CN105458288B - 一种纳米金颗粒的制备方法 - Google Patents

一种纳米金颗粒的制备方法 Download PDF

Info

Publication number
CN105458288B
CN105458288B CN201510869413.8A CN201510869413A CN105458288B CN 105458288 B CN105458288 B CN 105458288B CN 201510869413 A CN201510869413 A CN 201510869413A CN 105458288 B CN105458288 B CN 105458288B
Authority
CN
China
Prior art keywords
bsa
preparation
nanogold particle
concentration
experiment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510869413.8A
Other languages
English (en)
Other versions
CN105458288A (zh
Inventor
崔莲花
杨大鹏
刘树亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201510869413.8A priority Critical patent/CN105458288B/zh
Publication of CN105458288A publication Critical patent/CN105458288A/zh
Application granted granted Critical
Publication of CN105458288B publication Critical patent/CN105458288B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions

Abstract

本发明属于纳米材料制备技术领域,涉及一种纳米金颗粒的制备方法,先取5ml浓度为5mg/ml的牛血清白蛋白溶液与0.5ml浓度为10mM的氯金酸溶液混合,采用磁力搅拌器搅拌10min,再加入50μl浓度为1M的抗坏血酸继续用磁力搅拌器搅拌,在25℃~27℃下培养12h后,即制备得到以牛血清白蛋白为模板的粒径为50nm的纳米金颗粒AuNPs@BSA,制备的纳米金颗粒AuNPs@BSA能用于恶性肿瘤放射治疗中的放射增敏;其制备过程简单易行,实验条件温和,所用实验试剂廉价易得,且合成的纳米材料体外实验、体内实验均证实无毒害作用,生物相容性好。

Description

一种纳米金颗粒的制备方法
技术领域:
本发明属于纳米材料制备技术领域,具体涉及一种生物模板法合成金纳米颗粒的方法及其在癌症治疗中放射增敏的应用,特别是一种纳米金颗粒的制备方法。
背景技术
纳米材料自问世以来由于其优越的电学、磁学、光学等性质受到了广泛的关注,纳米材料的种类和制备方法也随着研究力度的加大越来越多样化。常见的纳米材料主要有金属纳米材料(金、银、铂、铜及其合金)、硫化物纳米材料、氧化物纳米材料和碳酸盐纳米材料等,在众多的纳米材料中,纳米金材料在生物医学领域有广泛的应用。目前,纳米材料的制备思路可概括为两个方向,即“自上而下”的制备思路和“自下而上”的制备思路。“自上而下”的制备思路主要是配体刻蚀法,如将大粒径的金核在一定条件下刻蚀成纳米尺度的材料;“自下而上”的制备思路如以生物分子为模板,在还原剂存在的情况下,将原材料中的金属离子还原成金属原子,金属原子在模板上生长成纳米材料;以上两种制备思路很好的解决了纳米材料的合成问题,促进了纳米材料在各领域的广泛应用,但依旧存在制备工艺复杂、实验条件苛刻、实验操作要求较高等问题。
在生物医学领域中,牛血清白蛋白(Bovine Serum Albumin,BSA)是一种从牛血清中提取的蛋白质,常被用来作为生物模板指引合成特定形貌的纳米材料,可在纳米材料周围形成一层保护膜,使之具有良好的分散作用,同时BSA自身的多种官能团也有利于纳米材料的后修饰;以BSA为模板合成金纳米材料已经得到了广泛的关注,但合成过程中仍然存在实验条件要求高、制备过程复杂等不足。原发性肝癌是我国常见的恶性肿瘤之一,以35~65岁的中年人为主,尤其男性居多,由于恶性率高、症状不典型、病情发展快等原因,原发性肝癌的五年生存率不足百分之十(7%左右),且目前肝癌预防和治疗的方法非常局限,除手术切除外,放射治疗是治疗肝癌的重要手段之—。放射治疗是在保存器官的前提下控制肿瘤扩散的的一种局部治疗手段,单纯放疗对辐射敏感肿瘤疗效较好,但多数肿瘤对辐射不敏感。增加肿瘤对放射的敏感性,降低肿瘤辐射抵抗性的研究成为肿瘤研究的热点和难点,如加大放疗的剂量、放疗和化疗药物联合应用及使用细胞增敏剂等方法不断应用于临床;放射增敏剂是目前肿瘤放射治疗的一个重要研究课题,而临床上还没有出现令人满意的放疗增敏药物。而将纳米金用于对肿瘤放射的增敏场合,至今尚未见有成功案例的报案且纳米金的绿色环保的制备工艺也有待进一步开发研究。
发明内容:
本发明的目的在于克服现有技术存在的缺点,寻求设计一种纳米金颗粒的环保式制备工艺,并将其应用于放射性治疗肿瘤的增敏功能。
为了实现上述目的,本发明制备纳米金颗粒的具体过程为:先取5ml浓度为5mg/ml的牛血清白蛋白(BSA)溶液与0.5ml浓度为10mM的氯金酸(HAuCl4)溶液混合,采用磁力搅拌器搅拌10min,再加入50μl浓度为1M的抗坏血酸继续用磁力搅拌器搅拌,在25℃~27℃下培养12h后,即制备得到以牛血清白蛋白为模板的粒径为50nm的纳米金颗粒AuNPs@BSA。
本发明制备的纳米金颗粒AuNPs@BSA能用于恶性肿瘤放射治疗中的放射增敏;所制备的AuNPs@BSA对人宫颈癌细胞(HeLa细胞)、人肝癌细胞(Hep G2细胞)及正常细胞无毒害作用,而且对实验小鼠无毒害作用。
本发明与已公知的纳米金材料合成方法相比,其制备过程简单易行,实验条件温和,所用实验试剂廉价易得,且合成的纳米材料体外实验、体内实验均证实无毒害作用,生物相容性好,在恶性肿瘤的放射治疗中有极佳的放射增敏效果。
附图说明:
图1为本发明所述AuNPs@BSA纳米材料的光学照片。
图2为本发明所述AuNPs@BSA纳米材料的TEM电镜照片。
图3为本发明实施例动物实验中,各实验组荷瘤小鼠肿瘤生长曲线。
具体实施方式:
下面结合附图并通过实施例对本发明做进一步描述。
实施例:
本实施例所述AuNPs@BSA纳米材料的制备方法为:先取5ml浓度为5mg/ml的牛血清白蛋白(BSA)溶液与0.5ml浓度为10mM的氯金酸(HAuCl4)溶液混合,采用磁力搅拌器搅拌10min,再加入50μl浓度为1M的抗坏血酸继续用磁力搅拌器搅拌,在25℃~27℃下培养12h后,即制备得到以牛血清白蛋白为模板的粒径为50nm的纳米金颗粒AuNPs@BSA。
本实施例所述AuNPs@BSA是以牛血清白蛋白为生物模板,在还原剂存的情况下,以氯金酸为原料合成粒径在50nm左右的金纳米颗粒,所合成的纳米金颗粒具有较好的稳定性、生物相容性,用MTT法测定本发明所述AuNPs@BSA纳米材料对人宫颈癌细胞(HeLa细胞)、人肝癌细胞(Hep G2细胞)及正常细胞的毒性作用。
本实施例对实验小鼠进行常规实验的结果如图3所示,各实验组荷瘤小鼠肿瘤生长曲线结果显示,本实施例制备的纳米金颗粒无毒害作用,在肿瘤的放射治疗中具有极佳的放射增敏效果。

Claims (1)

1.一种纳米金颗粒的制备方法,其特征在于具体制备过程为:先取5ml浓度为5mg/ml的牛血清白蛋白溶液与0.5ml浓度为10mM的氯金酸溶液混合,采用磁力搅拌器搅拌10min,再加入50μl浓度为1M的抗坏血酸继续用磁力搅拌器搅拌,在25℃~27℃下培养12h后,即制备得到以牛血清白蛋白为模板的粒径为50nm的纳米金颗粒AuNPs@BSA;制备的纳米金颗粒AuNPs@BSA能用于恶性肿瘤的放射增敏。
CN201510869413.8A 2015-12-02 2015-12-02 一种纳米金颗粒的制备方法 Expired - Fee Related CN105458288B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510869413.8A CN105458288B (zh) 2015-12-02 2015-12-02 一种纳米金颗粒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510869413.8A CN105458288B (zh) 2015-12-02 2015-12-02 一种纳米金颗粒的制备方法

Publications (2)

Publication Number Publication Date
CN105458288A CN105458288A (zh) 2016-04-06
CN105458288B true CN105458288B (zh) 2018-06-12

Family

ID=55596691

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510869413.8A Expired - Fee Related CN105458288B (zh) 2015-12-02 2015-12-02 一种纳米金颗粒的制备方法

Country Status (1)

Country Link
CN (1) CN105458288B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108115127A (zh) * 2017-11-29 2018-06-05 上海师范大学 一种纳米铜仿生材料及其制备方法与应用
CN108355140B (zh) * 2018-05-24 2021-04-06 青岛大学 一种叶酸靶向载药纳米金颗粒及其应用
CN113070485B (zh) * 2021-03-23 2022-10-04 中国药科大学 一种荧光金纳米立方体的合成方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004012855A2 (en) * 2002-08-01 2004-02-12 E.I. Du Pont De Nemours And Company Ethylene glycol monolayer protected nanoparticles
WO2008103824A1 (en) * 2007-02-23 2008-08-28 Chinese Academy Of Inspection And Quarantine (Caiq) Sensitivity-enhanced dot-antibody linked immunogold assay for virus detection
CN101387643A (zh) * 2008-10-20 2009-03-18 杭州浙大生物基因工程有限公司 多通道过敏原快速检测试剂盒及其制备方法
US7736910B2 (en) * 2005-10-04 2010-06-15 Calypte Biomedical Corporation One-step production of gold sols
CN101897960A (zh) * 2010-04-14 2010-12-01 中国人民解放军第三军医大学野战外科研究所 促进中枢神经再生与功能恢复的hNgR-Fc融合蛋白疫苗
CN102230896A (zh) * 2011-04-11 2011-11-02 西安交通大学 一种基于生物矿化原理的超微量蛋白质定量检测方法
CN103439486A (zh) * 2013-09-05 2013-12-11 凌中鑫 一种pct层析检测仪
CN104383919A (zh) * 2014-09-30 2015-03-04 江南大学 具有可见光光活性的纳米簇模拟酶的制备及其比色法检测胰蛋白酶应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004012855A2 (en) * 2002-08-01 2004-02-12 E.I. Du Pont De Nemours And Company Ethylene glycol monolayer protected nanoparticles
US7736910B2 (en) * 2005-10-04 2010-06-15 Calypte Biomedical Corporation One-step production of gold sols
WO2008103824A1 (en) * 2007-02-23 2008-08-28 Chinese Academy Of Inspection And Quarantine (Caiq) Sensitivity-enhanced dot-antibody linked immunogold assay for virus detection
CN101387643A (zh) * 2008-10-20 2009-03-18 杭州浙大生物基因工程有限公司 多通道过敏原快速检测试剂盒及其制备方法
CN101897960A (zh) * 2010-04-14 2010-12-01 中国人民解放军第三军医大学野战外科研究所 促进中枢神经再生与功能恢复的hNgR-Fc融合蛋白疫苗
CN102230896A (zh) * 2011-04-11 2011-11-02 西安交通大学 一种基于生物矿化原理的超微量蛋白质定量检测方法
CN103439486A (zh) * 2013-09-05 2013-12-11 凌中鑫 一种pct层析检测仪
CN104383919A (zh) * 2014-09-30 2015-03-04 江南大学 具有可见光光活性的纳米簇模拟酶的制备及其比色法检测胰蛋白酶应用

Also Published As

Publication number Publication date
CN105458288A (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
Bednarski et al. The influence of the route of administration of gold nanoparticles on their tissue distribution and basic biochemical parameters: In vivo studies
Wang et al. Photothermal conversion-coordinated Fenton-like and photocatalytic reactions of Cu2-xSe-Au Janus nanoparticles for tri-combination antitumor therapy
Sun et al. Anticancer activity of green synthesised gold nanoparticles from Marsdenia tenacissima inhibits A549 cell proliferation through the apoptotic pathway
Liu et al. One‐dimensional Fe2P acts as a Fenton agent in response to NIR II light and ultrasound for deep tumor synergetic theranostics
Wang et al. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells
Han et al. Photothermal therapy of cancer cells using novel hollow gold nanoflowers
Asharani et al. DNA damage and p53-mediated growth arrest in human cells treated with platinum nanoparticles
Giustini et al. Magnetic nanoparticle biodistribution following intratumoral administration
CN105458288B (zh) 一种纳米金颗粒的制备方法
Tade et al. Theranostic prospects of graphene quantum dots in breast cancer
Zhao et al. RGD-conjugated mesoporous silica-encapsulated gold nanorods enhance the sensitization of triple-negative breast cancer to megavoltage radiation therapy
Zhao et al. Non-stoichiometric cobalt sulfide nanodots enhance photothermal and chemodynamic therapies against solid tumor
Chen et al. Application of nanoparticles in urothelial cancer of the urinary bladder
Goncalves et al. Biocompatible gum arabic-gold nanorod composite as an effective therapy for mistreated melanomas
Zhang et al. Anti-tumor activity of verbascoside loaded gold nanoparticles
Klebowski et al. Fancy-Shaped Gold–Platinum Nanocauliflowers for Improved Proton Irradiation Effect on Colon Cancer Cells
Al-Khedhairy et al. Size-dependent cytotoxic and molecular study of the use of gold nanoparticles against liver cancer cells
Ni et al. Effect and mechanism of paclitaxel loaded on magnetic Fe3O4@ mSiO2-NH2-FA nanocomposites to MCF-7 cells
Yang et al. Green synthesis and characterization of gold nanoparticles from Pholiota adiposa and their anticancer effects on hepatic carcinoma
Tsai et al. Oral cancer theranostic application of feau bimetallic nanoparticles conjugated with MMP-1 antibody
Wang et al. Microbial synthesis of Prussian blue for potentiating checkpoint blockade immunotherapy
Wang et al. Tumor microenvironment–mediated NIR-I-to-NIR-II transformation of Au self-assembly for theranostics
Chen et al. Artificial anaerobic cell dormancy for tumor gaseous microenvironment regulation therapy
Yin et al. Intelligent gold nanoparticles for malignant tumor treatment via spontaneous copper manipulation and on-demand photothermal therapy based on copper induced click chemistry
Klebowski et al. Gold-decorated platinum and palladium nanoparticles as modern nanocomplexes to improve the effectiveness of simulated anticancer proton therapy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180612

Termination date: 20181202