CN105491655A - 基于fpga的自动功率控制电路及方法 - Google Patents

基于fpga的自动功率控制电路及方法 Download PDF

Info

Publication number
CN105491655A
CN105491655A CN201410538964.1A CN201410538964A CN105491655A CN 105491655 A CN105491655 A CN 105491655A CN 201410538964 A CN201410538964 A CN 201410538964A CN 105491655 A CN105491655 A CN 105491655A
Authority
CN
China
Prior art keywords
circuit
fpga
signal
power level
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410538964.1A
Other languages
English (en)
Inventor
闵海军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rosenberger Technology Kunshan Co Ltd
Original Assignee
Rosenberger Technology Kunshan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rosenberger Technology Kunshan Co Ltd filed Critical Rosenberger Technology Kunshan Co Ltd
Priority to CN201410538964.1A priority Critical patent/CN105491655A/zh
Publication of CN105491655A publication Critical patent/CN105491655A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Amplification And Gain Control (AREA)
  • Transmitters (AREA)

Abstract

本发明揭示了一种基于FPGA的自动功率控制电路及方法,控制电路由功率放大电路、耦合电路、检波电路、ARM电路和FPGA电路形成闭环的功率控制电路,功率放大电路的输出射频信号经耦合电路耦合后输出给检波电路,检波电路对射频信号进行采样,并将得到的采样信号输出给ARM电路;ARM电路将采样信号换算得到的功率电平与原始功率电平比较,计算得出FPGA电路的调整信号给FPGA电路,控制FPGA电路输出所需的射频信号给功率放大电路输入端。本发明省去了电调衰减电路,直接通过ARM采集到的数据反馈给FPGA电路的方式控制输出功率大小,提高了控制精度和速度,简化了电路设计,同时增大了ALC的起控深度。

Description

基于FPGA的自动功率控制电路及方法
技术领域
本发明涉及移动通信设备输出功率控制的技术领域,尤其是涉及一种利用ARM采集数据反馈的方式实现自动功率控制的电路和方法。
背景技术
自动电平控制(AutomaticLevelControl,简称ALC),是一种自动、精确控制信号幅度的常用方法,广泛应用于通信发射机、信号源以及各种测量仪器。尤其是在信号源的组成中,ALC更是成为至关重要的一部分,直接关系着功率平坦度、功率稳定度、功率准确度以及输出功率动态范围等指标。可以说,ALC性能的好坏将直接影响信号源输出信号的功率特性。
自动电平控制ALC的原理是:当通信设备工作于最大增益且输出为最大功率时,增加输入信号电平时,通信设备在一定范围内自动衰减链路增益,保持对输出信号电平控制的能力。在一定范围内ALC电路自动纠正偏移的电平回到要求的数值。
在实际应用中一般是通过使用电调衰减电路来达到ALC控制的目的,即应用电调衰减管电平变化的特性来实现ALC自动电平控制。现有技术的ALC控制电路如图1所示,其工作原理是:先把从电路输出端耦合过来的射频信号检波成直流分量,然后送入检波电路中二级运算放大器进行正反相放大,放大后的直流电压再送回输入端作为电调衰减电路的可变偏压,从而控制输出信号电平的幅度。
上述现有技术采用电调衰减管对输出信号调压从而达到控制输出电平的目的,但由于受限于电调衰减管的衰减范围,ALC的起控深度受到限制。
发明内容
本发明的目的在于克服现有技术的缺陷,提供一种基于FPGA的自动功率控制电路及方法,通过ARM采集到的数据反馈给FPGA电路控制输出功率大小,以解决ALC起控深度受限于电调衰减电路的衰减范围的问题。
为实现上述目的,本发明提出如下技术方案:一种基于FPGA的自动功率控制电路,包括功率放大电路、耦合电路、检波电路、ARM电路和现场可编程门阵列FPGA电路,所述功率放大电路、耦合电路、检波电路、ARM电路和FPGA电路之间形成闭环的功率控制电路,所述功率放大电路的输出射频信号经所述耦合电路耦合后输出给所述检波电路,所述检波电路对所述射频信号进行采样,并将得到的采样信号输出给所述ARM电路;所述ARM电路对所述采样信号进行换算,并将换算得到的功率电平与原始功率电平比较,计算得出FPGA电路的调整信号给所述FPGA电路,控制所述FPGA电路输出所需的射频信号给所述功率放大电路输入端。
优选地,所述功率放大电路包括级联的第一级增益放大器和第二级增益放大器,所述第一级增益放大器的输入端接所述FPGA电路,所述第二级增益放大器的输出端与所述耦合电路耦合。
优选地,所述耦合电路为一耦合电容。
优选地,所述耦合电路的一端连接一接地的负载,另一端与所述检波电路相连。
优选地,所述ARM电路对所述采样信号进行A/D模数变换,对变换后的所述采样信号进行换算得到对应的功率电平,并将所述功率电平与原始功率电平比较,计算得到两者的差值,根据所述差值计算得到FPGA电路的调整信号给所述FPGA电路。
优选地,通过对所述差值的对数计算得到FPGA电路的调整信号给所述FPGA电路。
本发明还提出了另外一种技术方案:一种基于FPGA电路的自动功率控制方法,包括以下步骤:
S1,从所述功率放大电路的输出端耦合出射频信号;
S2,对所述射频信号进行检波采样,得到相应的采样信号;
S3,将所述采样信号换算得到功率电平,并将所述功率电平与原始功率电平比较,计算得出FPGA电路的调整信号;
S4,所述调整信号控制所述FPGA电路输出所需的射频信号给所述功率放大电路输入端。
优选地,所述步骤S3具体包括:
S31,对所述采样信号进行A/D模数变换;
S32,对变换后的所述采样信号进行换算得到对应的功率电平;
S33,将所述功率电平与原始功率电平比较,计算得到两者的差值;
S34,对所述差值进行计算,得到所述FPGA电路的调整信号。
优选地,所述步骤S34中,通过对所述差值进行对数计算,得到所述FPGA电路的调整信号。
本发明的有益效果是:本发明省去了现有常用的电调衰减电路,直接通过ARM采集到的数据反馈给FPGA电路的方式控制输出功率大小,提高了电平控制精度和速度,简化了电路设计,同时本发明ALC的起控深度不受限于电调衰减电路的衰减范围,增大了ALC的起控深度。
附图说明
图1是现有技术的ALC控制电路的原理示意图;
图2是本发明基于FPGA的自动功率控制电路的原理示意图;
图3是本发明基于FPGA的自动功率控制方法的流程示意图;
图4是图3中步骤S3的具体流程示意图。
具体实施方式
下面将结合本发明的附图,对本发明实施例的技术方案进行清楚、完整的描述。
本发明揭示了一种基于FPGA的自动功率控制电路及方法,主要应用于移动通信领域的通信设备输出功率的自动控制。
如图2所示,本发明所揭示的一种基于FPGA的自动功率控制电路,包括第一级增益放大器、第二级增益放大器、耦合电路、检波电路、ARM电路和现场可编程门阵列FPGA电路,第一级增益放大器、第二级增益放大器、耦合电路、检波电路、ARM电路和现场可编程门阵列FPGA电路形成闭环的功率控制电路。
第一级增益放大器和第二级增益放大器级联构成功率放大电路,即第一级增益放大器的输出端与第二级增益放大器的输入端相连,第二级增益放大器的输出端与耦合电路耦合。
耦合电路用于耦合由第二级增益放大器输出端输出的射频信号,并将该射频信号输入给检波电路。耦合电路输出端连接一接地的负载,另一端与检波电路相连,耦合电路可选用耦合电容。
检波电路接收耦合电路耦合过来的射频信号,并对其进行检波采样,得到采样信号,并将采样信号输出给ARM电路,即检波电路一端与耦合电路连接,另一端接ARM电路。
ARM电路的IO端口接收检波电路输出的采样信号,接收后对采样信号进行A/D模数变换,然后对变换后的采样信号进行换算得到对应的功率电平,为了描述清楚,将该功率电平定义为功率电平B,再将功率电平B与原始功率电平(将原始功率电平定义为原始功率电平A)比较,用功率电平B去减原始功率电平A,得到两者的差值ΔX,即ΔX=B-A,最后根据差值ΔX对数计算得到FPGA电路的调整信号X。
FPGA电路在调整信号X的控制下,调整其信号输出等级,最终输出所需的射频信号给所述功率放大电路输入端,作为第一级增益放大器的输入信号即功率放大电路的输入射频信号。
假设原始功率电平A=201g(2^12/2^13),通过采样得到的功率电平B=201g(X/2^13),从而得到B-A=201g(X/2^12),X=10^[(B-A)/(20*2^12)],其中X就是FPGA电路所要调整的值。因此,本发明ALC功率电平调整范围为:201g(2^12/2^13)-201g(1/2^13)=72,理论上FPGA电路的信源最大调整范围为72dB,即在该电路中ALC起控深度最大可达到72dB。由此可见,本发明实现了ALC起控深度不受限于电调衰减电路的衰减范围。
本发明还揭示了一种基于FPGA电路的自动功率控制方法,该控制方法在上述揭示的控制电路上实现,如图3所示,包括以下步骤:
步骤S1,从功率放大电路的输出端耦合出射频信号;即耦合电容从功率放大电路的输出端耦合出射频信号,并将该射频信号输入给检波电路。
步骤S2,对射频信号进行检波采样,得到相应的采样信号;即检波电路对射频信号进行检波采样,得到采样信号,并将采样信号输出给ARM电路。
步骤S3,将采样信号换算得到功率电平,并将功率电平与原始功率电平比较,计算得出FPGA电路的调整信号;
步骤S3的实现过程在ARM电路中实现,如图4所示,具体为:
步骤S31,对采样信号进行A/D模数变换;
步骤S32,对变换后的采样信号进行换算得到对应的功率电平;
步骤S33,将功率电平与原始功率电平比较,计算得到两者的差值;
步骤S34,对差值进行对数计算,得到FPGA电路的调整信号。
步骤S4,FPGA电路的调整信号控制FPGA电路输出信源信号经AD变换后输出所需的射频信号给功率放大电路输入端。即FPGA电路在调整信号的控制下,调整其信号输出等级,最终输出所需的射频信号给功率放大电路输入端,作为功率放大电路的输入射频信号。
本发明的技术内容及技术特征已揭示如上,然而熟悉本领域的技术人员仍可能基于本发明的教示及揭示而作种种不背离本发明精神的替换及修饰,因此,本发明保护范围应不限于实施例所揭示的内容,而应包括各种不背离本发明的替换及修饰,并为本专利申请权利要求所涵盖。

Claims (9)

1.一种基于FPGA的自动功率控制电路,其特征在于,包括功率放大电路、耦合电路、检波电路、ARM电路和现场可编程门阵列FPGA电路,所述功率放大电路、耦合电路、检波电路、ARM电路和FPGA电路之间形成闭环的功率控制电路,所述功率放大电路的输出射频信号经所述耦合电路耦合后输出给所述检波电路,所述检波电路对所述射频信号进行采样,并将得到的采样信号输出给所述ARM电路;所述ARM电路对所述采样信号进行换算,并将换算得到的功率电平与原始功率电平比较,计算得出FPGA电路的调整信号给所述FPGA电路,控制所述FPGA电路输出所需的射频信号给所述功率放大电路输入端。
2.根据权利要求1所述的基于FPGA的自动功率控制电路,其特征在于,所述功率放大电路包括级联的第一级增益放大器和第二级增益放大器,所述第一级增益放大器的输入端接所述FPGA电路,所述第二级增益放大器的输出端与所述耦合电路耦合。
3.根据权利要求1或2所述的基于FPGA的自动功率控制电路,其特征在于,所述耦合电路为一耦合电容。
4.根据权利要求3所述的基于FPGA的自动功率控制电路,其特征在于,所述耦合电路的一端连接一接地的负载,另一端与所述检波电路相连。
5.根据权利要求1~4任意一项所述的基于FPGA的自动功率控制电路,其特征在于,所述ARM电路对所述采样信号进行A/D模数变换,对变换后的所述采样信号进行换算得到对应的功率电平,并将所述功率电平与原始功率电平比较,计算得到两者的差值,根据所述差值计算得到FPGA电路的调整信号给所述FPGA电路。
6.根据权利要求5所述的基于FPGA的自动功率控制电路,其特征在于,通过对所述差值的对数计算得到FPGA电路的调整信号给所述FPGA电路。
7.一种基于权利要求1所述的FPGA的自动功率控制电路的功率控制方法,其特征在于,包括以下步骤:
S1,从所述功率放大电路的输出端耦合出射频信号;
S2,对所述射频信号进行检波采样,得到相应的采样信号;
S3,将所述采样信号换算得到功率电平,并将所述功率电平与原始功率电平比较,计算得出FPGA电路的调整信号;
S4,所述调整信号控制所述FPGA电路输出信源信号经AD变换后输出所需的射频信号给所述功率放大电路输入端。
8.根据权利要求7所述的基于FPGA的自动功率控制方法,其特征在于,所述步骤S3具体包括:
S31,对所述采样信号进行A/D模数变换;
S32,对变换后的所述采样信号进行换算得到对应的功率电平;
S33,将所述功率电平与原始功率电平比较,计算得到两者的差值;
S34,对所述差值进行计算,得到所述FPGA电路的调整信号。
9.根据权利要求8所述的基于FPGA的自动功率控制方法,其特征在于,所述步骤S34中,通过对所述差值进行对数计算,得到所述FPGA电路的调整信号。
CN201410538964.1A 2014-10-13 2014-10-13 基于fpga的自动功率控制电路及方法 Pending CN105491655A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410538964.1A CN105491655A (zh) 2014-10-13 2014-10-13 基于fpga的自动功率控制电路及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410538964.1A CN105491655A (zh) 2014-10-13 2014-10-13 基于fpga的自动功率控制电路及方法

Publications (1)

Publication Number Publication Date
CN105491655A true CN105491655A (zh) 2016-04-13

Family

ID=55678275

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410538964.1A Pending CN105491655A (zh) 2014-10-13 2014-10-13 基于fpga的自动功率控制电路及方法

Country Status (1)

Country Link
CN (1) CN105491655A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105743820A (zh) * 2016-04-21 2016-07-06 大连理工大学 一种基于arm+fpga架构的列车以太网交换机
CN106535456A (zh) * 2016-11-14 2017-03-22 上海联影医疗科技有限公司 功率控制组件以及控制磁控管到设定功率的方法
CN109444759A (zh) * 2018-12-21 2019-03-08 成都前锋电子仪器有限责任公司 一种蓄电池内阻测量系统
CN110765789A (zh) * 2019-10-29 2020-02-07 江苏微锐超算科技有限公司 一种fpga器件的性能控制装置及其控制方法
CN113504742A (zh) * 2021-06-15 2021-10-15 电子科技大学 一种基于fpga的双馈自动电平控制系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105743820A (zh) * 2016-04-21 2016-07-06 大连理工大学 一种基于arm+fpga架构的列车以太网交换机
CN105743820B (zh) * 2016-04-21 2019-01-18 大连理工大学 一种基于arm+fpga架构的列车以太网交换机
CN106535456A (zh) * 2016-11-14 2017-03-22 上海联影医疗科技有限公司 功率控制组件以及控制磁控管到设定功率的方法
CN106535456B (zh) * 2016-11-14 2019-10-08 上海联影医疗科技有限公司 功率控制组件以及控制磁控管到设定功率的方法
CN109444759A (zh) * 2018-12-21 2019-03-08 成都前锋电子仪器有限责任公司 一种蓄电池内阻测量系统
CN110765789A (zh) * 2019-10-29 2020-02-07 江苏微锐超算科技有限公司 一种fpga器件的性能控制装置及其控制方法
CN113504742A (zh) * 2021-06-15 2021-10-15 电子科技大学 一种基于fpga的双馈自动电平控制系统

Similar Documents

Publication Publication Date Title
CN105491655A (zh) 基于fpga的自动功率控制电路及方法
US9142877B2 (en) Control of a transmitter output power
US9479368B2 (en) Method and apparatus for adjusting pre-distortion coefficient
CN110289821B (zh) 适应工况环境的射频信号输出功率控制电路、方法及装置
US7792214B2 (en) Polar modulation transmitter circuit and communications device
CN102981113B (zh) 一种高精度高线性高温度稳定性的动态校准源系统
CN100492912C (zh) 一种信号处理方法及装置
CN102624407B (zh) 一种带自动增益控制的射频发射前端电路
CN104202002A (zh) 一种基于fpga的超短波电台数字agc控制系统和方法
CN102201792A (zh) 音频功率放大器自动增益控制电路
CN102497341B (zh) 一种本振泄露校准方法及系统
WO2012027982A1 (zh) 互补增强功率补偿方法、装置及通信设备
CN113504742B (zh) 一种基于fpga的双馈自动电平控制系统
CN104242835A (zh) 一种基于fpga的超短波电台alc控制系统和方法
CN204190712U (zh) 一种超短波电台自动增益控制电路
CN102025666A (zh) 一种基站发信机设备实现iq信号校准的方法及装置
CN112188607B (zh) 一种基于pid控制器的数字自动增益控制系统及方法
CN100589319C (zh) 功率放大器温度补偿装置和方法
CN107147368A (zh) 增益放大器的增益调整方法与装置
CN104113311A (zh) 一种开关电容型比较器的失调校正电路及其控制方法
CN112600629B (zh) 实现mimo信道模拟器射频接收机功率校准及数据处理的方法及其系统
CN109951244B (zh) 一种应用于信道模拟器的功率测量及射频接收增益控制方法
CN101056128A (zh) 稳定发射功率的方法和发射机
CN104749513B (zh) 通信系统及用于检测功率放大器的负载变化的方法
CN102255608A (zh) 一种大动态范围自动增益调节电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160413