zr:0.3~0.6%,杂质≤0.13%,余量为Mg。
所述稀土镁合金还包括Zn。
所述稀土镁合金中各元素质量百分比为:Gd:7.5~9.5%,Y:3.5~5.0%,Zn:1.0~1.5%,Zr:0.3~0.6%,杂质≤0.13%,余量为Mg。
所述稀土镁合金铸锭是由Mg锭和中间合金Mg-Gd、Mg-Y、Mg-Zr为原料熔炼铸造获得的。
所述均匀化退火处理的温度取值范围为430℃~530℃,保温时间为3小时~24小时,保温结束后对铸锭进行风冷至室温。
所述锻造的始锻温度为430~450℃,保温时间为3~6小时,终锻温度为360~380℃,每道次变形量20~40mm,变形速率10mm/s,锻后风冷至室温。
所述时效热处理温度的取值范围为:200℃~250℃,保温时间为12小时~96小时,保温结束后锻件空冷至室温。
本发明与现有技术相比的有益效果是:
本发明在锻造前通过热挤压技术制备稀土镁合金锻坯,使合金的铸造态组织得到显著细化,改善了稀土镁合金的热加工工艺塑性,降低了锻坯在锻造过程中开裂的几率,提高了大尺寸稀土镁合金锻件的成品率。
附图说明
图1为本发明中制备方法第一种实施例的流程图;
图2为本发明中制备方法第一种实施例的流程图;
图3为时效热处理后稀土镁合金锻件的金相图,其中(a)为放大200倍时的金相图,(b)为放大500倍时的金相图;
图4为时效热处理后稀土镁合金锻件的TEM照片。
具体实施方式
以下通过实施例来详细说明本发明的具体技术方案,应当说明的是,以下的实施例仅能用来解释本发明而不能解释为是对本发明的限制。
如图1所示为本发明中制备方法第一种实施例的流程图;从图1可知,本发明的制备方法包括:
熔炼铸造获得稀土镁合金铸锭的步骤101,所述稀土镁合金包括Gd、Y、Zr三种合金元素;所述稀土镁合金中各元素质量百分比的优选值为:Gd:7.5~9.5%,Y:3.5~5.0%,Zr:0.3~0.6%,杂质≤0.13%,余量为Mg。
所述熔炼铸造的具体步骤为:
(1)将Mg锭放在熔炼炉中熔化,熔化过程采用SO2+SF6气体保护;
(2)升温后加入按比例配制好的Mg-Gd、Mg-Y、Mg-Zr中间合金,合金化过程利用电磁力搅拌合金熔体,以保证合金元素的均匀分布;
(3)升温后加入精炼剂;
(4)精炼完成后降温至650~680℃时静置30~50min,随后向结晶器内进行浇铸,获得稀土镁合金铸锭;
对稀土镁合金铸锭进行均匀化退火处理的步骤102;所述均匀化退化的温度优选值为430℃~530℃,当温度值为430℃时,可以保证退火处理的效果的同时节省能源,保温时间的优选值为3小时~24小时,为了兼顾均匀化退火处理的效果和处理效率效率,在实际操作时可以选择保温时间的优选值为3小时,保温结束后对铸锭进行风冷至室温。
对均匀化退火后的稀土镁合金铸锭进行热挤压制备锻坯的步骤103;对稀土镁合金铸锭进行热挤压可以显著的提高大尺寸稀土镁合金锻件的塑性,降低锻坯在锻造过程中开裂的几率,提高大尺寸稀土镁优选挤压比为(50~70):1。
对热挤压制备的锻坯进行锻造,获得稀土镁合金锻件的步骤104。所述锻造的始锻温度为430~450℃,保温时间为3~6小时,终锻温度为360~380℃,每道次变形量20~40mm,变形速率10mm/s,锻后风冷至室温。
如图2所示为本发明中制备方法第一种实施例的流程图;从图2可知,本发明的制备方法包括:
熔炼铸造获得稀土镁合金铸锭的步骤101,所述稀土镁合金包括Gd、Y、Zr三种合金元素;
对稀土镁合金铸锭进行均匀化退火处理的步骤102;
对均匀化退火后的稀土镁合金铸锭进行热挤压制备锻坯的步骤103;
对热挤压制备的锻坯进行锻造的步骤104;
在锻造后进行时效热处理,获得稀土镁合金锻件的步骤105。对锻造后进行时效热处理,可以进一步增强大尺寸稀土镁合金锻件的强度。所述时效热处理温度的优选取值范围为:200℃~250℃;在实际应用中,为了达到最优效果,时效热处理温度取值为225℃,保温时间的优选值为12小时~96小时;在实际应用中,为了达到最优效果,保温温度为24小时,保温结束后锻件空冷至室温。
进一步地,为了提高大尺寸稀土镁合金锻件强度,可以在稀土镁合金中加入Zn元素,加入Zn元素后的稀土镁合金各元素质量百分比的优选值为:Gd:7.5~9.5%,Y:3.5~5.0%,Zn:1.0~1.5%,Zr:0.3~0.6%,杂质≤0.13%,余量为Mg。当采用这样的质量百分比时,可以在提高稀土镁合金的塑性,但是Zn的含量过高时反而会增加铸锭热裂的倾向。
在Mg-RE合金的基础上添加Zn元素,可使合金中析出长周期堆垛有序(LPSO)相,使合金的强度及塑性均得到一定程度的改善,结合时效处理过程中析出的强化相β′相,可实现合金的双重强化。
同时,在Mg-RE合金中添加Zn元素,在合金中形成LPSO相,随后通过锻后时效处理使合金中析出纳米级β′强化相,使锻件获得了双重强化,在塑性降低较少的情况下提高了其室温及高温力学性能。
当加入Zn元素后,所述熔炼铸造的具体步骤为:
(1)将Mg锭放在熔炼炉中熔化,熔化过程采用SO2+SF6气体保护;
(2)升温后加入按比例配制好的Zn锭、Mg-Gd、Mg-Y、Mg-Zr中间合金,合金化过程利用电磁力搅拌合金熔体,以保证合金元素的均匀分布;
(3)升温后加入精炼剂;
(4)精炼完成后降温至650~680℃时静置30~50min,随后向结晶器内进行浇铸,获得稀土镁合金铸锭;
实施例1
用于制备大尺寸高强锻件的稀土镁合金,各元素的质量百分比为:Gd:9.2%、Y:3.7%、Zn:1.4%、Zr:0.5%、杂质≤0.1%和余量的Mg。稀土镁合金大尺寸高强锻件的制备,采用如下步骤:
1、熔炼铸造,具体为:
(1)将高纯Mg锭放在熔炼炉中熔化,熔化过程采用SO2+SF6气体保护;
(2)升温至650~670℃时加入按比例配制好的高纯Zn及Mg-Gd、Mg-Y、Mg-Zr中间合金,合金化过程利用电磁力搅拌合金熔体,以保证合金元素的均匀分布;
(3)升温至700~750℃时加入精炼剂,精炼剂用量占炉料总量的1~2%,精炼时间10~30min;
(4)精炼完成后降温至650~680℃时静置30~50min,随后向结晶器内进行浇铸,获得直径为Φ600mm的铸锭;
2、均匀化退火,具体为:铸造后立即将铸锭放入有循环热风系统的工业热处理炉中进行430℃、保温3小时的均匀化退火热处理,保温结束后对铸锭进行风冷至室温,然后车去铸锭表层裂纹及氧化皮;
3、挤压锻坯,具体为:利用12500吨挤压机和挤压模具在450℃下对铸锭进行挤压变形,挤压比约为50:1,挤压成形的锻坯尺寸为500mm(长)×300mm(宽)×100mm(厚);
4、锻造,具体为:利用5000吨油压机对锻坯进行自由锻造,始锻温度为450℃,锻前保温3小时,终锻温度为360℃,每道次变形量40mm,变形速率10mm/s,锻后风冷至室温,锻件终锻尺寸为750mm(长)×410mm(宽)×45mm(厚);
5、时效热处理,具体为:将锻件在220℃下保温24小时进行时效热处理,保温结束后锻件空冷至室温,时效热处理后稀土镁合金锻件的金相图如图3所示,其中(a)为放大200倍时的金相图,(b)为放大500倍时的金相图,图4为TEM照片,从图3和图4可以看出,时效热处理后稀土镁合金锻件由较为细小的等轴状再结晶晶粒及残余的变形LPSO相组成,其中弥散分布着纳米级的β′强化相。
采用上述工艺获得的锻件,其室温抗拉强度为438MPa,屈服强度372MPa,延伸率9.5%;250℃下的抗拉强度为336MPa,屈服强度290MPa,延伸率16%。
实施例2
用于制备大尺寸高强锻件的稀土镁合金,各元素的质量百分比为:Gd:8.7%、Y:3.9%、Zn:1.2%、Zr:0.4%、杂质≤0.11%和余量的Mg。稀土镁合金大尺寸高强锻件的制备,采用如下步骤:
1、熔炼铸造,具体为:
(1)将高纯Mg锭放在熔炼炉中熔化,熔化过程采用SO2+SF6气体保护;
(2)升温至650~670℃时加入按比例配制好的高纯Zn及Mg-Gd、Mg-Y、Mg-Zr中间合金,合金化过程利用电磁力搅拌合金熔体,以保证合金元素的均匀分布;
(3)升温至700~750℃时加入精炼剂,精炼剂用量占炉料总量的1~2%,精炼时间10~30min;
(4)精炼完成后降温至650~680℃时静置30~50min,随后向结晶器内进行浇铸,获得直径为Φ600mm的铸锭;
2、均匀化退火,具体为:铸造后立即将铸锭放入有循环热风系统的工业热处理炉中进行430℃、保温3小时的均匀化退火热处理,保温结束后对铸锭进行风冷至室温,然后车去铸锭表层裂纹及氧化皮;
3、挤压锻坯,具体为:利用12500吨挤压机和挤压模具在430℃下对铸锭进行挤压变形,挤压比约为50:1,挤压成形的锻坯尺寸为510mm(长)×295mm(宽)×100mm(厚);
4、锻造,具体为:利用5000吨油压机对锻坯进行自由锻造,始锻温度为430℃,锻前保温6小时,终锻温度为380℃,每道次变形量40mm,变形速率10mm/s,锻后风冷至室温,锻件终锻尺寸为730mm(长)×440mm(宽)×44mm(厚);
5、时效热处理,具体为:将锻件在220℃下保温24小时进行时效热处理,保温结束后锻件空冷至室温。
采用上述工艺获得的锻件,其室温抗拉强度为430MPa,屈服强度353MPa,延伸率10%;250℃下的抗拉强度为326MPa,屈服强度278MPa,延伸率15%。
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。

Claims (10)

1.一种稀土镁合金大尺寸高强锻件的制备方法,其特征在于包括:
熔炼铸造获得稀土镁合金铸锭的步骤,所述稀土镁合金包括Gd、Y、Zr三种合金元素;
对稀土镁合金铸锭进行均匀化退火处理的步骤;
对均匀化退火后的稀土镁合金铸锭进行热挤压制备锻坯的步骤;以及
对热挤压制备的锻坯进行锻造,获得稀土镁合金锻件的步骤。
2.根据权利要求1所述的一种稀土镁合金大尺寸高强锻件的制备方法,其特征在于:所述制备方法还包括在锻造后进行时效热处理的步骤。
3.根据权利要求1所述的一种稀土镁合金大尺寸高强锻件的制备方法,其特征在于:所述热挤压的温度为400~450℃,挤压比为(50~70):1。
4.根据权利要求1所述的一种稀土镁合金大尺寸高强锻件的制备方法,其特征在于:所述稀土镁合金中各元素质量百分比为:Gd:7.5~9.5%,Y:3.5~5.0%,Zr:0.3~0.6%,杂质≤0.13%,余量为Mg。
5.根据权利要求1所述的一种稀土镁合金大尺寸高强锻件的制备方法,其特征在于:所述稀土镁合金还包括Zn。
6.根据权利要求5所述的一种稀土镁合金大尺寸高强锻件的制备方法,其特征在于:所述稀土镁合金中各元素质量百分比为:Gd:7.5~9.5%,Y:3.5~5.0%,Zn:1.0~1.5%,Zr:0.3~0.6%,杂质≤0.13%,余量为Mg。
7.根据权利要求1~4中任一所述的一种稀土镁合金大尺寸高强锻件的制备方法,其特征在于:所述稀土镁合金铸锭是由Mg锭和中间合金Mg-Gd、Mg-Y、Mg-Zr为原料熔炼铸造获得的。
8.根据权利要求1~4中任一所述的一种稀土镁合金大尺寸高强锻件的制备方法,其特征在于:所述均匀化退火处理的温度取值范围为430℃~530℃,保温时间为3小时~24小时,保温结束后对铸锭进行风冷至室温。
9.根据权利要求1~4中任一所述的一种稀土镁合金大尺寸高强锻件的制备方法,其特征在于:所述锻造的始锻温度为430~450℃,保温时间为3~6小时,终锻温度为360~380℃,每道次变形量20~40mm,变形速率10mm/s,锻后风冷至室温。
10.根据权利要求1~4中任一所述的一种稀土镁合金大尺寸高强锻件的制备方法,其特征在于:所述时效热处理温度的取值范围为:200℃~250℃,保温时间为12小时~96小时,保温结束后锻件空冷至室温。
CN201510965351.0A 2015-12-21 2015-12-21 一种稀土镁合金大尺寸高强锻件的制备方法 Pending CN105525179A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510965351.0A CN105525179A (zh) 2015-12-21 2015-12-21 一种稀土镁合金大尺寸高强锻件的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510965351.0A CN105525179A (zh) 2015-12-21 2015-12-21 一种稀土镁合金大尺寸高强锻件的制备方法

Publications (1)

Publication Number Publication Date
CN105525179A true CN105525179A (zh) 2016-04-27

Family

ID=55767698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510965351.0A Pending CN105525179A (zh) 2015-12-21 2015-12-21 一种稀土镁合金大尺寸高强锻件的制备方法

Country Status (1)

Country Link
CN (1) CN105525179A (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106048353A (zh) * 2016-08-23 2016-10-26 肖旅 与水发生可控反应的高塑性镁合金及其构件的制造方法
CN107034400A (zh) * 2017-03-23 2017-08-11 中南大学 一种消除大规格aq80m镁合金承载构件各向异性的锻造工艺
CN107119245A (zh) * 2017-03-23 2017-09-01 中南大学 一种超高强耐高温镁合金大锭坯的多级退火工艺
CN107328303A (zh) * 2017-08-30 2017-11-07 东北大学 一种高强轻质复合装甲板及其制造方法
CN108486447A (zh) * 2018-07-07 2018-09-04 中南大学 一种低稀土纳米镁合金时效热处理工艺
CN109622868A (zh) * 2018-12-11 2019-04-16 陕西宏远航空锻造有限责任公司 一种t型高温合金螺栓锻件的锻造方法
CN112317662A (zh) * 2020-10-09 2021-02-05 中国航发北京航空材料研究院 一种难变形高温合金挤压-镦拔复合开坯方法
US11041230B2 (en) 2019-06-21 2021-06-22 Citic Dicastal Co., Ltd Magnesium alloy and preparation method thereof
CN113414332A (zh) * 2021-06-21 2021-09-21 四川捷贝通能源科技有限公司 一种全可溶卡瓦齿材料及其制备方法和应用
CN114346139A (zh) * 2021-12-28 2022-04-15 有研工程技术研究院有限公司 一种大尺寸稀土镁合金环形件的制备方法
CN114507799A (zh) * 2022-02-21 2022-05-17 山西银光华盛镁业股份有限公司 一种耐热高强稀土镁合金材料及制备
CN115927939A (zh) * 2022-12-14 2023-04-07 航天科工(长沙)新材料研究院有限公司 一种高强耐热稀土镁合金及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101121980A (zh) * 2007-09-20 2008-02-13 王仁辉 高强度高延展性镁合金件的加工工艺
CN101191168B (zh) * 2006-11-23 2011-03-30 北京有色金属研究总院 一种镁合金及其制备方法
CN102747261A (zh) * 2011-04-19 2012-10-24 株式会社神户制钢所 镁合金材和发动机零件
CN103276264A (zh) * 2013-06-21 2013-09-04 中国兵器工业第五九研究所 一种低成本热强变形镁合金及其制备方法
CN104388787A (zh) * 2014-11-18 2015-03-04 闻喜县瑞格镁业有限公司 一种高强度、耐腐蚀、抗高温蠕变镁合金及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101191168B (zh) * 2006-11-23 2011-03-30 北京有色金属研究总院 一种镁合金及其制备方法
CN101121980A (zh) * 2007-09-20 2008-02-13 王仁辉 高强度高延展性镁合金件的加工工艺
CN102747261A (zh) * 2011-04-19 2012-10-24 株式会社神户制钢所 镁合金材和发动机零件
CN103276264A (zh) * 2013-06-21 2013-09-04 中国兵器工业第五九研究所 一种低成本热强变形镁合金及其制备方法
CN104388787A (zh) * 2014-11-18 2015-03-04 闻喜县瑞格镁业有限公司 一种高强度、耐腐蚀、抗高温蠕变镁合金及其制备方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106048353A (zh) * 2016-08-23 2016-10-26 肖旅 与水发生可控反应的高塑性镁合金及其构件的制造方法
CN107034400A (zh) * 2017-03-23 2017-08-11 中南大学 一种消除大规格aq80m镁合金承载构件各向异性的锻造工艺
CN107119245A (zh) * 2017-03-23 2017-09-01 中南大学 一种超高强耐高温镁合金大锭坯的多级退火工艺
CN107119245B (zh) * 2017-03-23 2018-07-13 中南大学 一种超高强耐高温镁合金大锭坯的多级退火工艺
CN107328303A (zh) * 2017-08-30 2017-11-07 东北大学 一种高强轻质复合装甲板及其制造方法
CN108486447A (zh) * 2018-07-07 2018-09-04 中南大学 一种低稀土纳米镁合金时效热处理工艺
CN109622868A (zh) * 2018-12-11 2019-04-16 陕西宏远航空锻造有限责任公司 一种t型高温合金螺栓锻件的锻造方法
CN109622868B (zh) * 2018-12-11 2020-06-09 陕西宏远航空锻造有限责任公司 一种t型高温合金螺栓锻件的锻造方法
US11041230B2 (en) 2019-06-21 2021-06-22 Citic Dicastal Co., Ltd Magnesium alloy and preparation method thereof
CN112317662A (zh) * 2020-10-09 2021-02-05 中国航发北京航空材料研究院 一种难变形高温合金挤压-镦拔复合开坯方法
CN113414332A (zh) * 2021-06-21 2021-09-21 四川捷贝通能源科技有限公司 一种全可溶卡瓦齿材料及其制备方法和应用
CN113414332B (zh) * 2021-06-21 2022-05-13 四川捷贝通能源科技有限公司 一种全可溶卡瓦齿材料及其制备方法和应用
CN114346139A (zh) * 2021-12-28 2022-04-15 有研工程技术研究院有限公司 一种大尺寸稀土镁合金环形件的制备方法
CN114507799A (zh) * 2022-02-21 2022-05-17 山西银光华盛镁业股份有限公司 一种耐热高强稀土镁合金材料及制备
CN115927939A (zh) * 2022-12-14 2023-04-07 航天科工(长沙)新材料研究院有限公司 一种高强耐热稀土镁合金及其制备方法

Similar Documents

Publication Publication Date Title
CN105525179A (zh) 一种稀土镁合金大尺寸高强锻件的制备方法
CN103255329B (zh) 一种低成本细晶弱织构镁合金薄板及其制造方法
CN103774014B (zh) 一种中强耐热镁合金厚板的成形工艺
CN108220725A (zh) 一种高性能镁合金棒材的制备方法
CN109022975B (zh) 一种提高aq80m镁合金强度和应变疲劳寿命的方法
CN101586223A (zh) 含稀土变形镁合金的塑性成型方法
CN102978552B (zh) 铸态镁-钆-钇-钕-锆稀土镁合金构件的塑性变形方法
CN103388115B (zh) 一种高强韧镁合金棒材的制备方法
CN103774015B (zh) 一种中强耐热镁合金三角型材的成形工艺
CN109182857B (zh) 一种高强韧变形镁合金及制备方法
CN102989764B (zh) 一种超细晶镁合金薄板的高成材率加工方法
CN104046934B (zh) 制备超细晶镁锌锰合金的方法
CN110066951B (zh) 一种超高塑性镁合金及其变形材制备方法
CN109182809B (zh) 一种低成本高强韧变形镁合金及其制备方法
CN112589024B (zh) 一种镁合金锻件及其制备方法
CN105441840A (zh) 一种高强耐热镁合金铸锭的锤锻开坯方法
CN102586561A (zh) 大规格高强度镁合金板材的一种加工工艺
CN102485929A (zh) 含富铈混合稀土和钆的高强度耐热镁合金及其制备加工方法
CN102304685B (zh) 一种细晶镁合金的制备方法
CN113462937A (zh) 一种抗冲击的高强韧铝合金材料及制备方法
CN114752833A (zh) 超高塑性Mg-RE-Zr镁合金及其变形材制备方法
CN102485928A (zh) 含富铈混合稀土的高强度耐热镁合金及其制备加工方法
CN109234592B (zh) 一种低温轧制高强韧变形镁合金及其制备方法
CN104233129A (zh) 一种高镁铝合金薄板的生产方法
CN112337972A (zh) 二次变形制备高性能镁合金的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160427