CN105490268B - 一种交直流互联电网的负荷跟踪方法及系统 - Google Patents

一种交直流互联电网的负荷跟踪方法及系统 Download PDF

Info

Publication number
CN105490268B
CN105490268B CN201511027720.8A CN201511027720A CN105490268B CN 105490268 B CN105490268 B CN 105490268B CN 201511027720 A CN201511027720 A CN 201511027720A CN 105490268 B CN105490268 B CN 105490268B
Authority
CN
China
Prior art keywords
power
unit
plan
steam generator
optimization model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201511027720.8A
Other languages
English (en)
Other versions
CN105490268A (zh
Inventor
陈亦平
莫维科
侯君
陈皓勇
莫琦
郑晓东
孙雁斌
何越
黄丽颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
China Southern Power Grid Co Ltd
Original Assignee
South China University of Technology SCUT
China Southern Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT, China Southern Power Grid Co Ltd filed Critical South China University of Technology SCUT
Priority to CN201511027720.8A priority Critical patent/CN105490268B/zh
Publication of CN105490268A publication Critical patent/CN105490268A/zh
Application granted granted Critical
Publication of CN105490268B publication Critical patent/CN105490268B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明公开了一种交直流互联电网的负荷跟踪方法及系统,方法包括以下步骤:根据当前检修计划和实时全网拓扑模型生成功率转移因子表;确定参与负荷跟踪的机组,并输入基础数据;根据输入的基础数据计算功率偏差,然后根据功率转移因子表、输入的基础数据和计算的功率偏差进行功率交替调整分配,所述功率交替调整分配包括但不限于建立实时削减功率缺额的动态优化模型和采用分支定界算法求解建立的动态优化模型;根据功率交替调整分配的结果滚动计算计划潮流,然后根据潮流断面信息判断是否满足断面要求;根据判断的结果将调度计划发布给电网监控系统或输出报警信息。本发明具有科学直观、实时和鲁棒性强的优点,可广泛应用于电力调度领域。

Description

一种交直流互联电网的负荷跟踪方法及系统
技术领域
本发明涉及电力调度领域,尤其是一种交直流互联电网的负荷跟踪方法及系统。
背景技术
电网实际运行中,气象条件及设备状态的不确定性变化,会引起电源输出功率、网络结构、负荷需求的大幅变化。交直流混联运行的大电网系统在实时调度过程中,经常出现数百万千瓦的负荷预测偏差及省间计划调整,对于网省协调发电计划调整和网络安全校核提出了巨大的挑战。
传统的节能发电调度技术支持系统在计划制定中最终仅优化到日前调度计划,日内计划的修改需要依赖调度员的调度经验,缺少科学直观的决策系统必将影响电网的安全性和经济性。为了保证电网功率的实时平衡,如何保证机组出力计划实时削减功率缺额成了一个关键问题。
发明内容
为解决上述技术问题,本发明的目的在于:提供一种科学直观、实时和鲁棒性强的,交直流互联电网的负荷跟踪方法。
本发明的另一目的在于:提供一种科学直观、实时和鲁棒性强的,交直流互联电网的负荷跟踪系统。
本发明解决上述技术问题所采取的技术方案是:
一种交直流互联电网的负荷跟踪方法,包括以下步骤:
S1、根据当前检修计划和实时全网拓扑模型生成功率转移因子表;
S2、确定参与负荷跟踪的机组,并输入基础数据,所述基础数据包括但不限于间歇性能源的超短期功率预测数据、超短期系统负荷预测数据、机组功率计划、直流线路传输功率计划和省间联络线功率计划;
S3、根据输入的基础数据计算功率偏差,然后根据功率转移因子表、输入的基础数据和计算的功率偏差进行功率交替调整分配,所述功率交替调整分配包括但不限于建立实时削减功率缺额的动态优化模型和采用分支定界算法求解建立的动态优化模型;
S4、根据功率交替调整分配的结果滚动计算计划潮流,然后根据潮流断面信息判断是否满足断面要求;
S5、根据判断的结果将调度计划发布给电网监控系统或输出报警信息。
进一步,所述步骤S2,其包括:
根据机组参数将机组分为计划机组、负荷跟踪机组和AGC机组三个机组,然后从这三个机组中选出参与负荷跟踪的机组;
输入基础数据,所述基础数据包括超短期系统负荷预测数据、间歇性能源的超短期功率预测数据、各机组的基本数据及其功率计划、省间联络线功率计划、直流线路传输功率计划和系统对负荷备用的需求。
进一步,所述步骤S3,其包括:
S31、根据间歇性能源的超短期功率预测数据、超短期系统负荷预测数据、省间联络线功率计划、直流线路传输功率计划和机组功率计划计算功率偏差;
S32、判断计算出的功率偏差是否超出死区,若是,则建立实时削减功率缺额的动态优化模型,并将功率转移因子表与输入的基础数据代入建立的模型中,反之,则结束负荷跟踪过程;
S33、采用分支定界算法对建立的动态优化模型进行求解。
进一步,所述建立实时削减功率缺额的动态优化模型这一步骤包括:
a.确定实时削减功率缺额的动态优化模型的目标函数,所述实时削减功率缺额的动态优化模型的目标函数为F=F1+F2,其中,F1为周期时间段内的各机组运行费用函数,F2为周期时间段内的AGC机组的服务费用函数;
b.完善实时削减功率缺额的动态优化模型的约束条件。
进一步,所述周期时间段内的各机组运行费用函数F1为:所述周期时间段内的AGC机组的服务费用函数F2为:其中,ΔPj=Zj*Aj,j∈J,ΔPj表示机组j的调整量,Aj表示机组j的调节步长,Zj表示机组j的给定整数变量,C(j)为机组j的购电价格,J为机组的集合,J1为参与负荷跟踪方法的机组集合,J2为传统的AGC机组集合,分别为机组j和k的上升方向的调节速率,D为AGC服务的单位费用,Δt为负荷跟踪周期时间。
进一步,所述实时削减功率缺额的动态优化模型的约束条件包括:
功率平衡约束,所述功率平衡约束的表达式为:其中,ΔPj=Zj*Aj,j∈J,ΔPj表示机组j的调整量,Aj表示机组j的调节步长,Zj表示机组j的给定整数变量,C(j)为机组j的购电价格,J为机组的集合,ΔP为总调整量,为各机组的调整总量,PDD为AGC的动态调节死区;
备用容量约束,所述备用容量约束的表达式为:其中,分别为一个周期时段内机组j的调整能力上限和下限,Pj为机组j的出力计划,rj为机组j的备用,分别为机组j的出力极限最小约束和最大约束,分别为上升方向和下降方向的调节速率;
线路传输功率约束,所述线路传输功率约束的表达式为:|PL=SF×Pinj|≤PLmax,其中,PL为线路传输功率,Pinj为节点功率净输入向量,SF为功率转移因子表,PLmax为线路传输极限;
断面极限约束,所述断面极限约束的表达式为:|∑gPL=∑gSF×Pinj|≤∑gPLmax,其中,g为第g条断面。
进一步,所述步骤S4,其包括:
根据功率交替调整分配得到的调度计划数据和全网拓扑模型滚动计算计划潮流,所述调度计划数据包括机组功率计划、直流线路传输功率计划和省间联络线功率计划;
根据计算的结果判断调度计划数据是否满足断面极限要求,若未出现断面越限的情况,则通过调度方案,反之,则不通过调度方案。
进一步,所述步骤S5,其具体为:若调度方案通过,则将调度计划数据以自动发布的方式下发给电网监控系统;若调度方案不通过,则发出报警信息。
本发明解决上述技术问题所采取的另一技术方案是:
一种交直流互联电网的负荷跟踪系统,包括以下模块:
生成模块,用于根据当前检修计划和实时全网拓扑模型生成功率转移因子表;
初始化模块,用于确定参与负荷跟踪的机组,并输入基础数据,所述基础数据包括但不限于间歇性能源的超短期功率预测数据、超短期系统负荷预测数据、机组功率计划、直流线路传输功率计划和省间联络线功率计划;
功率交替调整分配模块,用于根据输入的基础数据计算功率偏差,然后根据功率转移因子表、输入的基础数据和计算的功率偏差进行功率交替调整分配,所述功率交替调整分配包括但不限于建立实时削减功率缺额的动态优化模型和采用分支定界算法求解建立的动态优化模型;
滚动计算判断模块,用于根据功率交替调整分配的结果滚动计算计划潮流,然后根据潮流断面信息判断是否满足断面要求;
发布输出模块,用于根据判断的结果将调度计划发布给电网监控系统或输出报警信息;
所述生成模块的输出端依次通过初始化模块、功率交替调整分配模块和滚动计算判断模块进而与发布输出模块的输入端连接。
进一步,所述功率交替调整分配模块包括:
功率偏差计算单元,用于根据间歇性能源的超短期功率预测数据、超短期系统负荷预测数据、省间联络线功率计划、直流线路传输功率计划和机组功率计划计算功率偏差;
建模单元,用于判断计算出的功率偏差是否超出死区,若是,则建立实时削减功率缺额的动态优化模型,并将功率转移因子表与输入的基础数据代入建立的模型中,反之,则结束负荷跟踪过程;
求解单元,用于采用分支定界算法对建立的动态优化模型进行求解;
所述初始化模块的输出端依次通过功率偏差计算单元、建模单元和求解单元进而与滚动计算判断模块的输入端连接。
本发明的方法的有益效果是:根据输入的基础数据计算功率偏差,然后根据功率转移因子表、输入的基础数据和计算的功率偏差进行功率交替调整分配,并判断功率交替调整分配的结果是否满足断面要求,输入的基础数据包括间歇性能源的超短期功率预测数据、超短期系统负荷预测数据、机组功率计划、直流线路传输功率计划和省间联络线功率计划,综合考虑了直流线路计划传输功率约束、机组功率约束、省间联络线功率约束和断面极限约束,通过建立的实时削减功率缺额的动态优化模型,来实时削减调度方案与实际运行的偏差,避免了传统AGC机组自动发电控制的滞后性,降低了气象条件及设备状态的不确定性变化对电网的冲击作用,鲁棒性强且实时性高,且建立的动态优化模型以间歇性能源的超短期功率预测数据和超短期系统负荷预测数据等精确的预测数据为依据,使得日内计划的修改能自动进行,不再需要依赖调度员的调度经验,更加科学直观。进一步,实时削减功率缺额的动态优化模型的目标函数是针对周期时间段而不仅是对时间点的目标函数,防止出现部分机组反调的情况,进一步提升了调度方案的鲁棒性。
本发明的系统的有益效果是:根据输入的基础数据计算功率偏差,然后根据功率转移因子表、输入的基础数据和计算的功率偏差进行功率交替调整分配,并判断功率交替调整分配的结果是否满足断面要求,输入的基础数据包括间歇性能源的超短期功率预测数据、超短期系统负荷预测数据、机组功率计划、直流线路传输功率计划和省间联络线功率计划,综合考虑了直流线路计划传输功率约束、机组功率约束、省间联络线功率约束和断面极限约束,通过建立的实时削减功率缺额的动态优化模型,来实时削减调度方案与实际运行的偏差,避免了传统AGC机组自动发电控制的滞后性,降低了气象条件及设备状态的不确定性变化对电网的冲击作用,鲁棒性强且实时性高,且建立的动态优化模型以间歇性能源的超短期功率预测数据和超短期系统负荷预测数据等精确的预测数据为依据,使得日内计划的修改能自动进行,不再需要依赖调度员的调度经验,更加科学直观。
附图说明
图1为本发明一种交直流互联电网的负荷跟踪方法的步骤流程图;
图2为本发明一种交直流互联电网的负荷跟踪系统的结构框图;
图3为本发明实施例一负荷跟踪方法的流程图;
图4为本发明实施例二功率交替调整分配过程的流程图。
具体实施方式
参照图1,一种交直流互联电网的负荷跟踪方法,包括以下步骤:
S1、根据当前检修计划和实时全网拓扑模型生成功率转移因子表;
S2、确定参与负荷跟踪的机组,并输入基础数据,所述基础数据包括但不限于间歇性能源的超短期功率预测数据、超短期系统负荷预测数据、机组功率计划、直流线路传输功率计划和省间联络线功率计划;
S3、根据输入的基础数据计算功率偏差,然后根据功率转移因子表、输入的基础数据和计算的功率偏差进行功率交替调整分配,所述功率交替调整分配包括但不限于建立实时削减功率缺额的动态优化模型和采用分支定界算法求解建立的动态优化模型;
S4、根据功率交替调整分配的结果滚动计算计划潮流,然后根据潮流断面信息判断是否满足断面要求;
S5、根据判断的结果将调度计划发布给电网监控系统或输出报警信息。
进一步作为优选的实施方式,所述步骤S2,其包括:
根据机组参数将机组分为计划机组、负荷跟踪机组和AGC机组三个机组,然后从这三个机组中选出参与负荷跟踪的机组;
输入基础数据,所述基础数据包括超短期系统负荷预测数据、间歇性能源的超短期功率预测数据、各机组的基本数据及其功率计划、省间联络线功率计划、直流线路传输功率计划和系统对负荷备用的需求。
进一步作为优选的实施方式,所述步骤S3,其包括:
S31、根据间歇性能源的超短期功率预测数据、超短期系统负荷预测数据、省间联络线功率计划、直流线路传输功率计划和机组功率计划计算功率偏差;
S32、判断计算出的功率偏差是否超出死区,若是,则建立实时削减功率缺额的动态优化模型,并将功率转移因子表与输入的基础数据代入建立的模型中,反之,则结束负荷跟踪过程;
S33、采用分支定界算法对建立的动态优化模型进行求解。
进一步作为优选的实施方式,所述建立实时削减功率缺额的动态优化模型这一步骤包括:
a.确定实时削减功率缺额的动态优化模型的目标函数,所述实时削减功率缺额的动态优化模型的目标函数为F=F1+F2,其中,F1为周期时间段内的各机组运行费用函数,F2为周期时间段内的AGC机组的服务费用函数;
b.完善实时削减功率缺额的动态优化模型的约束条件。
进一步作为优选的实施方式,所述周期时间段内的各机组运行费用函数F1为:所述周期时间段内的AGC机组的服务费用函数F2为:其中,ΔPj=Zj*Aj,j∈J,ΔPj表示机组j的调整量,Aj表示机组j的调节步长,Zj表示机组j的给定整数变量,C(j)为机组j的购电价格,J为机组的集合,J1为参与负荷跟踪方法的机组集合,J2为传统的AGC机组集合,分别为机组j和k的上升方向的调节速率,D为AGC服务的单位费用,Δt为负荷跟踪周期时间。
进一步作为优选的实施方式,所述实时削减功率缺额的动态优化模型的约束条件包括:
功率平衡约束,所述功率平衡约束的表达式为:其中,ΔPj=Zj*Aj,j∈J,ΔPj表示机组j的调整量,Aj表示机组j的调节步长,Zj表示机组j的给定整数变量,C(j)为机组j的购电价格,J为机组的集合,ΔP为总调整量,为各机组的调整总量,PDD为AGC的动态调节死区;
备用容量约束,所述备用容量约束的表达式为:其中,分别为一个周期时段内机组j的调整能力上限和下限,Pj为机组j的出力计划,rj为机组j的备用,分别为机组j的出力极限最小约束和最大约束,分别为上升方向和下降方向的调节速率;
线路传输功率约束,所述线路传输功率约束的表达式为:|PL=SF×Pinj|≤PLmax,其中,PL为线路传输功率,Pinj为节点功率净输入向量,SF为功率转移因子表,PLmax为线路传输极限;
断面极限约束,所述断面极限约束的表达式为:|∑gPL=∑gSF×Pinj|≤∑gPLmax,其中,g为第g条断面。
进一步作为优选的实施方式,所述步骤S4,其包括:
根据功率交替调整分配得到的调度计划数据和全网拓扑模型滚动计算计划潮流,所述调度计划数据包括机组功率计划、直流线路传输功率计划和省间联络线功率计划;
根据计算的结果判断调度计划数据是否满足断面极限要求,若未出现断面越限的情况,则通过调度方案,反之,则不通过调度方案。
进一步作为优选的实施方式,所述步骤S5,其具体为:若调度方案通过,则将调度计划数据以自动发布的方式下发给电网监控系统;若调度方案不通过,则发出报警信息。
参照图2,一种交直流互联电网的负荷跟踪系统,包括以下模块:
生成模块,用于根据当前检修计划和实时全网拓扑模型生成功率转移因子表;
初始化模块,用于确定参与负荷跟踪的机组,并输入基础数据,所述基础数据包括但不限于间歇性能源的超短期功率预测数据、超短期系统负荷预测数据、机组功率计划、直流线路传输功率计划和省间联络线功率计划;
功率交替调整分配模块,用于根据输入的基础数据计算功率偏差,然后根据功率转移因子表、输入的基础数据和计算的功率偏差进行功率交替调整分配,所述功率交替调整分配包括但不限于建立实时削减功率缺额的动态优化模型和采用分支定界算法求解建立的动态优化模型;
滚动计算判断模块,用于根据功率交替调整分配的结果滚动计算计划潮流,然后根据潮流断面信息判断是否满足断面要求;
发布输出模块,用于根据判断的结果将调度计划发布给电网监控系统或输出报警信息;
所述生成模块的输出端依次通过初始化模块、功率交替调整分配模块和滚动计算判断模块进而与发布输出模块的输入端连接。
参照图2,进一步作为优选的实施方式,所述功率交替调整分配模块包括:
功率偏差计算单元,用于根据间歇性能源的超短期功率预测数据、超短期系统负荷预测数据、省间联络线功率计划、直流线路传输功率计划和机组功率计划计算功率偏差;
建模单元,用于判断计算出的功率偏差是否超出死区,若是,则建立实时削减功率缺额的动态优化模型,并将功率转移因子表与输入的基础数据代入建立的模型中,反之,则结束负荷跟踪过程;
求解单元,用于采用分支定界算法对建立的动态优化模型进行求解;
所述初始化模块的输出端依次通过功率偏差计算单元、建模单元和求解单元进而与滚动计算判断模块的输入端连接。
下面结合说明书附图和具体实施例对本发明作进一步详细说明。
实施例一
参照图3,本发明的第一实施例:
如图3所示,本实施例所提出的交直流互联电网的负荷跟踪方法,包括以下步骤:
步骤1、根据当前检修计划和实时全网模型生成功率转移因子表。
其中,生成功率转移因子表时忽略线路电阻,只根据线路电抗值来构建功率转移因子表。
步骤2、根据机组参数,确定参与负荷跟踪方法的机组。
其中,根据各机组调节能力、机组类型等数据,可将机组分为三类:(1)计划机组,类似传统的非AGC机组,按预设计划发电,调节周期为上一级调度计划的调节周期;(2)负荷跟踪机组,即本文参与负荷跟踪方法的机组;(3)AGC(自动发电控制)机组,传统的AGC功能,能校正ACE(区域控制偏差),调节周期为秒级。
步骤3、输入数据,包括间歇性能源的超短期功率预测、超短期系统负荷预测、机组功率计划、直流线路传输功率计划、省间联络线功率计划。
其中,输入基础数据,既包括了超短期系统负荷预测、间歇性能源的超短期功率预测数据等精确的预测数据,也包括了各机组基本数据及其功率计划、省间联络线功率计划、直流线路传输功率计划、系统对负荷备用的需求等数据。
步骤4、计算出功率偏差,进行功率交替调整分配,包括建立实时削减功率缺额的动态优化模型和采用分支定界算法求解该模型。
该步骤可进一步细分为:
1)计算功率偏差
本发明根据间歇性能源的超短期功率预测、超短期系统负荷预测、省间联络线功率计划、直流传输功率计划和机组功率计划算出功率偏差等数据算出功率偏差。本发明计算出的功率偏差是基于预测的偏差,并不是系统当前的功率偏差,准确性主要取决于间歇性能源的超短期功率预测数据和超短期系统负荷预测数据。
2)建立实时削减功率缺额的动态优化模型
建立实时削减功率缺额的动态优化模型具体包括以下步骤:
a.确定目标函数。
本发明动态优化模型的目标函数包括两部分,一是周期时间段内的各机组运行费用;二是周期时间段内的AGC机组的服务费用。这两部分均转化为经济指标,采用加权的方法形成目标函数。
b.完善约束条件。
本发明的约束条件包括系统侧约束和机组侧约束,系统侧约束包括功率平衡约束、备用容量约束、线路功率约束和断面极限约束,机组侧约束包括各机组的出力约束、爬坡约束等,其本质反映了各机组的物理特性及实际情况约束。
3)采用分支定界算法求解该模型
负荷跟踪方法为在线计算,对算法的计算速度要求较高。本发明采用分支定界算法求解该动态优化模型,以得到相应的调度计划数据。
步骤5、滚动计算计划潮流,根据断面信息进行判断,所有断面未越限则通过日内计划的修改,否则给出报警信息。
其中,滚动计算的周期与超短期系统负荷预测的周期一致,可根据实际需要预先设定。将步骤4得到的调度计划数据和全网拓扑模型代入潮流计算,然后根据断面极限要求进行判断,若未出现断面越限情况,则通过调度方案;否则不通过调度方案,并给出报警信息。
步骤6、将调度计划以自动发布方式发布到电网监控系统。
本实施例综合考虑了直流线路计划传输功率约束、机组功率约束、省间联络线功率约束和断面极限约束,提供一种交直流互联电网的负荷跟踪方法,以减小气象条件及设备状态的不确定性变化对电网的不利影响。本实施例具有以下优点:
(1)通过实时削减功率缺额的动态优化模型,实时削减调度方案与实际运行的偏差,避免了自动发电控制的滞后性,降低了气象条件及设备状态的不确定性变化对电网的冲击作用;另一方面,采用负荷跟踪方法,使得部分非AGC机组也能根据系统负荷变化趋势增减负荷,减轻了AGC机组的调节负担,达到了合理使用AGC资源的目的。
(2)建立的动态优化模型是对时间段而不仅是对时间点所提出的动态优化方案,使调度方案具有较强的鲁棒性,防止出现部分机组反调的情况。
实施例二
参照图4,本发明的第二实施例:
本实施例功率交替调整分配流程如图4所示,下面重点对实时削减功率缺额的动态优化模型进行介绍。
采用一组整数变量Zi,i∈I,以这个变量与调节步长相乘作为机组的调整量,即
ΔPi=Zi*Ai,i∈I
其中,ΔPi表示机组i的调整量,Ai表示机组i的调节步长。
而实时削减功率缺额的动态优化模型包括以下两方面的内容:
(1)目标函数
本发明实时削减功率缺额的动态优化模型的目标函数为F=F1+F2,其中,F1和F2分别为:
a.周期时间段内的各机组运行费用F1:在总调节量固定的情况下,寻找最优的调整费用,即其中,C(j)为机组j的购电价格。
b.周期时间段内的AGC机组的服务费用F2:由于机组参与AGC调整的补偿费用较高,所以应尽量选取调节速率或组合调节速率较快的机组,有:
其中,J1为参与负荷跟踪方法的机组集合,J2为传统的AGC机组集合,分别为机组j和k的上升方向的调节速率,Δt为负荷跟踪周期时间,D为AGC服务的单位费用(元/MW),上式是对机组调节功率在时间上的积分乘上AGC服务费用得出的式子。
(2)约束方程
本发明实时削减功率缺额的动态优化模型的约束方程包括:
a.功率平衡约束方程:总调整量ΔP与各机组的调整总量之差少于AGC的动态调节死区PDD,即:
b.调节速率跟机组备用关系约束方程,有:
其中,分别为一个周期时段内机组j的调整能力上限和下限,分配前需算好:
Pj为机组j的出力计划,rj为机组j的备用,分别为机组j的出力极限最小约束和最大约束,分别为上升方向和下降方向的调节速率;Δt为负荷跟踪周期时间。
c.线路传输极限约束方程,有:
|PL=SF×Pinj|≤PLmax
其中,PL为线路传输功率,Pinj为节点功率净输入向量,SF为功率转移因子表,PLmax为线路传输极限。
d.断面极限约束方程,有:
|∑gPL=∑gSF×Pinj|≤∑gPLmax
其中,g为第g条断面。
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (5)

1.一种交直流互联电网的负荷跟踪方法,其特征在于:包括以下步骤:
S1、根据当前检修计划和实时全网拓扑模型生成功率转移因子表;
S2、确定参与负荷跟踪的机组,并输入基础数据,所述基础数据包括但不限于间歇性能源的超短期功率预测数据、超短期系统负荷预测数据、机组功率计划、直流线路传输功率计划和省间联络线功率计划;
S3、根据输入的基础数据计算功率偏差,然后根据功率转移因子表、输入的基础数据和计算的功率偏差进行功率交替调整分配,所述功率交替调整分配包括但不限于建立实时削减功率缺额的动态优化模型和采用分支定界算法求解建立的动态优化模型;
S4、根据功率交替调整分配的结果滚动计算计划潮流,然后根据潮流断面信息判断是否满足断面要求;
S5、根据判断的结果将调度计划发布给电网监控系统或输出报警信息;
所述步骤S3,其包括:
S31、根据间歇性能源的超短期功率预测数据、超短期系统负荷预测数据、省间联络线功率计划、直流线路传输功率计划和机组功率计划计算功率偏差;
S32、判断计算出的功率偏差是否超出死区,若是,则建立实时削减功率缺额的动态优化模型,并将功率转移因子表与输入的基础数据代入建立的模型中,反之,则结束负荷跟踪过程;
S33、采用分支定界算法对建立的动态优化模型进行求解;
所述建立实时削减功率缺额的动态优化模型这一步骤包括:
a.确定实时削减功率缺额的动态优化模型的目标函数,所述实时削减功率缺额的动态优化模型的目标函数为F=F1+F2,其中,F1为周期时间段内的各机组运行费用函数,F2为周期时间段内的AGC机组的服务费用函数;
b.完善实时削减功率缺额的动态优化模型的约束条件;
所述周期时间段内的各机组运行费用函数F1为:所述周期时间段内的AGC机组的服务费用函数F2为:其中,ΔPj=Zj*Aj,j∈J,ΔPj表示机组j的调整量,Aj表示机组j的调节步长,Zj表示机组j的给定整数变量,C(j)为机组j的购电价格,J为机组的集合,J1为参与负荷跟踪方法的机组集合,J2为传统的AGC机组集合,分别为机组j和k的上升方向的调节速率,D为AGC服务的单位费用,Δt为负荷跟踪周期时间;
所述实时削减功率缺额的动态优化模型的约束条件包括:
功率平衡约束,所述功率平衡约束的表达式为:其中,ΔPj=Zj*Aj,j∈J,ΔPj表示机组j的调整量,Aj表示机组j的调节步长,Zj表示机组j的给定整数变量,C(j)为机组j的购电价格,J为机组的集合,ΔP为总调整量,为各机组的调整总量,PDD为AGC的动态调节死区;
备用容量约束,所述备用容量约束的表达式为:其中,分别为一个周期时段内机组j的调整能力上限和下限,Pj为机组j的出力计划,rj为机组j的备用,分别为机组j的出力极限最小约束和最大约束,分别为上升方向和下降方向的调节速率;
线路传输功率约束,所述线路传输功率约束的表达式为:|PL=SF×Pinj|≤PLmax,其中,PL为线路传输功率,Pinj为节点功率净输入向量,SF为功率转移因子表,PLmax为线路传输极限;
断面极限约束,所述断面极限约束的表达式为:|∑gPL=∑gSF×Pinj|≤∑gPLmax,其中,g为第g条断面。
2.根据权利要求1所述的一种交直流互联电网的负荷跟踪方法,其特征在于:所述步骤S2,其包括:
根据机组参数将机组分为计划机组、负荷跟踪机组和AGC机组三个机组,然后从这三个机组中选出参与负荷跟踪的机组;
输入基础数据,所述基础数据包括超短期系统负荷预测数据、间歇性能源的超短期功率预测数据、各机组的基本数据及其功率计划、省间联络线功率计划、直流线路传输功率计划和系统对负荷备用的需求。
3.根据权利要求1所述的一种交直流互联电网的负荷跟踪方法,其特征在于:所述步骤S4,其包括:
根据功率交替调整分配得到的调度计划数据和全网拓扑模型滚动计算计划潮流,所述调度计划数据包括机组功率计划、直流线路传输功率计划和省间联络线功率计划;
根据计算的结果判断调度计划数据是否满足断面极限要求,若未出现断面越限的情况,则通过调度方案,反之,则不通过调度方案。
4.根据权利要求3所述的一种交直流互联电网的负荷跟踪方法,其特征在于:所述步骤S5,其具体为:若调度方案通过,则将调度计划数据以自动发布的方式下发给电网监控系统;若调度方案不通过,则发出报警信息。
5.一种交直流互联电网的负荷跟踪系统,其特征在于:包括以下模块:
生成模块,用于根据当前检修计划和实时全网拓扑模型生成功率转移因子表;
初始化模块,用于确定参与负荷跟踪的机组,并输入基础数据,所述基础数据包括但不限于间歇性能源的超短期功率预测数据、超短期系统负荷预测数据、机组功率计划、直流线路传输功率计划和省间联络线功率计划;
功率交替调整分配模块,用于根据输入的基础数据计算功率偏差,然后根据功率转移因子表、输入的基础数据和计算的功率偏差进行功率交替调整分配,所述功率交替调整分配包括但不限于建立实时削减功率缺额的动态优化模型和采用分支定界算法求解建立的动态优化模型;
滚动计算判断模块,用于根据功率交替调整分配的结果滚动计算计划潮流,然后根据潮流断面信息判断是否满足断面要求;
发布输出模块,用于根据判断的结果将调度计划发布给电网监控系统或输出报警信息;
所述生成模块的输出端依次通过初始化模块、功率交替调整分配模块和滚动计算判断模块进而与发布输出模块的输入端连接;
所述功率交替调整分配模块包括:
功率偏差计算单元,用于根据间歇性能源的超短期功率预测数据、超短期系统负荷预测数据、省间联络线功率计划、直流线路传输功率计划和机组功率计划计算功率偏差;
建模单元,用于判断计算出的功率偏差是否超出死区,若是,则建立实时削减功率缺额的动态优化模型,并将功率转移因子表与输入的基础数据代入建立的模型中,反之,则结束负荷跟踪过程;
求解单元,用于采用分支定界算法对建立的动态优化模型进行求解;
所述初始化模块的输出端依次通过功率偏差计算单元、建模单元和求解单元进而与滚动计算判断模块的输入端连接;
所述建模单元用于建立实时削减功率缺额的动态优化模型时,依次执行以下操作:
确定实时削减功率缺额的动态优化模型的目标函数,所述实时削减功率缺额的动态优化模型的目标函数为F=F1+F2,其中,F1为周期时间段内的各机组运行费用函数,F2为周期时间段内的AGC机组的服务费用函数;
完善实时削减功率缺额的动态优化模型的约束条件;
所述周期时间段内的各机组运行费用函数F1为:所述周期时间段内的AGC机组的服务费用函数F2为:其中,ΔPj=Zj*Aj,j∈J,ΔPj表示机组j的调整量,Aj表示机组j的调节步长,Zj表示机组j的给定整数变量,C(j)为机组j的购电价格,J为机组的集合,J1为参与负荷跟踪方法的机组集合,J2为传统的AGC机组集合,分别为机组j和k的上升方向的调节速率,D为AGC服务的单位费用,Δt为负荷跟踪周期时间;
所述实时削减功率缺额的动态优化模型的约束条件包括:
功率平衡约束,所述功率平衡约束的表达式为:其中,ΔPj=Zj*Aj,j∈J,ΔPj表示机组j的调整量,Aj表示机组j的调节步长,Zj表示机组j的给定整数变量,C(j)为机组j的购电价格,J为机组的集合,ΔP为总调整量,为各机组的调整总量,PDD为AGC的动态调节死区;
备用容量约束,所述备用容量约束的表达式为:其中,分别为一个周期时段内机组j的调整能力上限和下限,Pj为机组j的出力计划,rj为机组j的备用,分别为机组j的出力极限最小约束和最大约束,分别为上升方向和下降方向的调节速率;
线路传输功率约束,所述线路传输功率约束的表达式为:|PL=SF×Pinj|≤PLmax,其中,PL为线路传输功率,Pinj为节点功率净输入向量,SF为功率转移因子表,PLmax为线路传输极限;
断面极限约束,所述断面极限约束的表达式为:|∑gPL=∑gSF×Pinj|≤∑gPLmax,其中,g为第g条断面。
CN201511027720.8A 2015-12-30 2015-12-30 一种交直流互联电网的负荷跟踪方法及系统 Active CN105490268B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511027720.8A CN105490268B (zh) 2015-12-30 2015-12-30 一种交直流互联电网的负荷跟踪方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511027720.8A CN105490268B (zh) 2015-12-30 2015-12-30 一种交直流互联电网的负荷跟踪方法及系统

Publications (2)

Publication Number Publication Date
CN105490268A CN105490268A (zh) 2016-04-13
CN105490268B true CN105490268B (zh) 2018-02-23

Family

ID=55677086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511027720.8A Active CN105490268B (zh) 2015-12-30 2015-12-30 一种交直流互联电网的负荷跟踪方法及系统

Country Status (1)

Country Link
CN (1) CN105490268B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107294138B (zh) * 2017-03-15 2023-09-22 贵州电网有限责任公司电力科学研究院 一种agc变负荷速率实时计算和自动适配方法
CN107968408B (zh) * 2017-11-17 2021-05-04 中国南方电网有限责任公司 一种异步联网的直流功率计划优化方法、系统及装置
CN110970924A (zh) * 2019-12-09 2020-04-07 国网辽宁省电力有限公司 电网发电机组的清洁能源消纳方法、装置
CN112308303B (zh) * 2020-10-22 2024-03-08 新奥数能科技有限公司 基于偏差分配的高容错供能群组负荷调度方法、装置及终端设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102195362A (zh) * 2011-05-26 2011-09-21 中国电力科学研究院 一种计及系统运行可靠性的概率动态调度方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4376089B2 (ja) * 2004-02-25 2009-12-02 川崎重工業株式会社 ガスエンジン発電設備

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102195362A (zh) * 2011-05-26 2011-09-21 中国电力科学研究院 一种计及系统运行可靠性的概率动态调度方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
含风电场的交直流互联电力系统网省协调有功调度优化方法;陆文甜,等;《电力系统自动化》;20150410;第39卷(第7期);89-96 *

Also Published As

Publication number Publication date
CN105490268A (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
CN105046395B (zh) 一种含多类型新能源的电力系统日内滚动计划编制方法
Luna et al. Online energy management systems for microgrids: Experimental validation and assessment framework
CN104376412B (zh) 一种新能源发电模式下高载能企业调峰控制方法
CN105490268B (zh) 一种交直流互联电网的负荷跟踪方法及系统
CN113193547B (zh) 计及新能源及负荷区间不确定性的电力系统日前-日内协同调度方法与系统
CN107248751A (zh) 一种实现配电网负荷功率削峰填谷的储能站调度控制方法
CN109409702A (zh) 一种电网运行指标分析系统
CN105139147A (zh) 微电网系统的经济调度方法
CN105207259A (zh) 基于能量管理的并网状态下的微电网系统调度方法
CN105515027A (zh) 一种负荷曲线可配置的储能微网控制方法
KR101769776B1 (ko) 주파수 제어 시스템 및 방법
CN112636331B (zh) 智能电网的动态经济调度分布式优化方法及系统
CN109390932A (zh) 一种考虑直流联络线功率优化的安全约束机组组合计算方法
CN107069830A (zh) 提高风电消纳能力的方法及装置
CN112467760A (zh) 自动发电控制方法和系统
JP6225553B2 (ja) 需給制御装置
CN105305501B (zh) 实时负荷变化下水电站多模式时空嵌套出力动态调整方法
CN105207207A (zh) 基于能量管理的孤网状态下的微电网系统调度方法
CN113300354B (zh) 电网运行效能最优的源网荷储有功协调控制方法及装置
CN105226649B (zh) 一种基于母线负荷预测改进的省级电网发电调度优化方法
CN110808616A (zh) 一种基于功率缺额分配的微电网频率控制方法
CN104809543B (zh) 基于月度输变电设备检修计划的电网运行方式生成方法
CN103490421B (zh) 区域电网直调抽水蓄能电站群短期多电网负荷分配方法
CN104578174A (zh) 一种基于指令的主站agc机组控制方法
CN109301817B (zh) 一种考虑需求响应的多时间尺度源网荷协调调度方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant