CN105506566B - 一种弹性硬质润滑纳米复合薄膜材料的制备方法 - Google Patents

一种弹性硬质润滑纳米复合薄膜材料的制备方法 Download PDF

Info

Publication number
CN105506566B
CN105506566B CN201510949153.5A CN201510949153A CN105506566B CN 105506566 B CN105506566 B CN 105506566B CN 201510949153 A CN201510949153 A CN 201510949153A CN 105506566 B CN105506566 B CN 105506566B
Authority
CN
China
Prior art keywords
nitride
film
skeleton
nanoporous
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510949153.5A
Other languages
English (en)
Other versions
CN105506566A (zh
Inventor
郑建云
郝俊英
刘维民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN201510949153.5A priority Critical patent/CN105506566B/zh
Publication of CN105506566A publication Critical patent/CN105506566A/zh
Application granted granted Critical
Publication of CN105506566B publication Critical patent/CN105506566B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5826Treatment with charged particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种弹性硬质润滑纳米复合薄膜材料的制备方法。该方法是采用磁控溅射沉积和等离子体处理技术相结合的方式,在低温下制备弹性硬质润滑纳米复合薄膜材料,此类薄膜以氮化物(如氮化钛(TiN)、氮化铬(CrN)、氮化锆(ZrN)等)多孔结构为骨架,在纳米孔道中填充软物质石墨,从而构成硬相/软相复合的纳米薄膜,其表面光滑,与基底材料结合牢固,具有高硬度、高韧性和良好的润滑行为。因此,此类多孔薄膜适合应用于柔性电子材料、平板显示器、微电子机械系统、聚合物防护、玻璃薄片、纺织物、减摩耐磨物件等领域。

Description

一种弹性硬质润滑纳米复合薄膜材料的制备方法
技术领域
本发明属于薄膜材料制备技术领域,尤其涉及一种在低温下制备高弹性、高硬度和润滑的纳米复合薄膜材料的方法。
背景技术
硬质纳米复合薄膜体现了新一代的薄膜的发展趋势。通常,合成硬质纳米复合薄膜的主要目的是增强其硬度。当此类薄膜的硬度超过40 GPa时,其被称为超硬纳米复合薄膜。但是,在现代的许多应用中,增加硬度已经不是硬质纳米复合薄膜的唯一考量因素。有时,硬质薄膜的韧性远比极其高的硬度(>40 GPa)更重要。因此,在当前,发展同时具有高硬度、高韧性和可弯曲的纳米复合薄膜(即弹性硬质纳米复合薄膜)已经吸引了大量研究人员的注意。弹性硬质纳米复合薄膜在高新技术领域具有巨大的潜在应用,如柔性电子材料、平板显示器、微电子机械系统(MEMS)、在柔性基底(聚合物薄片、玻璃薄片、纺织物等)上功能薄膜的形成等。
近年来,弹性硬质纳米复合薄膜主要有以下几个系统:Al-Cu-O纳米复合薄膜;Zr-Al-O纳米复合薄膜;Al-O-N纳米复合薄膜;Si-Zr-O纳米复合薄膜;Ti-Ni-N纳米复合薄膜;Al-Cu-N纳米复合薄膜;(Ti-Al-V)Nx纳米复合薄膜。所有的这些纳米复合薄膜都具有高硬度和高韧性,且可弯曲而无裂缝的特性。但是,从此类纳米复合薄膜的成分可知,其只具有耐磨损的性质,而无润滑行为。这样会导致弹性硬质纳米复合薄膜在使用过程中将其对偶材料(特别是软物质)造成严重的磨损,同时易于发出较大的噪音。因此,发展一种同时具有高硬度、高韧性、可弯曲且具有润滑性的纳米复合薄膜成为研究人员追求的目标。
发明内容
本发明的主要目的是利用磁控溅射沉积和等离子体处理技术相结合的方式,在低温下制备弹性硬质润滑纳米复合薄膜材料,此类薄膜以氮化物(如氮化钛(TiN)、氮化铬(CrN)、氮化锆(ZrN)等)多孔结构为骨架,在纳米孔道中填充软物质石墨,从而构成硬相/软相复合的纳米薄膜,其表面光滑,与基底材料结合牢固,具有高硬度、高韧性和良好的润滑行为。
本发明的原理是磁控溅射掠射角沉积技术的阴影效应在基底上制备纳米多孔氮化物骨架,使用刻蚀气体(如氮气(N2)、氩气(Ar)、氪气(Kr)等惰性气体)等离子体调控氮化物骨架的孔径尺寸和孔道结构,然后通过含碳(如甲烷(CH4)、乙烯(C2H4)、乙炔(C2H2)等其衍生物)等离子体处理在氮化物骨架的孔道中填充软物质石墨,从而构成硬相/软相复合的纳米薄膜。同时,在等离子体处理过程中,含碳等离子体会与氮化物反应在其表层生成碳氮化物,其不仅提高薄膜的硬度,也有利于氮化物与石墨的结合。
本发明的技术方案是,应用磁控溅射设备和等离子体处理在低温(基底无需任何额外加热)下制备弹性硬质润滑纳米复合薄膜材料。具体操作步骤如下:
1)采用磁控溅射设备沉积制备纳米多孔氮化物骨架,其中,靶材为纯金属靶,溅射气体为N2和Ar,总压强为0.4~4.0 Pa,N2分压为总压强的5~40%,沉积离子入射角度与基底成0~90°,靶材与基底的距离为5~20 cm,沉积时间为5~60 min,初始腔室温度为15~45℃,施加于所述靶材上的直流电源的功率为400~1600 W,施加于所述基底上的负偏压和占空比分别为0~-400 V和40~90%,沉积结束时腔室温度在100 ℃以下,沉积制得具有纳米多孔结构的氮化物薄膜;
2)对纳米多孔氮化物骨架使用刻蚀气体等离子体进行刻蚀,其中刻蚀气体的总压强为1.0~4.5 Pa,初始腔室温度为15~45 ℃,施加于所述氮化物薄膜的负偏压和占空比分别为-500~-1200 V和40~90%,刻蚀结束时腔室温度在100 ℃以下,其中刻蚀时间为20~180 min以在低温下快速刻蚀纳米多孔氮化物骨架而使其具有不同的孔径尺寸和孔道结构;
3)对刻蚀过的纳米多孔氮化物骨架进行含碳等离子体处理,其中含碳气体的总压强为1.0~5.0 Pa,初始腔室温度为15~45 ℃,施加于所述刻蚀过的纳米多孔氮化物的负偏压和占空比分别为-500~-1200 V和40~90%,处理结束时腔室温度在100 ℃以下,其中处理时间为20~360 min以在低温下形成软物质石墨填充在氮化物骨架的孔道中,同时与氮化物骨架发生反应在其表层形成碳氮化物。
所述纯金属靶为钛、铬或锆。
所述刻蚀气体为N2、Ar或Kr。
所述含碳气体为CH4、C2H4或C2H2
本发明所制备的弹性硬质润滑纳米复合薄膜具有如下结构和性能:
(A)所述薄膜主要由三部分成分组成:纳米多孔氮化物骨架、软物质石墨和反应生成的碳氮化物表层;
(B)所述薄膜的硬度(H)和杨氏模量(E)分别为10~35 GPa和140~180 GPa,且弹性恢复值(W e)大于60%,然后计算硬度与有效杨氏模量(E *)的比值大于0.1,其中E *=E/(1-ν 2),ν为薄膜的泊松比,依据上述结果可判断所述薄膜同时具有高硬度、高韧性和可弯曲的特性,即弹性硬质复合纳米薄膜;
(C)所述薄膜在大气压下具有优异的摩擦学行为,摩擦系数低于0.05,磨损率小于10-7 mm3∙N-1∙m-1,此所述薄膜即为弹性硬质润滑复合纳米薄膜;
(D)所述薄膜厚度为200-800 nm,表面较为光滑(粗糙度<5 nm),与基底结合牢固,其结合力为20~40 N。
本发明具有上述结构和性能的原因在于:在低的沉积离子入射角度和适当的工艺参数下,沉积离子的迁移能力降低,沉积速率下降,从而在阴影效应下生成纳米多孔氮化物薄膜作为骨架;在使用刻蚀气体进行等离子刻蚀时,调整负偏压和总压强能够控制氮化物骨架的孔径尺寸和孔道结构,从而影响软物质石墨的填充量和软相/硬相的接触面,这些因素决定了纳米复合薄膜所具有的机械性能;在含碳等离子体处理过程中,适当的压强、负偏压和处理时间将有利于形成软物质石墨和与氮化物骨架的表层反应生成碳氮化物,并保证石墨能够充分的填充于多孔的氮化物骨架中,如此过程不仅增加氮化物骨架的硬度,还为氮化物骨架提供了高的韧性和优异的润滑性能。
本发明的弹性硬质润滑纳米复合薄膜可用于柔性电子材料、平板显示器、微电子机械系统、聚合物防护、玻璃薄片、纺织物、减摩耐磨物件等领域。
附图说明
图1为本发明实施例1所述纳米多孔TiN骨架的场发射扫描电镜图。
图2为本发明实施例1所述弹性硬质润滑纳米复合薄膜的拉曼图谱。
图3为本发明实施例2所述弹性硬质润滑纳米复合薄膜的位移-载荷曲线图。
图4为本发明实施例3所述弹性硬质润滑纳米复合薄膜的摩擦系数曲线图。
具体实施方式
以下结合附图和下述实施方式进一步说明本发明,应理解,附图及下述实施方式仅用于说明本发明,而非限制本发明。
实施例1
沉积:将溅射气体为N2和Ar通入腔室中,控制总压强和N2分压分别为1.5 Pa和20%,沉积离子入射角度与基底成90°,靶材与基底的距离为8 cm,沉积时间为60 min,初始腔室温度为25 ℃,直流电源的功率为1000 W,负偏压和占空比分别为-200 V和60%,溅射纯钛靶材,通过改变沉积离子入射角度(0~90°)可以制备一系列TiN纳米薄膜。刻蚀:只将刻蚀气体N2通入腔室中,总压强为2.5 Pa,初始腔室温度为40 ℃,负偏压和占空比分别为-900 V和80%,刻蚀时间为40 min,通过调节刻蚀时间可以制备不同孔道结构和孔径尺寸的纳米多孔TiN骨架。含碳等离子体处理:将含碳气体CH4通入腔室中,总压强为4.0 Pa,初始腔室温度为40 ℃,处理时间为80 min,占空比为80%,负偏压-1100 V,获得以TiN为骨架的弹性硬质润滑纳米复合薄膜。
利用场发射扫描电子显微镜对TiN骨架和纳米复合薄膜进行观察,TiN骨架为蠕虫状的多孔结构(如图1所示),其厚度为400 nm,而纳米复合薄膜的膜厚约为550 nm,如此石墨层的厚度为150 nm,整个纳米复合薄膜和基底结合良好,无缝隙存在。应用X射线衍射仪可知,弹性硬质润滑纳米复合薄膜具有氮化钛和碳氮化钛的晶相结构。在拉曼光谱中,石墨峰明显存在于此类纳米复合薄膜中,正如图2所示。通过原子力显微镜发现薄膜的表面较为光滑,粗糙度小于5 nm。通过划痕测试,此类纳米复合薄膜与基底的结合力为35 N。根据纳米压痕实验表明,此类纳米复合薄膜的HE分别为35 GPa和170 GPa,且W e大于60%,HE *的比值大于0.1。在大气摩擦测试中,此类纳米复合薄膜的摩擦系数约为0.045,磨损率约为9.0 ×10-8 mm3∙N-1∙m-1
实施例2
如实施例1所述,将纯钛靶材换成纯铬靶材,制备一系列以CrN为骨架的弹性硬质润滑纳米复合薄膜。
利用场发射扫描电子显微镜对CrN骨架和纳米复合薄膜进行观察,CrN骨架为棒状的多孔结构,其厚度在500 nm,而纳米复合薄膜的膜厚约为620 nm,如此石墨层的厚度为120 nm,整个纳米复合薄膜和基底结合良好,无缝隙存在。应用X射线衍射仪可知,弹性硬质润滑纳米复合薄膜具有氮化铬和碳氮化铬的晶相结构。在拉曼光谱中,石墨峰明显存在于此类纳米复合薄膜中。通过原子力显微镜发现薄膜的表面较为光滑,粗糙度小于5 nm。通过划痕测试,此类纳米复合薄膜与基底的结合力为30 N。根据纳米压痕实验表明,此类纳米复合薄膜的HE分别为32.9 GPa和179.5 GPa,且W e大于60%,HE *的比值大于0.1,正如图3所示。在大气摩擦测试中,此类纳米复合薄膜的摩擦系数约为0.035,磨损率约为4.2 ×10-8mm3∙N-1∙m-1
实施例3
如实施例1所述,将纯钛靶材换成纯锆靶材,制备一系列以ZrN为骨架的弹性硬质润滑纳米复合薄膜。
利用场发射扫描电子显微镜对ZrN骨架和纳米复合薄膜进行观察,ZrN骨架为棒状的多孔结构,其厚度在350 nm,而纳米复合薄膜的膜厚约为450 nm,如此石墨层的厚度为100 nm,整个纳米复合薄膜和基底结合良好,无缝隙存在。应用X射线衍射仪可知,弹性硬质润滑纳米复合薄膜具有氮化锆和碳氮化锆的晶相结构。在拉曼光谱中,石墨峰明显存在于此类纳米复合薄膜中。通过原子力显微镜发现薄膜的表面较为光滑,粗糙度小于5 nm。通过划痕测试,此类纳米复合薄膜与基底的结合力为35 N。根据纳米压痕实验表明,此类纳米复合薄膜的HE分别为35 GPa和170 GPa,且W e大于60%,HE *的比值大于0.1。在大气摩擦测试中,此类纳米复合薄膜的摩擦系数接近于0.02,磨损率约为7.4 ×10-9 mm3∙N-1∙m-1

Claims (4)

1.一种弹性硬质润滑纳米复合薄膜材料的制备方法,其特征在于该方法的具体步骤如下:
1)采用磁控溅射设备沉积制备纳米多孔氮化物骨架,其中,靶材为纯金属靶,溅射气体为N2和Ar,总压强为0.4~4.0 Pa,N2分压为总压强的5~40%,沉积离子入射角度与基底成0~90°,靶材与基底的距离为5~20 cm,沉积时间为5~60 min,初始腔室温度为15~45 ℃,施加于所述靶材上的直流电源的功率为400~1600 W,施加于所述基底上的负偏压和占空比分别为0~-400 V和40~90%,沉积结束时腔室温度在100 ℃以下,沉积制得具有纳米多孔结构的氮化物薄膜;
2)对纳米多孔氮化物骨架使用刻蚀气体等离子体进行刻蚀,其中刻蚀气体的总压强为1.0~4.5 Pa,初始腔室温度为15~45 ℃,施加于所述氮化物薄膜的负偏压和占空比分别为-500~-1200 V和40~90%,刻蚀结束时腔室温度在100 ℃以下,其中刻蚀时间为20~180min以在低温下快速刻蚀纳米多孔氮化物骨架而使其具有不同的孔径尺寸和孔道结构;
3)对刻蚀过的纳米多孔氮化物骨架进行含碳等离子体处理,其中含碳气体的总压强为1.0~5.0 Pa,初始腔室温度为15~45 ℃,施加于所述刻蚀过的纳米多孔氮化物的负偏压和占空比分别为-500~-1200 V和40~90%,处理结束时腔室温度在100 ℃以下,其中处理时间为20~360 min以在低温下形成软物质石墨填充在氮化物骨架的孔道中,同时与氮化物骨架发生反应在其表层形成碳氮化物。
2.如权利要求1所述的制备方法,其特征在于所述纯金属靶为钛、铬或锆。
3.如权利要求1所述的制备方法,其特征在于所述刻蚀气体为N2、Ar或Kr。
4.如权利要求1所述的制备方法,其特征在于所述含碳气体为CH4、C2H4或C2H2
CN201510949153.5A 2015-12-18 2015-12-18 一种弹性硬质润滑纳米复合薄膜材料的制备方法 Active CN105506566B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510949153.5A CN105506566B (zh) 2015-12-18 2015-12-18 一种弹性硬质润滑纳米复合薄膜材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510949153.5A CN105506566B (zh) 2015-12-18 2015-12-18 一种弹性硬质润滑纳米复合薄膜材料的制备方法

Publications (2)

Publication Number Publication Date
CN105506566A CN105506566A (zh) 2016-04-20
CN105506566B true CN105506566B (zh) 2018-06-29

Family

ID=55714857

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510949153.5A Active CN105506566B (zh) 2015-12-18 2015-12-18 一种弹性硬质润滑纳米复合薄膜材料的制备方法

Country Status (1)

Country Link
CN (1) CN105506566B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107557741B (zh) * 2017-07-27 2020-04-14 吉林大学 一种摩擦副表面的功能涂层及其制备方法
CN107845800B (zh) * 2017-11-07 2020-03-10 成都新柯力化工科技有限公司 一种用于锂电池的纳米氮化锡/硅负极材料及制备方法
CN109943822B (zh) * 2017-12-21 2020-04-28 中国科学院宁波材料技术与工程研究所 一种提高CrN涂层抗磨减摩性能的后处理方法
CN109267042B (zh) * 2018-10-17 2020-07-03 中国兵器工业第五九研究所 钢铁材料耐磨自润滑涂层的制备方法
CN113088895B (zh) * 2021-04-01 2022-07-19 九牧厨卫股份有限公司 一种装饰性低温硬质涂层及其镀膜方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120000042A (ko) * 2011-12-09 2012-01-03 인하대학교 산학협력단 경사 입사각 증착을 이용한 보호층의 제조방법
CN103361613A (zh) * 2013-06-06 2013-10-23 北京航空航天大学 一种制备纳米柱状金属钨的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150129087A1 (en) * 2013-11-13 2015-05-14 Medtronic, Inc. Method of making porous nitrogenized titanium coatings for medical devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120000042A (ko) * 2011-12-09 2012-01-03 인하대학교 산학협력단 경사 입사각 증착을 이용한 보호층의 제조방법
CN103361613A (zh) * 2013-06-06 2013-10-23 北京航空航天大学 一种制备纳米柱状金属钨的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
The plasma nitriding treatment of TiN/TiCN multilayer films;Jianyun Zheng等;《Applied Surface Science》;20131231;第268卷;第195–203页 *
TiN/TiCN multilayer films modified by argon plasma treatment;Jianyun Zheng等;《Applied Surface Science》;20131231;第280卷;第764–771页 *

Also Published As

Publication number Publication date
CN105506566A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
CN105506566B (zh) 一种弹性硬质润滑纳米复合薄膜材料的制备方法
Wu et al. Preparation and properties of Ag/DLC nanocomposite films fabricated by unbalanced magnetron sputtering
Zou et al. Effects of Cr concentrations on the microstructure, hardness, and temperature-dependent tribological properties of Cr-DLC coatings
Cui et al. Mechanical and tribological properties of Ti-DLC films with different Ti content by magnetron sputtering technique
Pauleau et al. Deposition and characterization of nanostructured metal/carbon composite films
Shaha et al. Effect of process parameters on mechanical and tribological performance of pulsed-DC sputtered TiC/aC: H nanocomposite films
US9598762B2 (en) Diamond-like carbon film-formed material and method for producing the same
CN101469402B (zh) 类富勒烯碳膜的制备方法
Liu et al. Excellent adhered thick diamond-like carbon coatings by optimizing hetero-interfaces with sequential highly energetic Cr and C ion treatment
Ren et al. A boron-doped diamond like carbon coating with high hardness and low friction coefficient
Yan et al. Friction and wear behavior of the PVD (Zr, Ti) N coated cemented carbide against 40Cr hardened steel
Takeno et al. Deposition of DLC film with adhesive W-DLC layer on stainless steel and its tribological properties
Dai et al. Microstructure, mechanical property and thermal stability of diamond-like carbon coatings with Al, Cr and Si multi-doping
Jing et al. The formation of the “rod-like wear debris” and tribological properties of Ag-doped diamond-like carbon films fabricated by a high-power pulsed plasma vapor deposition technique
CN101792898A (zh) 一种提高镁合金抗磨损性能的碳膜及其制备方法
Sun et al. Role of deposition temperature on the mechanical and tribological properties of Cu and Cr co-doped diamond-like carbon films
Mei et al. Effect of nitrogen partial pressure on microstructure and mechanical properties of Mo-Cu-VN composite coatings deposited by HIPIMS
Zhang et al. Synthesis and characterization of boron incorporated diamond-like carbon thin films
Li et al. Mechanical and tribological properties of diamond-like carbon films prepared on steel by ECR-CVD process
Wang et al. Low friction of graphene nanocrystallite embedded carbon nitride coatings prepared with MCECR plasma sputtering
Zhao et al. Microstructure and properties of Mo doped DLC nanocomposite films deposited by a hybrid sputtering system
Tsai et al. Evaluation of microstructures and mechanical properties of diamond like carbon films deposited by filtered cathodic arc plasma
Chen et al. Influence of individual Cr–C layer thickness on structural and tribological properties of multilayered Cr–C/aC: Cr thin films
JP2004269991A (ja) 異なる環境において耐摩耗性に優れたダイアモンドライクカーボン多層膜
CN107267917B (zh) 一种纳米多层结构WSx/DLC润滑膜及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant