CN105493256A - 一种薄膜晶体管及其制备方法、显示装置 - Google Patents

一种薄膜晶体管及其制备方法、显示装置 Download PDF

Info

Publication number
CN105493256A
CN105493256A CN201580000831.1A CN201580000831A CN105493256A CN 105493256 A CN105493256 A CN 105493256A CN 201580000831 A CN201580000831 A CN 201580000831A CN 105493256 A CN105493256 A CN 105493256A
Authority
CN
China
Prior art keywords
carbon nanotube
carbon nano
thin
layer
nanotube layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580000831.1A
Other languages
English (en)
Other versions
CN105493256B (zh
Inventor
张帅
詹裕程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Original Assignee
BOE Technology Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd filed Critical BOE Technology Group Co Ltd
Publication of CN105493256A publication Critical patent/CN105493256A/zh
Application granted granted Critical
Publication of CN105493256B publication Critical patent/CN105493256B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/491Vertical transistors, e.g. vertical carbon nanotube field effect transistors [CNT-FETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/50Bistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • H10K10/84Ohmic electrodes, e.g. source or drain electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • H10K19/10Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00 comprising field-effect transistors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/136295Materials; Compositions; Manufacture processes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • G02F1/13685Top gates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Ceramic Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Geometry (AREA)
  • Thin Film Transistor (AREA)

Abstract

众多的实施例提供了一种薄膜晶体管、其制备方法、和包括TFT的显示装置。在衬底上形成碳纳米管层,所述碳纳米管层包括复数个碳纳米管。在所述碳纳米管层里形成多个过孔得到第一图案化碳纳米管层。每个碳纳米管结构包括在过孔中形成的多个第二碳纳米管。所述碳纳米管结构和所述第一图案化碳纳米管层具有不同的载流子迁移率,由此形成有源层用作薄膜晶体管的有源结构。

Description

一种薄膜晶体管及其制备方法、显示装置
技术领域
本发明涉及显示技术领域,具体地,涉及一种薄膜晶体管及其制备方法、显示装置。
背景技术
利用P型硅(P-Si)作为薄膜晶体管(TFT)有源层结构制作的薄膜晶体管显示器的缺点是必须要执行脱氢工艺,离子掺杂工艺,离子激活工艺与氢化工艺,且P-Si易受到活化不全、金属离子污染等影响,从而影响薄膜晶体管的性能。
碳纳米管(Carbonnanotubes,CNTs)在纳米电子和光电应用领域以其优异的电学和机械性能以及广阔的应用潜力得到了广泛的关注。在电学方面,碳纳米管可以提供较高的载流子迁移率。单根半导体碳纳米管可以作为沟道材料用于场效应晶体管(FET),其性能指标已经在多方面超过传统硅基器件。此外,碳纳米管还具有良好的化学稳定性和机械延展性,具有很好的构柔性电子器件、全碳电路的潜力。
发明内容
本发明提供一种薄膜晶体管及其制备方法、显示装置,采用碳纳米管制备的薄膜晶体管及其器件的性能稳定尺寸更小。简化了制备过程,降低了制备成本。
为实现上述目的,本发明提供了一种薄膜晶体管的制备方法,包括以下步骤:
在衬底上形成具有多个碳纳米管的碳纳米管层;在所述碳纳米管层里形成多个过孔得到第一图案化碳纳米管层;以及在每个过孔中形成具有多个碳纳米管的碳纳米管结构,所述碳纳米管结构和所述第一图案化碳纳米管层具有不同的载流子迁移率由此形成有源层用作薄膜晶体管的有源结构。
优选的是,所述第一图案化碳纳米管层中的所述多个碳纳米管有序排列,所述碳纳米管结构中的所述多个碳纳米管无序排列。
优选的是,所述第一图案化碳纳米管层中的所述多个碳纳米管均匀地沿所述基板的表面方向上平行排列。
优选的是,所述第一图案化碳纳米管层中的所述多个碳纳米管均匀地沿所述有源层的长度方向平行排列。
优选的是,所述第一图案化碳纳米管层中的所述多个碳纳米管均匀地沿垂直于所述基板表面方向平行排列。
优选的是,所述在衬底上形成具有多个碳纳米管的碳纳米管层包括以下步骤:在所述基板上涂覆含催化剂的溶液,干燥所述含催化剂的溶液,以及通过引入碳源气体到所述含催化剂的溶液中进行等离子体增强化学气相沉积(PECVD),以形成所述多个碳纳米管。
优选的是,在所述含催化剂的溶液包括催化剂镍(NO3)2,500℃干燥所述含催化剂的溶液,碳源气体包括甲烷。
优选的是,所述在每个过孔中形成具有多个碳纳米管的碳纳米管结构包括:蒸发自组装工艺。
优选的是,所述在每个过孔中形成具有多个碳纳米管的碳纳米管结构包括以下步骤:在溶液中分散碳纳米管然后离心所述溶液,收集离心后溶液的上清液作为碳纳米管涂层液,在所述每个过孔中涂覆所述碳纳米管涂层液,干燥所述碳纳米管涂层液从而在所述每个过孔中形成碳纳米管结构。
优选的是,完成所述收集离心后溶液的上清液后还包括:稀释收集的上清液,以形成所述碳纳米管涂层溶液。
优选的是,所述干燥所述碳纳米管涂层液还包括:在常压下干燥所述碳纳米管涂层液。
优选的是,完成所述在衬底上形成具有多个碳纳米管的碳纳米管层之后还包括以下步骤:在所述碳纳米管层上形成光刻胶掩膜,其中:将所述光刻胶掩膜用作蚀刻掩膜蚀刻所述碳纳米管层以形成所述多个过孔得到所述第一图案化碳纳米管层,当在所述每个过孔中形成所述碳纳米管结构时,保留所述光刻胶掩膜。
优选的是,完成所述形成具有多个碳纳米管的碳纳米管结构步骤之后还包括:对所述第一图案化碳纳米管层和所述碳纳米管结构上执行化学机械研磨(CMP)工艺,以齐平所述第一图案化碳纳米管层和碳纳米管结构表面。
优选的是,完成所述形成具有多个碳纳米管的碳纳米管结构步骤之后还包括:蚀刻所述第一图案化碳纳米管层,以形成第二图案化碳纳米管层,而所述碳纳米管结构保持不变保留在第二图案化碳纳米管层中,从而形成所述薄膜晶体管的所述有源结构,其中每个有源结构包括两个所述碳纳米管结构。
优选的是,还包括以下步骤:在所述第二图案化碳纳米管层上形成栅绝缘层,在所述栅绝缘层上图案化导电层以形成栅电极。
优选的是,所述栅电极覆盖相邻的碳纳米管结构之间的所述第二图案化碳纳米管层表面。
优选的是,所述栅电极的至少一端与相邻的所述碳纳米管结构重叠。
优选的是,还包括以下步骤:在所述栅电极和所述栅绝缘层上形成层间介质层,形成通孔穿过所述层间绝缘层,其中,相邻的两个碳纳米管结构位于相邻的两个通孔之间,同时在所述通孔和所述层间介质层表面形成导电材料,图案化所述导电材料形成源电极和漏电极。
优选的是,所述碳纳米管结构用于所述薄膜晶体管的漏源极区。
优选的是,完成所述在衬底上形成所述纳米管结构体层之前还包括:在衬底上形成缓冲层。
本发明的另一目的是提供一种薄膜晶体管,包括有源层在衬底上,所述有源层包括碳纳米管结构分散穿插于碳纳米管层;所述碳纳米管层包括第一多个碳纳米管;所述碳纳米管结构包括第二多个碳纳米管,所述碳纳米管结构和所述碳纳米管层中载流子迁移率不同。
优选的是,所述碳纳米管层的所述第一多个碳纳米管有序排列,所述碳纳米管结构的所述第二多个碳纳米管无序排列。
优选的是,所述碳纳米管层的所述第一多个碳纳米管均匀地沿所述基板的表面方向上平行排列。
优选的是,所述碳纳米管层的所述第一多个碳纳米管均匀地沿所述有源层的长度方向平行排列。
优选的是,所述碳纳米管层的所述第一多个碳纳米管均匀地沿垂直所述基板表面方向平行排列。
优选的是,还包括位于所述有源层上的栅绝缘层,以及位于所述栅绝缘层上的栅电极。
优选的是,所述栅电极覆盖相邻的碳纳米管结构之间的碳纳米管层表面。
优选的是,所述栅电极的至少一端与相邻的碳纳米管结构重叠。
优选的是,还包括:位于所述栅电极和所述栅绝缘层上的层间介质层,所述层间绝缘层中有通孔穿过,相邻的两个碳纳米管结构位于相邻的两个通孔之间,位于所述通孔里的导电材料,位于所述层间绝缘层上的源电极和漏电极。
优选的是,所述碳纳米管结构用于所述薄膜晶体管的漏源极区。
优选的是,还包括:位于衬底上的缓冲层。
本发明的另一目的是提供一种显示装置,所述显示装置包括上述的薄膜晶体管。
本发明具有以下有益效果:
本发明提供一种薄膜晶体管及其制备方法、显示装置,采用碳纳米管制备的薄膜晶体管及其器件的性能稳定尺寸更小。简化了制备过程,降低了制备成本。
附图说明
图1-13为本发明实施例在不同制备阶段薄膜晶体管的结构示意图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。在可能的情况下,附图中的各个部分提到的相同或相似的部分将采用相同的附图标记。
本发明披露了一种薄膜晶体管及其制备方法、显示装置。其中,所披露的薄膜晶体管(TFT)包括碳纳米管(CNT)有源层。所述碳纳米管有源层包括碳纳米管层,碳纳米管层中有一个或多个过孔,过孔中具有碳纳米管结构。在本申请的实施方式的一种实施例中碳纳米管层可以为图形化的碳纳米管层用以制备薄膜晶体管。
碳纳米管层由多个碳纳米管(CNTs)构成,碳纳米管结构也由多个碳纳米管(CNTs)构成。碳纳米管层中的碳纳米管CNTs和碳纳米管结构中的碳纳米管CNTs有不同的排序。比如,碳纳米管层可为图形化的碳纳米管层,其中具有有序排列或者有序分布的CNTs,而碳纳米管结构中的CNTs为无序分布,并没有按照任何有序方式而排列。为此,不同的制备方法可以用来制备碳纳米管层和碳纳米管结构。当然,碳纳米管层和碳纳米管结构也可以用同一种制备方法来制备,只要碳纳米管层中的碳纳米管CNTs有序排列,而碳纳米管结构中的碳纳米管无序任意排列。
碳纳米管CNTs排列方式的不同,碳纳米管层和碳纳米管结构中的载流子迁移率则不同。有序排列的碳纳米管层的载流子迁移率可以达到102cm2·V-1·s-1到105cm2·V-1·s-1,而无序排列的碳纳米管结构的载流子迁移率可以在此基础上降低10%-100%。
碳纳米管结构可以用做薄膜晶体管的源漏极,比如用来代替轻掺杂漏/源极。因此,已知的用以制备有源层的脱氢工艺,离子注入/掺杂工艺,离子激活工艺与氢化工艺将不再需要,且P-Si易受到活化不全、金属离子污染等影响的缺点也会得到解决。同时薄膜晶体管的性能不受影响,并且会更稳定。
另外,碳纳米管作为一种小尺度的纳米材料,在保持其电学特性的同时,单一薄膜晶体管器件可做到亚微米尺度。在未来需要越来越高的PPI情况下,与P-Si有源层结构相比,碳纳米管用在有源层具有非常明显的优势。
术语“纳米管”包括一种细长结构,可由有机和无机材料形成,具有至少一个尺寸比如宽度或直径小于等于500纳米。另外,术语“纳米管”还包括类似尺寸的其它细长结构,包括但不限于,纳米杆状物,纳米柱,纳米线,纳米棒和纳米针以及它们的各种官能化和衍生化纤维的形式,其中包括纳米纤维形成的线,纱,布等。
碳纳米管CNTs指的是含碳的纳米管。碳纳米管可以包括单壁碳纳米管,双壁碳纳米管,多壁碳纳米管,以及碳纳米纤维,即由碳纳米管组成具有各种官能化和衍生化纤维的形式。碳纳米管具有内径和外径。例如,平均内径的范围为约1纳米至约20纳米,而平均外径的范围约5纳米至约100纳米。碳纳米管可具有的平均纵横比为约10至约1000000。
图1-13为本实施例提供薄膜晶体管在各个制备阶段的结构剖视图。
如图1所示,在基板100上制备缓冲层101。碳纳米管层102则制备在缓冲层101上。缓冲层101位于基板100和碳纳米管层102之间。
该基板100可以由如玻璃、塑料等光学透明材料制备而成。清洗处理基板100之后,形成缓冲层101。
缓冲层101可通过离子体增强化学气相沉积(PECVD)工艺在基板100上连续形成。在本实施例中,缓冲层101可以由氧化硅,氮化硅,和/或其他合适的材料形成。例如,缓冲层101可以是一种材料的单层,或是一种或多种材料构成的复合层,或是叠层,其中每一层包括一种或多种材料。当氧化硅用于缓冲层101时,氧化硅层的厚度约50纳米至约100纳米。当氮化硅用于缓冲层101时,氮化硅层的厚度约100纳米到约300纳米。在一些情况下,缓冲层101是可以省略的。
在一个实施例中,碳纳米管层102可以在缓冲层101上通过等离子体增强化学气相沉积(PECVD),蒸发自组装方法,或任何合适的方法制备而成,仅需保证形成该碳纳米管层102的CNTs在一个或多个方向上有序排列即可。例如,碳纳米管层102中的碳纳米管CNTs可以在平行或垂直于基板表面的方向上有序排列。在一定的实施方案中,碳纳米管CNTs可以沿着该碳纳米管有源层的长度方向对齐而有序排列。
在一个实施例中,在缓冲层101上面采用旋涂法涂覆已经配置好的含催化剂的用于形成碳纳米管的溶液。然后在一定温度下干燥涂覆的含催化剂的用于形成碳纳米管的溶液,并保持在一定的温度,同时引入碳源气体以及载气H2和/或N2到涂覆好的缓冲层。接着,用PECVD工艺来制备有序排列的碳纳米管CNTs。在其中一个实施例中,制备的碳纳米管CNTs可以在平行于缓冲层101表面或基板100表面的方向有序排列。在PECVD工艺过程中,射频(RF)功率,引入的气体,反应时间,反应温度等工艺参数可以调节来制备碳纳米管层102所需的碳纳米管CNTs。
在一个实施例中,含催化剂的溶液包括催化剂Ni(NO3)2,浓度为0.1摩尔/L。在500℃的温度下干燥涂覆溶液。所述碳源气体包括CH4。在这种情况下,涉及的反应包括:
2Ni(NO3)2→NiO+4NO2+O2
NiO+H2→Ni+H2O
CH4→CNT+H2
在此反应中,碳源材料CH4由镍催化经过催化裂解反应以形成碳纳米管层的碳纳米管CNTs。
如图2所示,在碳纳米管层102上形成光刻胶掩膜103。光刻胶掩膜103可以通过光刻工艺来制备。
如图3所示,第一图案化碳纳米管层102A可以通过图案化图2中的碳纳米管层102来形成。例如,图2中碳纳米管层102可以使用光刻胶掩膜103作为蚀刻掩模进行蚀刻以形成第一图案化层102A。第一图案化层102A包括过孔12。
过孔12的形成可以通过干蚀刻工艺蚀刻碳纳米管层102。使用的蚀刻气体包括氯气、氧气、氮气的混合气体。
当过孔12形成后,所述光刻胶掩膜103可继续保留在形成的第一碳纳米管层图案102A上而用于随后形成碳纳米管结构。
如图4所示,在第一图案化层102A中的过孔12中,形成碳纳米管结构112。碳纳米管结构112同时位于缓冲层101上。在一个实施例中,碳纳米管结构112可以用于作为轻掺杂漏源结构。碳纳米管结构112中的碳纳米管随机无序排列。
需要注意的是,碳纳米管结构112和第一图案化碳纳米管层102A中CNTs的排列是不同的。例如,碳纳米管CNTs在碳纳米管结构112中是随机排列的,而在第一图案化碳纳米管层102A中可以均匀地在平行或垂直于基板100的表面的方向上有序排列。
在一个实施例中,可以使用蒸发组装方法制备碳纳米管结构112。例如,固体的CNTs可以是预先准备的或者以其他方式获得的,有约99.5%或更高的碳纯度。该固体碳纳米管CNTs可以溶解在约1%(重量)的十二烷基硫酸钠(SDS)溶液中。利用超声波仪器将碳纳米管均匀分散在溶液中,然后再利用离心机装置将溶液进行离心,溶液离心后将上清液取出并稀释3-5倍,以形成CNT涂层溶液。
该CNT涂层溶液可以涂覆在图3所示的结构中。例如,CNT涂层溶液可以涂覆在第一图案化的碳纳米管层102A中的过孔12中,然后在常压下进行干燥。由此,随机分散的碳纳米管CNTs将在第一图案化的碳纳米管层102A的过孔12中形成,如图4所示。
然后,移除图4中的光刻胶掩膜图103以露出第一图案化的碳纳米管层102A以及碳纳米管结构112。在本实施方案中,可以用化学机械研磨(CMP)法研磨第一图案化的碳纳米管层102A和碳纳米管结构112使其表面齐平,如图5所示。
如图6所示,第一图案化的碳纳米管层102A可进一步图形化,而过孔中的碳纳米管结构112保持不变,以形成第二图案化的碳纳米管层102B。例如,通过干蚀刻工艺可以去除第一碳纳米管层102A的两端部分。干蚀刻工艺的蚀刻气体包括氯气、氧气、氢气中的一种或多种。
如图7所示,在第二图案化的碳纳米管层102B上,形成栅绝缘层200。栅绝缘层200同时也可位于碳纳米管结构112和部分露出的缓冲层101上。在一些实施例中,本发明可以不包括所述缓冲层101,那栅绝缘层可以形成在第二图案化的碳纳米管层102B、碳纳米管结构112、部分露出的基板100上形成。通过PECVD工艺可形成栅绝缘层200。
如图8所示,在栅绝缘层200上,通过溅射工艺形成导电层300。接着通过光刻过程图形化导电性层300以形成一个栅电极300G,如图9所示。
在本实施方案中,栅电极300G的位置和大小可以根据碳纳米管结构112相对于第二图案化碳纳米管层102B的位置和大小而设置。
具体地,栅电极300G可以覆盖相邻碳纳米管结构112之间的第二图案化的碳纳米管层102B部分表面,仅需保证相邻两个碳纳米管结构112都至少有一部分不被覆盖。在一个例子中,栅电极300G的两端可以分别与相邻的碳纳米管结构112中的内端对齐,以正好覆盖相邻碳纳米管结构112之间的第二图案化的碳纳米管层102B部分表面,如图9中所示。在另一个例子中,栅电极300G不仅仅形成在相邻碳纳米管结构112之间的第二图案化的碳纳米管层102B部分表面上,同时可以覆盖一边或者两边的部分碳纳米管结构112。
如图10所示,在栅电极300G和栅绝缘层200上制备层间介质层(ILD)400。ILD层400可以通过PECVD工艺形成。
如图11所示,在ILD层400和栅绝缘层200中形成通孔432,以暴露第二图案化的碳纳米管层102B在相邻碳纳米管结构112之外的表面部分。也就是说,相邻碳纳米管结构112会位于相邻通孔432之间。
如图12所示,在ILD层400上通过溅射法形成第二导电层500。在一定实施方案中,任意导电性的材料,比如低功函数金属,均可用于形成导电层500,以提供与第二图案化的碳纳米管层102B之间的欧姆接触。具有低功函数的金属可以包括钪(Sc)和/或钇(Y)。这些金属可以进一步提供缓冲层101所需的粘合性。
需要注意的是,在形成导电性层500时,相应的导电材料会同时填充通孔432以连接到第二图案化的碳纳米管层102B,如图12所示。
如图13所示,通过光刻工艺蚀刻导电性层500以形成源/漏电极500S/D。这样形成的源/漏电极500S/D可暴露ILD400的部分表面,也即暴露存在于相邻通孔432之间的ILD的部分表面。源/漏电极500S/D与通孔432中的导电材料相连接。
导电材料可以包括金属、氧化铟锌(IZO)、铟锡氧化物(ITO),多晶硅,或它们的任意组合。
由此,碳纳米管结构112可穿插形成在本发明的碳纳米管层中,比如图4-5中的第一图案碳纳米管层102A,或者图6-13中第二图案化碳纳米管层102B。碳纳米管结构112可穿过第一或第二图案化的碳纳米管层102A/B的整个厚度。
由此,薄膜晶体管的有源层包括图案化的碳纳米管层102A/B和碳纳米管结构112。图案化的碳纳米管层中具有有序排列的碳纳米管CNTs,碳纳米管结构中具有无序排列的碳纳米管CNTs。单一薄膜晶体管可包括一个有源结构含有两个碳纳米管结构。两个碳纳米管结构之间有碳纳米管层。碳纳米管结构和碳纳米管层可用不同的制备工艺来制备。通常,碳纳米管CNTs可具有载流子迁移率至多约为105cm2·V-1·s-1。和传统的碳纳米管有源层不同的是,本发明的碳纳米管有源层不需要用到脱氢工艺,离子掺杂工艺,离子激活工艺与氢化工艺,且不存在P-Si受到活化不全、金属离子污染等影响,制备的薄膜晶体管性能稳定,同时提供高载流子迁移率。此外,由于碳纳米管CNTs具有纳米级尺寸,可形成亚微米更小尺度的薄膜晶体管。在未来需要越来越高的PPI情况下,由不同序列碳纳米管形成的有源层具有非常明显的优势。
本发明另外提供一种阵列基板包括上述薄膜晶体管,同时提供一种显示装置,所述显示装置包括上述的阵列基板。显示装置可包括有源矩阵液晶显示器(AMLCD)、有源矩阵有机液晶显示器(AMOLCD)。
例如,薄膜晶体管矩阵可用于构建薄膜晶体管液晶显示器(LCD)显示装置的有源矩阵。薄膜晶体管可以存储显示器的某个像素的电状态,而其他像素可以同时更新。在一些情况下,薄膜晶体管可以作为有源矩阵的一个组件,有源矩阵的其他组件可包括二极管等等。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (32)

1.一种薄膜晶体管的制备方法,其特征在于,包括以下步骤:
在衬底上形成具有多个碳纳米管的碳纳米管层;
在所述碳纳米管层里形成多个过孔得到第一图案化碳纳米管层;以及
在每个过孔中形成具有多个碳纳米管的碳纳米管结构,所述碳纳米管结构和所述第一图案化碳纳米管层具有不同的载流子迁移率由此形成有源层用作薄膜晶体管的有源结构。
2.如权利要求1所述薄膜晶体管的制备方法,其特征在于,
所述第一图案化碳纳米管层中的所述多个碳纳米管有序排列,以及
所述碳纳米管结构中的所述多个碳纳米管无序排列。
3.如权利要求2所述薄膜晶体管的制备方法,其特征在于,
所述第一图案化碳纳米管层中的所述多个碳纳米管均匀地沿所述基板的表面方向上平行排列。
4.如权利要求2所述薄膜晶体管的制备方法,其特征在于,
所述第一图案化碳纳米管层中的所述多个碳纳米管均匀地沿所述有源层的长度方向平行排列。
5.如权利要求2所述薄膜晶体管的制备方法,其特征在于,
所述第一图案化碳纳米管层中的所述多个碳纳米管均匀地沿垂直于所述基板表面方向平行排列。
6.如权利要求1-4任一项所述薄膜晶体管的制备方法,其特征在于,所述在衬底上形成具有多个碳纳米管的碳纳米管层包括以下步骤:
在所述基板上涂覆含催化剂的溶液,
干燥所述含催化剂的溶液,以及
通过引入碳源气体到所述含催化剂的溶液中进行等离子体增强化学气相沉积(PECVD),以形成所述多个碳纳米管。
7.如权利要求6所述薄膜晶体管的制备方法,其特征在于,
所述含催化剂的溶液包括催化剂镍(NO3)2
500℃干燥所述含催化剂的溶液,以及
碳源气体包括甲烷。
8.如权利要求1-2任一项所述薄膜晶体管的制备方法,其特征在于,所述在每个过孔中形成具有多个碳纳米管的碳纳米管结构包括:蒸发自组装工艺。
9.如权利要求8所述薄膜晶体管的制备方法,其特征在于,所述在每个过孔中形成具有多个碳纳米管的碳纳米管结构包括以下步骤:
在溶液中分散碳纳米管然后离心所述溶液,
收集离心后溶液的上清液作为碳纳米管涂层液,
在所述每个过孔中涂覆所述碳纳米管涂层液,以及
干燥所述碳纳米管涂层液从而在所述每个过孔中形成碳纳米管结构。
10.如权利要求9所述薄膜晶体管的制备方法,其特征在于,完成所述收集离心后溶液的上清液后还包括:
稀释收集的上清液,以形成所述碳纳米管涂层溶液。
11.如权利要求9所述薄膜晶体管的制备方法,其特征在于,所述干燥所述碳纳米管涂层液还包括:
在常压下干燥所述碳纳米管涂层液。
12.如权利要求1所述薄膜晶体管的制备方法,其特征在于,完成所述在衬底上形成具有多个碳纳米管的碳纳米管层之后还包括以下步骤:
在所述碳纳米管层上形成光刻胶掩膜,其中:
将所述光刻胶掩膜用作蚀刻掩膜蚀刻所述碳纳米管层以形成所述多个过孔得到所述第一图案化碳纳米管层,以及
当在所述每个过孔中形成所述碳纳米管结构时,保留所述光刻胶掩膜。
13.如权利要求1所述薄膜晶体管的制备方法,其特征在于,完成所述形成具有多个碳纳米管的碳纳米管结构步骤之后还包括:
对所述第一图案化碳纳米管层和所述碳纳米管结构上执行化学机械研磨(CMP)工艺,以齐平所述第一图案化碳纳米管层和碳纳米管结构表面。
14.如权利要求1所述薄膜晶体管的制备方法,其特征在于,完成所述形成具有多个碳纳米管的碳纳米管结构步骤之后还包括:
蚀刻所述第一图案化碳纳米管层,以形成第二图案化碳纳米管层,而所述碳纳米管结构保持不变保留在第二图案化碳纳米管层中,从而形成所述薄膜晶体管的所述有源结构,其中每个有源结构包括两个所述碳纳米管结构。
15.如权利要求14所述薄膜晶体管的制备方法,其特征在于,还包括以下步骤:
在所述第二图案化碳纳米管层上形成栅绝缘层,以及
在所述栅绝缘层上图案化导电层以形成栅电极。
16.如权利要求15所述薄膜晶体管的制备方法,其特征在于,
所述栅电极覆盖相邻的碳纳米管结构之间的所述第二图案化碳纳米管层表面。
17.如权利要求15所述薄膜晶体管的制备方法,其特征在于,
所述栅电极的至少一端与相邻的所述碳纳米管结构重叠。
18.如权利要求15所述薄膜晶体管的制备方法,其特征在于,还包括以下步骤:
在所述栅电极和所述栅绝缘层上形成层间介质层,
形成通孔穿过所述层间绝缘层,其中,相邻的两个碳纳米管结构位于相邻的两个通孔之间,
同时在所述通孔和所述层间介质层表面形成导电材料,以及
图案化所述导电材料形成源电极和漏电极。
19.如权利要求1-18任一项所述薄膜晶体管的制备方法,其特征在于,所述碳纳米管结构用于所述薄膜晶体管的漏源极区。
20.如权利要求1-19任一项所述薄膜晶体管的制备方法,其特征在于,完成所述在衬底上形成所述纳米管结构体层之前还包括:
在衬底上形成缓冲层。
21.一种薄膜晶体管,其特征在于,包括有源层在衬底上,
所述有源层包括碳纳米管结构分散穿插于碳纳米管层;
所述碳纳米管层包括第一多个碳纳米管,以及
所述碳纳米管结构包括第二多个碳纳米管,所述碳纳米管结构和所述碳纳米管层中载流子迁移率不同。
22.如权利要求21所述薄膜晶体管,其特征在于,
所述碳纳米管层的所述第一多个碳纳米管有序排列,以及
所述碳纳米管结构的所述第二多个碳纳米管无序排列。
23.如权利要求22所述薄膜晶体管,其特征在于,
所述碳纳米管层的所述第一多个碳纳米管均匀地沿所述基板的表面方向上平行排列。
24.如权利要求23所述薄膜晶体管,其特征在于,
所述碳纳米管层的所述第一多个碳纳米管均匀地沿所述有源层的长度方向平行排列。
25.如权利要求22所述薄膜晶体管,其特征在于,
所述碳纳米管层的所述第一多个碳纳米管均匀地沿垂直所述基板表面方向平行排列。
26.如权利要求21-22任一项所述薄膜晶体管,其特征在于,还包括:
位于所述有源层上的栅绝缘层,以及
位于所述栅绝缘层上的栅电极。
27.如权利要求26所述薄膜晶体管,其特征在于,
所述栅电极覆盖相邻的碳纳米管结构之间的碳纳米管层表面。
28.如权利要求26所述薄膜晶体管,其特征在于,
所述栅电极的至少一端与相邻的碳纳米管结构重叠。
29.如权利要求26所述薄膜晶体管,其特征在于,还包括:
位于所述栅电极和所述栅绝缘层上的层间介质层,所述层间绝缘层中有通孔穿过,相邻的两个碳纳米管结构位于相邻的两个通孔之间,
位于所述通孔里的导电材料,以及
位于所述层间绝缘层上的源电极和漏电极。
30.如权利要求21-29任一项所述薄膜晶体管,其特征在于,
所述碳纳米管结构用于所述薄膜晶体管的漏源极区。
31.如权利要求21-30任一项所述薄膜晶体管,其特征在于,还包括:
位于衬底上的缓冲层。
32.一种显示装置,其特征在于,所述显示装置包括如权利要求21-31任一项所述薄膜晶体管。
CN201580000831.1A 2015-09-15 2015-09-15 一种薄膜晶体管及其制备方法、显示装置 Active CN105493256B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/089660 WO2017045137A1 (en) 2015-09-15 2015-09-15 Thin film transistor, fabrication method thereof, and display apparatus

Publications (2)

Publication Number Publication Date
CN105493256A true CN105493256A (zh) 2016-04-13
CN105493256B CN105493256B (zh) 2018-07-06

Family

ID=55678500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580000831.1A Active CN105493256B (zh) 2015-09-15 2015-09-15 一种薄膜晶体管及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US10061173B2 (zh)
CN (1) CN105493256B (zh)
WO (1) WO2017045137A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017206439A1 (en) * 2016-05-31 2017-12-07 Boe Technology Group Co., Ltd. Thin film transistor, array substrate and display panel having the same, and fabricating method thereof
CN108987481A (zh) * 2017-06-05 2018-12-11 中国科学院金属研究所 一种基于感光干膜工艺的碳纳米管薄膜晶体管及制作方法
WO2020215873A1 (zh) * 2019-04-26 2020-10-29 京东方科技集团股份有限公司 薄膜晶体管及显示装置
WO2020215874A1 (zh) * 2019-04-26 2020-10-29 京东方科技集团股份有限公司 薄膜晶体管及其制备方法、显示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10665799B2 (en) 2016-07-14 2020-05-26 International Business Machines Corporation N-type end-bonded metal contacts for carbon nanotube transistors
US10665798B2 (en) * 2016-07-14 2020-05-26 International Business Machines Corporation Carbon nanotube transistor and logic with end-bonded metal contacts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060105523A1 (en) * 2004-11-18 2006-05-18 International Business Machines Corporation Chemical doping of nano-components
CN1775667A (zh) * 2004-03-02 2006-05-24 国际商业机器公司 用于对碳纳米管进行溶液处理掺杂的方法和设备
US20100163858A1 (en) * 2007-09-07 2010-07-01 Satoru Toguchi Switching element and method for manufacturing the same
US20130134391A1 (en) * 2011-11-29 2013-05-30 International Business Machines Corporation Reducing Contact Resistance for Field-Effect Transistor Devices

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040004251A1 (en) * 2002-07-08 2004-01-08 Madurawe Raminda U. Insulated-gate field-effect thin film transistors
US20050116336A1 (en) * 2003-09-16 2005-06-02 Koila, Inc. Nano-composite materials for thermal management applications
KR100659056B1 (ko) * 2004-06-25 2006-12-19 삼성에스디아이 주식회사 박막 트랜지스터, 및 이를 구비한 평판 표시장치
CN101582444A (zh) * 2008-05-14 2009-11-18 清华大学 薄膜晶体管
KR101022494B1 (ko) 2008-11-28 2011-03-16 고려대학교 산학협력단 Cnt 박막 트랜지스터 및 이를 적용하는 디스플레이
US8860137B2 (en) * 2011-06-08 2014-10-14 University Of Southern California Radio frequency devices based on carbon nanomaterials
CN104576744A (zh) * 2013-10-24 2015-04-29 中国科学院苏州纳米技术与纳米仿生研究所 碳纳米管薄膜晶体管、amoled像素柔性驱动电路及制作方法
CN104241395B (zh) * 2014-09-10 2017-02-15 京东方科技集团股份有限公司 一种薄膜晶体管、阵列基板、以及显示装置
CN104716047B (zh) * 2015-03-30 2017-08-01 京东方科技集团股份有限公司 一种薄膜晶体管及其制备方法、阵列基板及显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1775667A (zh) * 2004-03-02 2006-05-24 国际商业机器公司 用于对碳纳米管进行溶液处理掺杂的方法和设备
US20060105523A1 (en) * 2004-11-18 2006-05-18 International Business Machines Corporation Chemical doping of nano-components
US20100163858A1 (en) * 2007-09-07 2010-07-01 Satoru Toguchi Switching element and method for manufacturing the same
US20130134391A1 (en) * 2011-11-29 2013-05-30 International Business Machines Corporation Reducing Contact Resistance for Field-Effect Transistor Devices

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017206439A1 (en) * 2016-05-31 2017-12-07 Boe Technology Group Co., Ltd. Thin film transistor, array substrate and display panel having the same, and fabricating method thereof
US10290741B2 (en) 2016-05-31 2019-05-14 Boe Technology Group Co., Ltd. Thin film transistor, array substrate and display panel having the same, and fabricating method thereof
CN108987481A (zh) * 2017-06-05 2018-12-11 中国科学院金属研究所 一种基于感光干膜工艺的碳纳米管薄膜晶体管及制作方法
WO2020215873A1 (zh) * 2019-04-26 2020-10-29 京东方科技集团股份有限公司 薄膜晶体管及显示装置
WO2020215874A1 (zh) * 2019-04-26 2020-10-29 京东方科技集团股份有限公司 薄膜晶体管及其制备方法、显示装置

Also Published As

Publication number Publication date
US10061173B2 (en) 2018-08-28
US20170269409A1 (en) 2017-09-21
CN105493256B (zh) 2018-07-06
WO2017045137A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
Cao et al. Radio frequency transistors using aligned semiconducting carbon nanotubes with current-gain cutoff frequency and maximum oscillation frequency simultaneously greater than 70 GHz
CN105493256A (zh) 一种薄膜晶体管及其制备方法、显示装置
Si et al. Scalable preparation of high-density semiconducting carbon nanotube arrays for high-performance field-effect transistors
Wang et al. Macroelectronic integrated circuits using high-performance separated carbon nanotube thin-film transistors
Wang et al. Metal contact engineering and registration-free fabrication of complementary metal-oxide semiconductor integrated circuits using aligned carbon nanotubes
Liu et al. Highly flexible electronics from scalable vertical thin film transistors
Qiu et al. Carbon nanotube feedback-gate field-effect transistor: Suppressing current leakage and increasing on/off ratio
Kim et al. Dual gate black phosphorus field effect transistors on glass for NOR logic and organic light emitting diode switching
Cao et al. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes
Liu et al. High-performance organic vertical thin film transistor using graphene as a tunable contact
Wang et al. Carbon nanotube electronics–moving forward
Yu et al. Small hysteresis nanocarbon-based integrated circuits on flexible and transparent plastic substrate
Kim et al. Coplanar-gate transparent graphene transistors and inverters on plastic
US8847313B2 (en) Transparent electronics based on transfer printed carbon nanotubes on rigid and flexible substrates
Zhang et al. Air-stable conversion of separated carbon nanotube thin-film transistors from p-type to n-type using atomic layer deposition of high-κ oxide and its application in CMOS logic circuits
Ben-Sasson et al. Self-assembled metallic nanowire-based vertical organic field-effect transistor
Wang et al. Radio frequency and linearity performance of transistors using high-purity semiconducting carbon nanotubes
Li et al. Direct identification of metallic and semiconducting single-walled carbon nanotubes in scanning electron microscopy
US7537975B2 (en) Organic thin film transistor and method of fabricating the same
Shih et al. Partially-screened field effect and selective carrier injection at organic semiconductor/graphene heterointerface
Jeong et al. Directly drawn poly (3-hexylthiophene) field-effect transistors by electrohydrodynamic jet printing: improving performance with surface modification
Kim et al. Inkjet printed circuits on flexible and rigid substrates based on ambipolar carbon nanotubes with high operational stability
Zhao et al. Flexible 64× 64 pixel AMOLED displays driven by uniform carbon nanotube thin-film transistors
Che et al. T-gate aligned nanotube radio frequency transistors and circuits with superior performance
JP2004266272A (ja) 電界効果型トランジスタ並びにそれを用いた液晶表示装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant