CN105486485B - Utilize the experimental provision of deep submergence propeller simulation stream loading - Google Patents
Utilize the experimental provision of deep submergence propeller simulation stream loading Download PDFInfo
- Publication number
- CN105486485B CN105486485B CN201510817259.XA CN201510817259A CN105486485B CN 105486485 B CN105486485 B CN 105486485B CN 201510817259 A CN201510817259 A CN 201510817259A CN 105486485 B CN105486485 B CN 105486485B
- Authority
- CN
- China
- Prior art keywords
- propeller
- shaft
- thrust
- main body
- deep submergence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004088 simulation Methods 0.000 title claims description 18
- 230000033001 locomotion Effects 0.000 claims abstract description 12
- 230000003287 optical effect Effects 0.000 claims abstract description 7
- 230000005540 biological transmission Effects 0.000 claims description 33
- 238000003466 welding Methods 0.000 claims description 11
- 230000008878 coupling Effects 0.000 claims description 9
- 238000010168 coupling process Methods 0.000 claims description 9
- 238000005859 coupling reaction Methods 0.000 claims description 9
- 235000006508 Nelumbo nucifera Nutrition 0.000 claims 1
- 240000002853 Nelumbo nucifera Species 0.000 claims 1
- 235000006510 Nelumbo pentapetala Nutrition 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 9
- 238000007654 immersion Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M10/00—Hydrodynamic testing; Arrangements in or on ship-testing tanks or water tunnels
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Toys (AREA)
Abstract
本发明提供了一种利用深浸没螺旋桨模拟流载荷的实验装置,包括闭环伺服系统模块和自动控制模块;其中,闭环伺服系统模块和自动控制模块用于设置在船模上;闭环伺服系统模块包括深浸没全回转螺旋桨和深浸没侧推螺旋桨;自动控制模块包括六自由度光学运动测量装置、推力分配模块、流载荷数据库以及推力‑转速曲线存储单元;六自由度运动测量装置布置用于根据船速、艏向角以及设定的流速通过推力‑转速曲线存储单元中存储的推力‑转速曲线查询流载荷数据库求得船模所受到的流载荷,进而通过推力分配模块计算得到深浸没全回转螺旋桨和深浸没侧推螺旋桨的推力和角度。本发明能够实现流场的大范围覆盖,解决传统造流的不均匀及衰减问题。
The invention provides an experimental device for simulating flow load by using a deep submerged propeller, comprising a closed-loop servo system module and an automatic control module; wherein, the closed-loop servo system module and the automatic control module are used to be arranged on a ship model; the closed-loop servo system module includes Deep submerged azimuth propeller and deep submerged side thrust propeller; the automatic control module includes a six-degree-of-freedom optical motion measurement device, a thrust distribution module, a flow load database, and a thrust-speed curve storage unit; the six-degree-of-freedom motion measurement device is arranged for Speed, heading angle, and set flow velocity can be obtained by querying the flow load database through the thrust-speed curve stored in the thrust-speed curve storage unit to obtain the flow load on the ship model, and then calculated by the thrust distribution module to obtain the deep submerged full-turn propeller and deep immersion side thruster propeller thrust and angle. The invention can realize the large-scale coverage of the flow field and solve the problems of unevenness and attenuation of the traditional flow generation.
Description
技术领域technical field
本发明涉及海洋工程,具体地,涉及一种利用深浸没螺旋桨模拟流载荷的实验装置。The invention relates to marine engineering, in particular to an experimental device for simulating flow load by using a deeply submerged propeller.
背景技术Background technique
流作为重要的海洋环境条件之一,是进行船模试验中需要模拟的重要试验参数。目前,海洋工程中对流的模拟通常采用一组或多组固定在岸边或固定在拖车上的造流管组成流阵在一定区域内形成流场的方法实现。分析此种模拟技术,发现其不足点在于:Current, as one of the important marine environmental conditions, is an important test parameter that needs to be simulated in ship model tests. At present, the simulation of convection in marine engineering is usually realized by using one or more sets of jet tubes fixed on the shore or on a trailer to form a flow array to form a flow field in a certain area. Analyzing this simulation technology, it is found that its shortcomings lie in:
1、流场覆盖范围小,难以覆盖整个水池范围;1. The coverage of the flow field is small, and it is difficult to cover the entire range of the pool;
2、流场不均匀,存在衰减问题;2. The flow field is uneven and there is an attenuation problem;
3、造流管安装在拖车上的情况下,由于拖车的移动会带动流机运动,从而影响流场分布,所以拖车不能随意移动,给试验带来很多不便;3. When the flow tube is installed on the trailer, since the movement of the trailer will drive the movement of the flow machine, thus affecting the distribution of the flow field, the trailer cannot move at will, which brings a lot of inconvenience to the test;
4、产生的流场湍流现象严重;4. The generated flow field turbulence phenomenon is serious;
5、无法快速改变流速,不能模拟变流速的情况,使用的灵活性差;5. The flow rate cannot be changed quickly, and the situation of variable flow rate cannot be simulated, so the flexibility of use is poor;
6、整套设备造价高昂,且需要消耗大量电能。6. The whole set of equipment is expensive and needs to consume a lot of electric energy.
发明内容Contents of the invention
针对现有技术中的缺陷,本发明的目的是提供一种利用深浸没螺旋桨模拟流载荷的实验装置。旨在船舶模型试验中比较精确地模拟流载荷,以解决试验中设备造流能力有限、流场不均匀、覆盖范围有限、灵活性差、需要消耗大量电能等问题。Aiming at the defects in the prior art, the object of the present invention is to provide an experimental device for simulating flow load by using a deeply submerged propeller. The purpose is to simulate the flow load more accurately in the ship model test, so as to solve the problems of limited flow generation capacity, uneven flow field, limited coverage, poor flexibility, and large power consumption in the test.
根据本发明提供的利用深浸没螺旋桨模拟流载荷的实验装置,包括闭环伺服系统模块和自动控制模块;The experimental device for simulating flow load using a deep submerged propeller according to the present invention includes a closed-loop servo system module and an automatic control module;
其中,所述闭环伺服系统模块和所述自动控制模块用于设置在船模上;Wherein, the closed-loop servo system module and the automatic control module are arranged on the ship model;
所述闭环伺服系统模块包括深浸没全回转螺旋桨和深浸没侧推螺旋桨;The closed-loop servo system module includes a deep submerged azimuth propeller and a deep submerged thruster propeller;
所述自动控制模块包括六自由度光学运动测量装置、推力分配模块、流载荷数据库以及推力-转速曲线存储单元;The automatic control module includes a six-degree-of-freedom optical motion measurement device, a thrust distribution module, a flow load database, and a thrust-speed curve storage unit;
所述六自由度运动测量装置布置用于根据船速、艏向角以及设定的流速通过推力-转速曲线存储单元中存储的推力-转速曲线查询流载荷数据库求得船模所受到的流载荷,进而通过推力分配模块计算得到深浸没全回转螺旋桨和深浸没侧推螺旋桨的推力和角度。The six-degree-of-freedom motion measurement device is arranged to query the flow load database through the thrust-speed curve stored in the thrust-speed curve storage unit according to the ship speed, heading angle and set flow velocity to obtain the flow load suffered by the ship model , and then the thrust and angle of the deep submerged azimuth propeller and the deep submerged side thrust propeller are calculated by the thrust distribution module.
优选地,所述深浸没全回转螺旋桨包括舵机、第一伺服电机、第一固定框架、第一轴套、第一传动装置、转角传感器以及第一螺旋桨;Preferably, the deep submerged azimuth propeller includes a steering gear, a first servo motor, a first fixed frame, a first bushing, a first transmission device, a rotation angle sensor and a first propeller;
其中,所述第一伺服电机的第一电机轴穿过所述第一轴套通过所述第一传动装置驱动所述第一螺旋桨的叶片转动;Wherein, the first motor shaft of the first servo motor passes through the first bushing to drive the blades of the first propeller to rotate through the first transmission device;
所述舵机、第一伺服电机设置在所述第一固定框架上;所述第一螺旋桨设置在所述第一轴套上;The steering gear and the first servo motor are arranged on the first fixed frame; the first propeller is arranged on the first bushing;
所述舵机驱动所述第一轴套沿周向旋转,进而带动所述第一螺旋桨的底座沿周向旋转;所述转角传感器用于测量所述第一轴套的旋转角度。The steering gear drives the first bushing to rotate in the circumferential direction, and then drives the base of the first propeller to rotate in the circumferential direction; the rotation angle sensor is used to measure the rotation angle of the first bushing.
优选地,所述舵机包括舵机主体、舵机轴和平带轮传动装置;Preferably, the steering gear includes a steering gear body, a steering gear shaft and a flat pulley transmission;
其中,所述舵机主体与固定框架的第一下底板相连接,所述舵机轴通过第一联轴器与舵机主体相连接,所述舵机轴通过平带轮传动装置驱动所述轴套相配合。Wherein, the main body of the steering gear is connected with the first lower bottom plate of the fixed frame, the shaft of the steering gear is connected with the main body of the steering gear through a first coupling, and the shaft of the steering gear drives the main body of the steering gear through a flat pulley transmission. Shaft fits.
优选地,所述第一伺服电机包括第一伺服电机主体和第一电机轴;Preferably, the first servo motor includes a first servo motor body and a first motor shaft;
其中,所述第一电机轴通过第二联轴器与第一伺服电机主体相连接,所述第一电机轴穿透第一固定框架的第一下底板且通过第一轴承与第一固定框架的第一下底板相连接。Wherein, the first motor shaft is connected to the main body of the first servo motor through the second coupling, the first motor shaft penetrates the first lower bottom plate of the first fixed frame and is connected to the first fixed frame through the first bearing connected to the first bottom plate.
优选地,所述第一固定框架包括第一下底板和第一下底板;Preferably, the first fixed frame includes a first lower base plate and a first lower base plate;
所述第一下底板通过第一焊接结构件与第一下底板焊接形成的第一箱型结构;The first lower bottom plate is a first box-shaped structure formed by welding the first lower bottom plate with the first welding structure;
所述第一轴套通过第一轴承固定于固定所述第一下底板上。The first shaft sleeve is fixed on the first lower bottom plate through a first bearing.
优选地,所述第一传动装置为圆锥齿轮传动装置。Preferably, the first transmission device is a bevel gear transmission device.
优选地,所述转角传感器固定于第一固定框架的第一下底板上。Preferably, the rotation angle sensor is fixed on the first lower bottom plate of the first fixed frame.
优选地,所述第一螺旋桨包括第一螺旋桨主体和第一螺旋桨轴;Preferably, the first propeller includes a first propeller body and a first propeller shaft;
所述第一螺旋桨主体通过螺栓固定于第一螺旋桨轴上,所述第一螺旋桨轴通过第二轴承和第三轴承与所述第一轴套相连接,第一伺服电机的第一电机轴通过第一所述传动装置驱动所述第一螺旋桨轴转动。The first propeller body is fixed on the first propeller shaft by bolts, the first propeller shaft is connected with the first bushing through the second bearing and the third bearing, and the first motor shaft of the first servo motor passes through The first transmission device drives the first propeller shaft to rotate.
优选地,所述深浸没侧推螺旋桨包括第二伺服电机、第二固定框架、第二轴套、第二传动装置以及第二螺旋桨;Preferably, the deep submerged thruster propeller includes a second servo motor, a second fixed frame, a second bushing, a second transmission device and a second propeller;
其中,所述第二伺服电机包括第二伺服电机主体和第二电机轴,所述第二电机轴通过第二联轴器与第二伺服电机主体相连接;Wherein, the second servo motor includes a second servo motor body and a second motor shaft, and the second motor shaft is connected to the second servo motor body through a second coupling;
所述第二电机轴穿过所述第二固定框架的第二下底板且通过第四轴承与第二固定框架的第二下底板相连接;The second motor shaft passes through the second lower bottom plate of the second fixed frame and is connected to the second lower bottom plate of the second fixed frame through a fourth bearing;
所述第二固定框架包括第二下底板和第二下底板;第二下底板通过焊接结构件与所述第二下底板焊接形成的第二箱型结构;The second fixed frame includes a second lower bottom plate and a second lower bottom plate; the second lower bottom plate is a second box-shaped structure formed by welding the second lower bottom plate with the second lower bottom plate through welding structural parts;
所述第二轴套通过第四轴承固定于第二固定框架的第二下底板上,所述第二传动装置采用圆锥齿轮传动装置;The second shaft sleeve is fixed on the second lower bottom plate of the second fixed frame through the fourth bearing, and the second transmission device adopts a bevel gear transmission device;
所述第二螺旋桨包括第二螺旋桨主体和第二螺旋桨轴,所述第二螺旋桨主体通过螺栓固定于第二螺旋桨轴上,所述第二螺旋桨通过第五轴承和第六轴承与第二轴套相连接,所述第二螺旋桨轴传动与第二伺服电机的第二电机轴通过第二传动装置与所述第二螺旋桨轴转动。The second propeller includes a second propeller main body and a second propeller shaft, the second propeller main body is fixed on the second propeller shaft by bolts, and the second propeller is connected to the second shaft sleeve through the fifth bearing and the sixth bearing connected, the second propeller shaft transmission and the second motor shaft of the second servo motor rotate with the second propeller shaft through the second transmission device.
优选地,所述第一下底板和所述第二下底板用于固定于所述船模的甲板上。Preferably, the first lower bottom plate and the second lower bottom plate are used to be fixed on the deck of the ship model.
与现有技术相比,本发明具有如下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1、本发明能够实现流场的大范围覆盖,解决传统造流的不均匀及衰减问题;1. The present invention can realize a large-scale coverage of the flow field, and solve the problem of unevenness and attenuation of the traditional flow;
2、本发明能够模拟多种流场情况;2. The present invention can simulate various flow field conditions;
3、本发明螺旋桨的埋深较大,不易发生空泡等情况,并能减少桨与船之间的干扰,使模拟更加准确;3. The burial depth of the propeller of the present invention is relatively large, cavitation is not easy to occur, and the interference between the propeller and the ship can be reduced, making the simulation more accurate;
4、本发明能实时给出流载荷的数值,解决了传统试验中难以直接测量的问题;4. The present invention can give the value of flow load in real time, which solves the problem that it is difficult to directly measure in traditional tests;
5、本发明充分利用流载荷数据库,使模拟更加准确;5. The present invention makes full use of the flow load database to make the simulation more accurate;
6、本发明在试验中能很快达到稳定,不需要等待的时间,提高了试验的效率;6. The present invention can quickly reach stability in the test without waiting time, which improves the efficiency of the test;
7、本发明能极大地减小模拟流场所需的电能,绿色环保;7. The present invention can greatly reduce the electric energy required for simulating the flow field, and is environmentally friendly;
8、本发明使用方便,仅需要对船模做很小的改动即可应用;8. The present invention is easy to use and can be applied only by making small changes to the ship model;
9、本发明是一个闭环控制系统,无需人工干预;9. The present invention is a closed-loop control system without manual intervention;
10、本发明安装方便,对船的型线没有大的影响。10. The invention is easy to install and has no great influence on the shape of the ship.
附图说明Description of drawings
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:Other characteristics, objects and advantages of the present invention will become more apparent by reading the detailed description of non-limiting embodiments made with reference to the following drawings:
图1是本发明的结构示意图;Fig. 1 is a structural representation of the present invention;
图2是本发明的正视示意图;Fig. 2 is the front schematic view of the present invention;
图3是本发明的俯视示意图;Fig. 3 is a schematic top view of the present invention;
图4本发明中深浸没全回转螺旋桨的结构示意图;Fig. 4 is a schematic structural view of a deep submerged full-rotation propeller in the present invention;
图5是本发中深浸没全回转螺旋桨的正视示意图;Fig. 5 is a schematic front view of a deep submerged full-turn propeller in the present invention;
图6是本发明中电机的结构示意图;Fig. 6 is the structural representation of motor among the present invention;
图7是本发明中固定框架的结构示意图;Fig. 7 is a schematic structural view of a fixed frame in the present invention;
图8是本发明中舵机的结构示意图;Fig. 8 is the structural representation of steering gear in the present invention;
图9是本发明中角传感器结构示意图;Fig. 9 is a structural schematic diagram of an angle sensor in the present invention;
图10是本发明中传动装置的结构示意图;Fig. 10 is a schematic structural view of the transmission device in the present invention;
图11是本发明中深浸没侧推螺旋桨的结构示意图;Fig. 11 is a structural schematic diagram of a deep submerged side thruster propeller in the present invention;
图12是本发明中深浸没侧推螺旋桨的正视示意图;Fig. 12 is a schematic front view of a deep submerged side thruster propeller in the present invention;
图13是本发明流载荷模拟流程图;Fig. 13 is a flowchart of flow load simulation in the present invention;
图14是本发明中深浸没螺旋桨布置示意图。Fig. 14 is a schematic diagram of the arrangement of deep submerged propellers in the present invention.
具体实施方式Detailed ways
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。The present invention will be described in detail below in conjunction with specific embodiments. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention. These all belong to the protection scope of the present invention.
在本实施例中,本发明提供的利用深浸没螺旋桨模拟流载荷的实验装置,包括闭环伺服系统模块和自动控制模块;In this embodiment, the experimental device for simulating flow load using a deeply submerged propeller provided by the present invention includes a closed-loop servo system module and an automatic control module;
其中,所述闭环伺服系统模块和所述自动控制模块用于设置在船模上;Wherein, the closed-loop servo system module and the automatic control module are arranged on the ship model;
所述闭环伺服系统模块包括深浸没全回转螺旋桨1和深浸没侧推螺旋桨2;The closed-loop servo system module includes a deep submerged azimuth propeller 1 and a deep submerged thruster propeller 2;
所述自动控制模块包括六自由度光学运动测量装置、推力分配模块、流载荷数据库以及推力-转速曲线存储单元;The automatic control module includes a six-degree-of-freedom optical motion measurement device, a thrust distribution module, a flow load database, and a thrust-speed curve storage unit;
所述六自由度运动测量装置布置用于根据船速、艏向角以及设定的流速通过推力-转速曲线存储单元中存储的推力-转速曲线查询流载荷数据库求得船模所受到的流载荷,进而通过推力分配模块计算得到深浸没全回转螺旋桨1和深浸没侧推螺旋桨2的推力和角度。The six-degree-of-freedom motion measurement device is arranged to query the flow load database through the thrust-speed curve stored in the thrust-speed curve storage unit according to the ship speed, heading angle and set flow velocity to obtain the flow load suffered by the ship model , and then the thrust and angle of the deep submerged azimuth propeller 1 and the deep submerged side thrust propeller 2 are calculated by the thrust distribution module.
所述深浸没全回转螺旋桨1包括舵机3、第一伺服电机4、第一固定框架8、第一轴套16、第一传动装置6、转角传感器7以及第一螺旋桨5;其中,所述第一伺服电机4的第一电机轴15穿过所述第一轴套16通过所述第一传动装置6驱动所述第一螺旋桨5的叶片转动;所述舵机3、第一伺服电机4设置在所述第一固定框架8上;所述第一螺旋桨5设置在所述第一轴套16上;所述舵机3驱动所述第一轴套16沿周向旋转,进而带动所述第一螺旋桨5的底座沿周向旋转;所述转角传感器7用于测量所述第一轴套16的旋转角度。The deep submerged full-turn propeller 1 includes a steering gear 3, a first servo motor 4, a first fixed frame 8, a first bushing 16, a first transmission device 6, a rotation angle sensor 7 and a first propeller 5; wherein, the The first motor shaft 15 of the first servo motor 4 passes through the first shaft sleeve 16 to drive the blades of the first propeller 5 to rotate through the first transmission device 6; the steering gear 3, the first servo motor 4 Set on the first fixed frame 8; the first propeller 5 is set on the first bushing 16; the steering gear 3 drives the first bushing 16 to rotate in the circumferential direction, and then drives the The base of the first propeller 5 rotates in the circumferential direction; the rotation angle sensor 7 is used to measure the rotation angle of the first sleeve 16 .
所述舵机3包括舵机主体9、舵机轴10和平带轮传动装置11;其中,所述舵机主体9与固定框架8的第一上底板12相连接,所述舵机轴10通过第一联轴器13与舵机主体9相连接,所述舵机轴10通过平带轮传动装置11驱动所述轴套16相配合。The steering gear 3 includes a steering gear main body 9, a steering gear shaft 10 and a flat pulley transmission 11; wherein, the steering gear main body 9 is connected to the first upper bottom plate 12 of the fixed frame 8, and the steering gear shaft 10 passes through The first shaft coupling 13 is connected with the steering gear main body 9, and the steering gear shaft 10 drives the shaft sleeve 16 through the flat pulley transmission 11 to cooperate.
所述第一伺服电机4包括第一伺服电机主体14和第一电机轴15;其中,所述第一电机轴15通过第二联轴器17与第一伺服电机主体14相连接,所述第一电机轴15穿透第一固定框架8的第一下底板18且通过第一轴承19与第一固定框架的第一下底板18相连接。The first servo motor 4 includes a first servo motor body 14 and a first motor shaft 15; wherein, the first motor shaft 15 is connected to the first servo motor body 14 through a second coupling 17, and the first A motor shaft 15 penetrates through the first lower bottom plate 18 of the first fixed frame 8 and is connected with the first lower bottom plate 18 of the first fixed frame through a first bearing 19 .
所述第一固定框架8包括第一下底板18和第一上底板12;所述第一下底板18通过第一焊接结构件与第一上底板12焊接形成的第一箱型结构24;所述第一轴套16通过第一轴承19固定于固定所述第一下底板18上。The first fixed frame 8 includes a first lower bottom plate 18 and a first upper bottom plate 12; the first lower bottom plate 18 is a first box-shaped structure 24 formed by welding the first lower bottom plate 18 with the first upper bottom plate 12; The first shaft sleeve 16 is fixed on the first lower bottom plate 18 through a first bearing 19 .
所述第一传动装置6为圆锥齿轮传动装置。所述转角传感器7固定于第一固定框架8的第一下底板18上。所述第一螺旋桨5包括第一螺旋桨主体20和第一螺旋桨轴21;所述第一螺旋桨主体20通过螺栓固定于第一螺旋桨轴21上,所述第一螺旋桨轴21通过第二轴承22和第三轴承23与第一轴套16相连接,第一伺服电机4的第一电机轴15通过第一所述传动装置6驱动所述第一螺旋桨轴21转动。The first transmission device 6 is a bevel gear transmission device. The rotation angle sensor 7 is fixed on the first lower bottom plate 18 of the first fixed frame 8 . The first propeller 5 includes a first propeller main body 20 and a first propeller shaft 21; the first propeller main body 20 is fixed on the first propeller shaft 21 by bolts, and the first propeller shaft 21 is passed through a second bearing 22 and The third bearing 23 is connected with the first shaft sleeve 16 , and the first motor shaft 15 of the first servo motor 4 drives the first propeller shaft 21 to rotate through the first transmission device 6 .
所述深浸没侧推螺旋桨2包括第二伺服电机、第二固定框架、第二轴套、第二传动装置以及第二螺旋桨;其中,所述第二伺服电机包括第二伺服电机主体和第二电机轴,所述第二电机轴通过第二联轴器与第二伺服电机主体相连接;所述第二电机轴穿过所述第二固定框架的第二下底板26且通过第四轴承与第二固定框架的第二下底板26相连接;所述第二固定框架包括第二下底板26和第二上底板;第二下底板26通过焊接结构件与所述第二上底板焊接形成的第二箱型结构28;所述第二轴套通过第四轴承固定于第二固定框架的第二上底板上,所述第二传动装置采用圆锥齿轮传动装置;所述第二螺旋桨包括第二螺旋桨主体和第二螺旋桨轴,所述第二螺旋桨主体通过螺栓固定于第二螺旋桨轴上,所述第二螺旋桨通过第五轴承和第六轴承与第二轴套相连接,所述第二螺旋桨轴传动与第二伺服电机的第二电机轴通过第二传动装置与所述第二螺旋桨轴转动。The deep submerged side thruster propeller 2 includes a second servo motor, a second fixed frame, a second bushing, a second transmission device, and a second propeller; wherein, the second servo motor includes a second servo motor body and a second Motor shaft, the second motor shaft is connected with the second servo motor main body through the second coupling; the second motor shaft passes through the second lower bottom plate 26 of the second fixed frame and connects with the second motor shaft through the fourth bearing The second lower bottom plate 26 of the second fixed frame is connected; the second fixed frame includes the second lower bottom plate 26 and the second upper bottom plate; the second lower bottom plate 26 is formed by welding the second upper bottom plate with the welding structure The second box structure 28; the second axle sleeve is fixed on the second upper base plate of the second fixed frame through the fourth bearing, and the second transmission device adopts a bevel gear transmission device; the second propeller includes a second The propeller main body and the second propeller shaft, the second propeller main body is fixed on the second propeller shaft by bolts, the second propeller is connected with the second bushing through the fifth bearing and the sixth bearing, the second propeller The second motor shaft of the shaft transmission and the second servo motor rotates with the second propeller shaft through the second transmission device.
所述第一下底板12和所述第二上底板27用于固定于所述船模的甲板29上。The first lower bottom plate 12 and the second upper bottom plate 27 are used to be fixed on the deck 29 of the ship model.
本发明提供的利用深浸没螺旋桨模拟流载荷的实验装置的工作原理,如图13所示,模型试验中提前设定试验流速,由六自由度光学运动采集系统实时测量计算得到船速和转角,将试验流速、船速和转角输入于工作站,并结合流洞试验得到的流载荷数据库,输出流载荷的合力,再通过推力分配模块得到所有螺旋桨的推力大小和方向,其中推力大小成分通过已建立的推力-转速曲线查得相应的电机转速并输入转速闭环伺服系统,通过伺服电机及其自带的伺服电机编码器确保电机的转速即为需要的转速;其中推力方向(转角)成分类似地输入转角闭环伺服系统,通过舵机及转角传感器确保舵机的转角即为需要的转角,从而实现对流载荷的实时模拟;流载荷作用于船模,使船模产生六自由度运动,并通过六自由度光学运动测量系统进行测量,作为计算下一时刻流载荷的输入,从而实现自动控制。The working principle of the experimental device for simulating flow loads provided by the present invention is as shown in Figure 13. In the model test, the test flow velocity is set in advance, and the ship speed and rotation angle are obtained by real-time measurement and calculation by the six-degree-of-freedom optical motion acquisition system. Input the test flow velocity, ship speed and rotation angle into the workstation, combined with the flow load database obtained from the flow tunnel test, output the resultant force of the flow load, and then obtain the thrust magnitude and direction of all propellers through the thrust distribution module, where the thrust magnitude component is passed through the established Check the corresponding motor speed from the thrust-speed curve and input the speed into the closed-loop servo system, and ensure that the speed of the motor is the required speed through the servo motor and its own servo motor encoder; the thrust direction (rotation angle) component is similarly input The closed-loop servo system of rotation angle ensures that the rotation angle of the steering gear is the required rotation angle through the steering gear and the rotation angle sensor, so as to realize the real-time simulation of the convective load; The measurement is carried out by the high-degree optical motion measurement system, which is used as the input for calculating the flow load at the next moment, so as to realize automatic control.
自动控制模块中推力分配模块,在能达到试验中流载荷模拟效果的前提下,本发明的深浸没螺旋桨布置方式如图14所示,在船舶的艉部安装一个深浸没全回转螺旋桨,在艏部中线处安装一个深浸没侧推螺旋桨。深浸没全回转螺旋桨的推力可以再360°范围内任意改变,深浸没侧推螺旋桨的推力则仅在90°和270°方向上。根据两桨安装位置,由推力分配模块即可求得两深浸没螺旋桨要发出的推力和相应转角。In the thrust distribution module of the automatic control module, under the premise that the simulation effect of the mid-flow load can be achieved in the test, the arrangement of the deep submerged propeller of the present invention is shown in Figure 14. A deep submerged side thruster propeller is installed at the centerline. The thrust of the deep submerged azimuth propeller can be changed arbitrarily in the range of 360°, while the thrust of the deep submerged side thrust propeller is only in the directions of 90° and 270°. According to the installation positions of the two propellers, the thrust and the corresponding rotation angles of the two deeply submerged propellers can be obtained by the thrust distribution module.
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。Specific embodiments of the present invention have been described above. It should be understood that the present invention is not limited to the specific embodiments described above, and those skilled in the art may make various changes or modifications within the scope of the claims, which do not affect the essence of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510817259.XA CN105486485B (en) | 2015-11-20 | 2015-11-20 | Utilize the experimental provision of deep submergence propeller simulation stream loading |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510817259.XA CN105486485B (en) | 2015-11-20 | 2015-11-20 | Utilize the experimental provision of deep submergence propeller simulation stream loading |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105486485A CN105486485A (en) | 2016-04-13 |
CN105486485B true CN105486485B (en) | 2018-04-17 |
Family
ID=55673612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510817259.XA Active CN105486485B (en) | 2015-11-20 | 2015-11-20 | Utilize the experimental provision of deep submergence propeller simulation stream loading |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105486485B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109325303B (en) * | 2018-10-10 | 2023-08-18 | 中国人民解放军海军工程大学 | Ship rotary motion simulation method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1556996A1 (en) * | 1987-06-29 | 1990-04-15 | Войсковая Часть 13132 | Bench for testing ship device |
CN102636367A (en) * | 2012-04-23 | 2012-08-15 | 浙江大学 | Multi-degree-of-freedom dynamic loading device for simulating wind power and ocean current load |
CN202694090U (en) * | 2012-03-30 | 2013-01-23 | 中国船舶重工集团公司第七○二研究所 | Measurement and control system of wave and current synchronous simulation device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61201132A (en) * | 1985-03-04 | 1986-09-05 | Mitsubishi Heavy Ind Ltd | Automatic follow-up device for model ship |
-
2015
- 2015-11-20 CN CN201510817259.XA patent/CN105486485B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1556996A1 (en) * | 1987-06-29 | 1990-04-15 | Войсковая Часть 13132 | Bench for testing ship device |
CN202694090U (en) * | 2012-03-30 | 2013-01-23 | 中国船舶重工集团公司第七○二研究所 | Measurement and control system of wave and current synchronous simulation device |
CN102636367A (en) * | 2012-04-23 | 2012-08-15 | 浙江大学 | Multi-degree-of-freedom dynamic loading device for simulating wind power and ocean current load |
Non-Patent Citations (1)
Title |
---|
"深海脐带缆总体响应特性研究";陈希恰 等;《海洋工程装备与技术》;20150724;第2卷(第2期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN105486485A (en) | 2016-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105334020B (en) | The device of distinguished and admirable load is simulated in ship model experiment | |
CN104314757B (en) | A kind of wind generating set yaw control method and system | |
CN204461708U (en) | Band sailing boat oceangoing ship flow tunnel testing device | |
CN202049033U (en) | Land ship tail shaft power and structure testing experiment device | |
CN204537604U (en) | Sea motion simulation platform device | |
CN205209739U (en) | Multi -angle object entries and prevails ripples motion experimental apparatus | |
CN103612723A (en) | Full-independent marine environmental monitoring buoy for deep open seas | |
CN106482926A (en) | Based on multifunctional bionic drag reduction test device under water | |
CN107444589A (en) | A kind of deformable observation procedure of deep-sea underwater observation platform | |
CN105334018B (en) | Utilize the experimental provision of fan simulation stream loading | |
CN113027701A (en) | Non-contact dynamic measurement system for offshore wind turbine vibration and erosion test | |
CN105092206A (en) | Compact type large amplitude rocking plate type wave generator | |
CN105486485B (en) | Utilize the experimental provision of deep submergence propeller simulation stream loading | |
CN103910034B (en) | A kind of head that forces for platform hydrodynamic model shakes oscillation device | |
CN103129717B (en) | Wave energy glider wave motion propulsive efficiency test testing device | |
CN207600712U (en) | A kind of wheel rim Propeller Model experimental rig | |
CN105372037B (en) | The device of simulated wind load in ship model experiment | |
CN103528790B (en) | Ship model channel-type propulsion device | |
CN107830989A (en) | A kind of wheel rim Propeller Model test method and device | |
CN113670573A (en) | Wind-force boosting rotor aerodynamic characteristic experimental apparatus | |
CN210239915U (en) | An experimental research system for unsteady aerodynamic characteristics of an offshore floating fan | |
CN108254156A (en) | A kind of intelligence rudder for ship measure and control device | |
CN110726573A (en) | A release device for simulating the rolling and pitching motion of a ship | |
CN203882472U (en) | A double-motor active loading steering engine load simulator | |
CN207583565U (en) | Test system for gyro effect verification of offshore wind turbine generator set under large-amplitude movement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |