CN105489678A - 一种优化光伏组件封装损失的方法 - Google Patents

一种优化光伏组件封装损失的方法 Download PDF

Info

Publication number
CN105489678A
CN105489678A CN201510915710.1A CN201510915710A CN105489678A CN 105489678 A CN105489678 A CN 105489678A CN 201510915710 A CN201510915710 A CN 201510915710A CN 105489678 A CN105489678 A CN 105489678A
Authority
CN
China
Prior art keywords
solar cell
light utilization
loss
spectral response
antireflection film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510915710.1A
Other languages
English (en)
Other versions
CN105489678B (zh
Inventor
丁常林
汤云鹤
黄兴
王殿磊
张斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altusvia Energy Taicang Co Ltd
Original Assignee
Altusvia Energy Taicang Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Altusvia Energy Taicang Co Ltd filed Critical Altusvia Energy Taicang Co Ltd
Priority to CN201510915710.1A priority Critical patent/CN105489678B/zh
Publication of CN105489678A publication Critical patent/CN105489678A/zh
Application granted granted Critical
Publication of CN105489678B publication Critical patent/CN105489678B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

一种优化光伏组件封装损失的方法,本发明公开了一种优化太阳电池组件封装损失的方法,该方法的具体步骤如下:(1)制作具有不同减反射膜层厚度的光伏玻璃,建立减反射膜厚度与透过率关系量表;(2)通过光电池量子效率测试设备测量被实验太阳电池的量子效率,得到被试太阳电池的光谱响应分布;(3)根据被试太阳电池的光谱响应分布及各种减反射膜厚镀膜玻璃透过率可遍历计算出太阳电池在光谱条件下的光线利用率;(4)对比不同减反膜厚条件下的光线利用率,得到由光学损失带来的封装损失的理论优化值;该方法拟合出不同减反射厚度间的光线利用率差异,从而得出由光学损失带来的封装损失最小的减反射膜厚方案。

Description

一种优化光伏组件封装损失的方法
技术领域
本发明涉及光伏领域,具体是一种优化太阳电池组件封装损失的方法。
背景技术
太阳能电池,也称光伏电池,是一种太阳能的光能直接转化为电能的半导体器件。因其是绿色的环保产品,不会引起环境污染,而且是可再生资源,所以在当今能源短缺的情形下,太阳能电池是一种有广阔发展前途的新型能源。
在光伏产业中,为了获得光伏发电单元所需的电流、电压和输出功率,同时也为了保护电池不受机械损伤和环境损害,必须将若干单片电池串并联连接并封装成光伏组件。一般情况下,封装后的光伏组件的输出功率(实际功率)小于所有电池片的功率值之和(理论功率),我们称之为封装损失。封装损失较高会导致较多的发电功率浪费,对于光伏制造企业的价值收益产生较大的影响。反之,封装损失的降低,组件输出功率的增加会直接带来组件功率收益,组件配置的电池片效率可以降低,间接降低了生产成本。
封装损失一般源于两类损失的加成:光学损失和电学损失。本发明主要涉及光学损失的降低,光学损失的成因是由于晶硅类单一P/N结电池不能将所有光线都吸收并转换成电能,地面用硅太阳电池的光谱响应范围一般为300-1100nm,因而任何减少这一波段的光进入电池的因素都会造成光学上的损失。
目前,通过在超白钢化玻璃表面镀上一层减反射膜,提高超白钢化玻璃光线增透率的方法,已经被光伏制造企业广泛采用,其结构如图1所示,1为减反射膜层,一般为硅基或有机纳米材料,2为钢化玻璃受光面,3为钢化玻璃压花面,4为EVA前膜。但是由于镀膜光伏玻璃的减反射膜层厚度对于不同波段光线有着较大的增透率差异,不同太阳电池对于不同波段光线也存在一定的光谱响应特征差异。故而从上述两方面结合的角度可以作为优化组件封装损失的条件之一。
发明内容
发明目的:本发明的目的是为了解决现有技术的不足,提供一种降低光伏组件封装损失的方法,该方法主要是从组件光学损失的角度考虑,利用镀膜光伏玻璃对于不同波段光线的增透率差异及太阳电池在不同波段光谱响应差异,从两者相匹配的角度降低由于光学损失带来的组件封装损失。该方法不增加光伏制造企业的直接成本,能够在不增加制造成本的情况下优化由光学损失带来的封装功率损失。
技术方案:为了实现以上目的,本发明所述的一种优化太阳电池组件封装损失的方法,该方法的具体步骤如下:
(a):制作具有不同减反射膜层厚度的光伏玻璃,以10-50nm作为膜层厚度公差,通过透射率测试设备,测试每种厚度减反膜层方案下的光学透过率Tran(λ),并建立减反射膜厚度与透过率关系量表;
(b):通过光电池量子效率测试设备测量被实验太阳电池的量子效率,根据光谱响应与外量子效率的固定比例关系,得到该被试太阳电池的光谱响应分布SR(λ);
(c):太阳电池的光谱响应波长区间为300-1100nm,根据被试太阳电池的光谱响应分布SR(λ)及镀膜玻璃透过率Tran(λ),通过加权平均法,可遍历计算出太阳电池在AM1.5(λ)光谱条件下的光线利用率U;
U= 1100 300 AM1.5(λ)*SR(λ)*Tran(λ)*d(λ)
1100 300AM1.5(λ)*SR(λ)*d(λ)
(d):对比不同减反膜厚条件下的光线利用率U,光线利用率较大的,认为是与被试太阳电池匹配的最佳减反射膜厚度,在此条件下可获得优化封装损失的光伏玻璃镀膜方案。
作为本发明的进一步优选,步骤c中所述的通过太阳电池光线利用率的遍历计算方法适用于不同类型太阳电池或其他光伏组件组成材料的组件封装性能预估。
有益效果:本发明所述的一种降低光伏组件封装损失的方法,通过太阳电池光谱响应与光伏玻璃在各波段的透过率加权拟合得出光线的利用率,通过对比不同镀膜厚度条件下的光线利用率,得到由光学损失带来的封装损失实现理论的优化值;此方法可以通过建立减反射膜膜厚与透过率关系量表,简便的拟合出不同减反射厚度间的光线利用率差异,从而得出由光学损失带来的封装损失最小的减反射膜厚方案。
附图说明
图1为光伏组件镀膜玻璃结构示意图;
图2为减反射膜厚度在300-1200nm波段的透过率拟合曲线。
具体实施方式
下面结合附图,进一步阐明本发明。
如附图所示,本发明所述的一种优化太阳电池组件封装损失的方法,该方法的具体步骤如下:
(a):制作具有不同减反射膜层厚度的光伏玻璃,以10-50nm作为膜层厚度公差,通过透射率测试设备,测试每种厚度减反膜层方案下的光学透过率Tran(λ),并建立减反射膜厚度与透过率关系量表;
(b):通过光电池量子效率测试设备测量被实验太阳电池的量子效率,根据光谱响应与外量子效率的固定比例关系,得到该被试太阳电池的光谱响应分布SR(λ);
(c):太阳电池的光谱响应波长区间为300-1100nm,根据被试太阳电池的光谱响应分布SR(λ)及镀膜玻璃透过率Tran(λ),通过加权平均法,可遍历计算出太阳电池在AM1.5(λ)光谱条件下的光线利用率U;
U= 1100 300 AM1.5(λ)*SR(λ)*Tran(λ)*d(λ)
1100 300AM1.5(λ)*SR(λ)*d(λ)
(d):对比不同减反膜厚条件下的光线利用率U,光线利用率较大的,认为是与被试太阳电池匹配的最佳减反射膜厚度,在此条件下可获得优化封装损失的光伏玻璃镀膜方案。
根据权利要求1所述的一种优化太阳电池组件封装损失的方法,其特征在于:步骤c中所述的通过太阳电池光线利用率的遍历计算方法适用于不同类型太阳电池或其他光伏组件组成材料的组件封装性能预估。
实验数据
下表为针对我公司一种新型工艺电池,通过上述方案进行的太阳电池与玻璃镀膜厚度匹配性光线利用率计算。
下表为针对上述电池,进行组件封装获得的在不同玻璃减反射膜厚度条件下的功率损失比例。
通过利用太阳电池的光谱响应SR(λ)分布及光伏镀膜玻璃的透过率分布Tran(λ)进行拟合计算,对太阳电池与光伏镀膜玻璃减反射膜层厚度进行针对性光学匹配,不同厚度减反射膜带来的透过率差异可通过测试不同膜厚镀膜玻璃的透过率,建立膜厚与透过率关系量表Tran(λ),并与电池的光谱响应分布SR(λ)进行加权拟合,得到光线理论利用率U。对比各种减反射膜厚中利用率U的最大值,即为由光学损失带来的封装损失最小的减反射膜厚方案。
因此,利用光伏玻璃表面减反射涂层与太阳能电池片的光学响应特性,通过减反射涂层在AM1.5G光源各波段的透过率差异,选择性的调整电池片光谱响应较好波段的透过率,进而实现提升了组件功率。
上述实施方式只为说明本发明的技术构思及特点,其目的是让熟悉该技术领域的技术人员能够了解本发明的内容并据以实施,并不能以此来限制本发明的保护范围。凡根据本发明精神实质所做出的等同变换或修饰,都应涵盖在本发明的保护范围之内。

Claims (2)

1.一种优化太阳电池组件封装损失的方法,其特征在于:该方法的具体步骤如下:
(a):制作具有不同减反射膜层厚度的光伏玻璃,以10-50nm作为膜层厚度公差,通过透射率测试设备,测试每种厚度减反膜层方案下的光学透过率Tran(λ),并建立减反射膜厚度与透过率关系量表;
(b):通过光电池量子效率测试设备测量被实验太阳电池的量子效率,根据光谱响应与外量子效率的固定比例关系,得到该被试太阳电池的光谱响应分布SR(λ);
(c):太阳电池的光谱响应波长区间为300-1100nm,根据被试太阳电池的光谱响应分布SR(λ)及镀膜玻璃透过率Tran(λ),通过加权平均法,可遍历计算出太阳电池在AM1.5(λ)光谱条件下的光线利用率U;
U= 1100 300 AM1.5(λ)*SR(λ)*Tran(λ)*d(λ)
1100 300AM1.5(λ)*SR(λ)*d(λ)
(d):对比不同减反膜厚条件下的光线利用率U,光线利用率较大的,认为是与被试太阳电池匹配的最佳减反射膜厚度,在此条件下可获得优化封装损失的光伏玻璃镀膜方案。
2.根据权利要求1所述的一种优化太阳电池组件封装损失的方法,其特征在于:步骤c中所述的通过太阳电池光线利用率的遍历计算方法适用于不同类型太阳电池或其他光伏组件组成材料的组件封装性能预估。
CN201510915710.1A 2015-12-11 2015-12-11 一种优化光伏组件封装损失的方法 Expired - Fee Related CN105489678B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510915710.1A CN105489678B (zh) 2015-12-11 2015-12-11 一种优化光伏组件封装损失的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510915710.1A CN105489678B (zh) 2015-12-11 2015-12-11 一种优化光伏组件封装损失的方法

Publications (2)

Publication Number Publication Date
CN105489678A true CN105489678A (zh) 2016-04-13
CN105489678B CN105489678B (zh) 2017-03-22

Family

ID=55676540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510915710.1A Expired - Fee Related CN105489678B (zh) 2015-12-11 2015-12-11 一种优化光伏组件封装损失的方法

Country Status (1)

Country Link
CN (1) CN105489678B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101088169A (zh) * 2004-12-22 2007-12-12 昭和砚壳石油株式会社 Cis型薄膜光电模块、用于制造该光电模块的方法和分离该模块的方法
JP2008311604A (ja) * 2007-02-06 2008-12-25 Hitachi Chem Co Ltd 太陽電池モジュール及び太陽電池モジュール用波長変換型集光フィルム
CN101431110A (zh) * 2008-10-06 2009-05-13 上海电力学院 低折射率纳米材料减反射膜
US20110041889A1 (en) * 2007-09-10 2011-02-24 Masayoshi Murata Integrated tandem-type thin film solar cell module and method for manufacturing the same
CN103743483A (zh) * 2013-10-28 2014-04-23 中国工程物理研究院流体物理研究所 差分光谱成像方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101088169A (zh) * 2004-12-22 2007-12-12 昭和砚壳石油株式会社 Cis型薄膜光电模块、用于制造该光电模块的方法和分离该模块的方法
US20080105294A1 (en) * 2004-12-22 2008-05-08 Showa Shell Sekiyu K.K. Cis Type Thin-Film Photovoltaic Module, Process for Producing the Photovoltaic Module, and Method of Separating the Module
JP2008311604A (ja) * 2007-02-06 2008-12-25 Hitachi Chem Co Ltd 太陽電池モジュール及び太陽電池モジュール用波長変換型集光フィルム
US20110041889A1 (en) * 2007-09-10 2011-02-24 Masayoshi Murata Integrated tandem-type thin film solar cell module and method for manufacturing the same
CN101431110A (zh) * 2008-10-06 2009-05-13 上海电力学院 低折射率纳米材料减反射膜
CN103743483A (zh) * 2013-10-28 2014-04-23 中国工程物理研究院流体物理研究所 差分光谱成像方法

Also Published As

Publication number Publication date
CN105489678B (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
Manzoor et al. Improved light management in planar silicon and perovskite solar cells using PDMS scattering layer
Ten Kate et al. Efficiency enhancement calculations of state-of-the-art solar cells by luminescent layers with spectral shifting, quantum cutting, and quantum tripling function
CN105047745A (zh) 用于光伏组件背板散热的反射涂料及其制备工艺与应用
CN102587792A (zh) 一种太阳能电池真空玻璃窗
Depauw et al. Sunlight-thin nanophotonic monocrystalline silicon solar cells
Du et al. Performance enhancement of multicrystalline silicon solar cells and modules using double‐layered SiNx: H antireflection coatings
CN102412314A (zh) 太阳电池封装用耐候减反射镀膜玻璃
Russell et al. Thermodynamic efficiency limit of bifacial solar cells for various spectral albedos
CN203690312U (zh) 减反射膜及具有该减反射膜的太阳能电池片
CN105489678A (zh) 一种优化光伏组件封装损失的方法
Zambree et al. Modelling and Optimization of A Light Trapping Scheme in A Silicon Solar Cell Using Silicon Nitride (SiNx) Anti-Reflective Coating
Zi et al. Modeling of triangular-shaped substrates for light trapping in microcrystalline silicon solar cells
CN107331712A (zh) 一种太阳能电池增透膜
CN103633159A (zh) 一种新型太阳能电池减反射膜的制备方法
Jäger et al. Large-area production of highly efficient flexible light-weight thin-film silicon PV modules
CN103094394B (zh) 一种下转换晶体硅太阳能电池及其制备方法
Meenakshi et al. Design of multi-junction solar cells using PC1D
Shin et al. Scattering matrix analysis for evaluating the photocurrent in hydrogenated-amorphous-silicon-based thin film solar cells
Verlinden et al. List of international standards related to PV
Chung et al. Optical approaches to improving perovskite/Si tandem cells
Shamim et al. Effect of novel encapsulants and backsheets on short circuit current in interdigitated Back contact solar cells based PV modules
Yan et al. Study on the Causes and Countermeasures of Power Loss of Photovoltaic Modules
Slauch et al. Modeling Spectrally-Selective Reflection for Thermal Management in Monofacial and Bifacial Modules
Gabr et al. Optimization of anti-reflection coatings for bifacial solar cells with upconversion layers
Jamaluddina et al. Numerical analysis of MgF2/SiO2 bilayers anti-reflective coating of light trapping in silicon solar cells by ray tracer software

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170322

Termination date: 20181211