CN105451801B - 声音诱导的睡眠方法和用于该方法的系统 - Google Patents
声音诱导的睡眠方法和用于该方法的系统 Download PDFInfo
- Publication number
- CN105451801B CN105451801B CN201480044909.5A CN201480044909A CN105451801B CN 105451801 B CN105451801 B CN 105451801B CN 201480044909 A CN201480044909 A CN 201480044909A CN 105451801 B CN105451801 B CN 105451801B
- Authority
- CN
- China
- Prior art keywords
- sound
- sleep
- subject
- stage
- wave signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M21/00—Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
- A61M21/02—Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis for inducing sleep or relaxation, e.g. by direct nerve stimulation, hypnosis, analgesia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
- A61B5/372—Analysis of electroencephalograms
- A61B5/374—Detecting the frequency distribution of signals, e.g. detecting delta, theta, alpha, beta or gamma waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4806—Sleep evaluation
- A61B5/4812—Detecting sleep stages or cycles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4836—Diagnosis combined with treatment in closed-loop systems or methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7275—Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M21/00—Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
- A61M2021/0005—Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus
- A61M2021/0027—Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus by the hearing sense
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/04—Heartbeat characteristics, e.g. ECG, blood pressure modulation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/08—Other bio-electrical signals
- A61M2230/10—Electroencephalographic signals
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Anesthesiology (AREA)
- Psychology (AREA)
- Psychiatry (AREA)
- Acoustics & Sound (AREA)
- Pain & Pain Management (AREA)
- Hematology (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physiology (AREA)
- Signal Processing (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
提供了用于声音诱导的睡眠的方法和系统。所述方法包括检测受试者的脑波信号。所述方法还包括分析脑波信号以确定受试者的当前欲睡状态和基于脑波信号和声音的声学特征之间的量化的关联指数响应于当前欲睡状态选择声音。所述方法还包括向受试者播放声音。
Description
优先权主张
本申请主张2013年6月11日提交的新加坡专利申请No.201304490-4的优先权。
技术领域
本发明总体上涉及交互式睡眠诱导,更具体地,涉及用于声音诱导的睡眠的方法和用于该方法的系统。
背景技术
现代社会的紧张生活使得良好质量的睡眠弥足珍贵但是难以实现。人们为忙乱的工作负荷和家庭负担所困扰而不能使其大脑休息,甚至是要睡眠的时候也是如此。为了快速诱导良好质量的睡眠,研究人员已经寻求了许多利用心电图(ECG)和/或脑电图(EEG)以监测睡眠质量的方法。
电脉冲,例如类似经皮神经电刺激仪的电脉冲(类似TENS的脉冲),已经被用于释放内啡肽以此促进睡眠。然而,在这种方法中,必须将至少一个电极与受试者的皮肤接触以提供电脉冲。另外,这种方法尤其适用于处于疼痛并且由于疼痛而无法睡眠的受试者。但是,非侵入式并且容易实施的方法更合意,甚至对于处于疼痛的患者来说。
因此,需要的是一种容易的并且是有效的可个体化的睡眠诱导方法。另外,根据随后的详细描述以及随附的权利要求,结合附图和本公开的背景技术,其他合意的特征和特点将变得显而易见。
发明内容
根据具体的描述,提供了一种用于声音诱导的睡眠的方法。所述方法包括检测受试者的脑波信号、分析脑波信号以确定受试者的当前欲睡状态、基于脑波信号和声音的声学特征之间的量化的关联指数响应于当前欲睡状态选择声音以及将声音播放给受试者。
根据另一方面,提供了一种用于声音诱导的睡眠的系统。所述系统包括检测器模块、分析器模块、处理器模块和播放器模块。检测器模块配置成检测受试者的脑波信号。分析器模块配置成分析脑波信号以确定受试者的当前欲睡状态。处理器模块配置成基于脑波信号和声音的声学特征之间的量化的关联指数响应于当前欲睡状态选择声音。并且播放器模块配置成将声音播放给受试者。
附图说明
附图用于示意各个实施方式并且说明根据本实施方式的各种原理和优点,其中相同的附图标记指代在不同视图中相同或功能上相似的元件并且附图连同下面的详细描述一起并入于说明书中并且形成说明书的一部分。
图1描绘了根据本实施方式的用于声音诱导的睡眠的方法的流程图。
图2描绘了根据本实施方式的用于声音诱导的睡眠的系统的框图。
图3描绘了根据本实施方式的用于声音诱导的睡眠的方法的流程图。
图4描绘了根据本实施方式的用于声音诱导的睡眠的方法的流程图。
图5描绘了根据本实施方式的对在图3中描述的对欲睡状态的检测建模的流程图。
图6描绘了根据本实施方式的选择声音的流程图。
并且图7描绘了根据本实施方式的声音诱导的睡眠的方法的评估过程的流程图。
本领域技术人员将理解,附图中的元件出于简明和清楚的目的而进行示意并且没有必要按照比例绘制。例如,框图或流程图中的一些元件的大小可能相对于其他元件夸大以有助于改进对本实施方式的理解。
具体实施方式
下面的详细描述本质上仅仅是示例性的并且不用于限制本发明或本发明的应用和使用。另外,不意在被先前的本发明的背景技术或下面的详细描述中提出的任何理论约束。本实施方式的意图是呈现一种新颖的声音诱导的睡眠方法和用于此的系统。本声音诱导的睡眠方法联合了音乐治疗和脑-计算机相互作用。其连续并且适应性地选择最合适的声音以快速地诱导良好质量的睡眠。响应于脑波而选择声音。还提供了用于声音诱导的睡眠的系统以快速地诱导良好质量的睡眠。
参考图1,描绘了根据本实施方式的用于声音诱导的睡眠的方法100。方法100包括在步骤110检测受试者的脑波信号。尽管方法100以及对根据本实施方式的声音诱导的睡眠的讨论限于检测受试者的脑波信号,然而本实施方式和声音诱导的睡眠的方法在从受试者检测其他信号(例如心跳信号)的时候也是适用的。本文中讨论的受试者包括人、动物或对声音有反应的其他生物。
方法100还包括在步骤130分析脑波信号以检测受试者的当前欲睡状态、在步骤150基于脑波信号和声音的声学特征之间的量化的关联指数响应于当前欲睡状态选择声音,以及在步骤170将声音播放给受试者。
脑波由来自脑中相互交流(communicating)的神经元的物质的同步的电脉冲产生。使用放置在头皮上的传感器(例如,使用用于脑电图(EEG)的传感器)而对脑波信号进行检测。脑波被分为多个带宽并且每个带宽与一不同的睡眠状态关联:德尔塔(Delta)波与深度或无梦睡眠关联;西塔(Theta)波与轻度睡眠关联;阿尔法(Alpha)、贝塔(Beta)和伽马(Gamma)波与清醒状态关联。这样,当前欲睡状态可以由脑波所属的带宽来确定。当前欲睡状态可以包括欲睡的状态和非欲睡的状态。欲睡的状态可以与德尔塔波和西塔波关联而非欲睡的状态可以与阿尔法、贝塔和伽马波关联。当前欲睡状态还可以包括深度睡眠状态、轻度睡眠状态、中度睡眠状态或完全清醒状态。可以给每个欲睡状态分配欲睡度分数以量化欲睡度。
播放给受试者的声音可以包括音乐、自然声音、电子声音等。可以具有用于存储用于诱导睡眠的声音的数据库或声音库,例如睡眠治疗光盘(CD)。选择的声音可以包括单个乐曲/声音或包括包含多个乐曲的声音列表和/或其他类型的声音。包含在选择的声音中的声音的列表可以被预先存储为整体,在该整体中声音以预设的顺序特定地排列以根据下面描述的方法诱导睡眠。
声音可以借助其声学特征表示和分析。声音的声学特征可以包括从包含音乐信号总体能量、节奏(tempo)、亮度、粗糙度、梅尔倒谱系数(Mel-frequency cepstralcoefficient)、音高(pitch)、不和谐度(inharmonicity)、调(key)、色谱图(chromagram)、调式(mode)、音色重心(tonal centroid)和声段熵(period entropy)的群组中选择的特征。可以从环境音乐或自然声音计算声学特征。
脑波信号和声音的声学特征之间的量化的关联指数可以通过确定它们之间的相关性(correlation)来获得。相关性可以使用典型相关性分析(Canonical CorrelationAnalysis,CCA)来表达。CCA是一种通过找到在其中变量之间的相关性矩阵是对角的两个基并且使得在对角线上的相关性最大化来测量两个多维变量之间的线性关系的方法。这样,CCA同时使脑波信号和声音的声学特征之间的相关性最大化并且使欲睡状态和非欲睡状态之间的区别最大化。
使用CCA的优化问题可以用公式表示为:
其中
表示来自同类(即,都是欲睡或非欲睡)的声音诱发的脑波向量xj和声音声学特征向量yj的相关性,
表示来自不同类(即,一个是欲睡而另一个是非欲睡)的xj、yj的相关性,
Cxx=XXT,Cyy=YYT (9)
其中X和Y是从声音诱发的脑波信号和声音声学特征获得的优化的特征集的矩阵。Cxx和Cyy是表示声音诱发的脑波信号和声音声学特征之间的相关性的协方差矩阵。
使用广义特征值问题方法可以获得解,
(Cw-Cb)(YYT)-1(Cw-Cb)Twx=λ2XXTwx (10)
(Cw-Cb)(XXT)-1(Cw-Cb)Twy=λ2YYTwy. (11)
最终,增强的脑波和声音声学特征向量分别为
以及 (12)
其中Wx和Wy是与最大的广义特征值λ对应的特征向量。Wx和Wy可以被视为脑波信号和声音声学特征之间的量化的关联指数。这样,声音声学特征将会影响向其播放声音的受试者的脑波信号。因此,通过基于量化的关联指数选择声音并播放声音,可以操控脑波并且因此可以诱导睡眠。
当分析脑波信号时可以确定睡眠阶段并且可以相应地以响应于睡眠阶段确定的预定音量播放声音。睡眠阶段可以包括从包含清醒、轻度睡眠N1、轻度睡眠N2、深度睡眠N3和快速眼球运动睡眠(REM)的群组选择的阶段。如上面提及的,德尔塔波可以与深度睡眠N3关联;西塔波可以与轻度睡眠N1和轻度睡眠N2关联;并且阿尔法、贝塔和伽马波可以与清醒阶段关联。在清醒阶段,声音可以以预定的起始音量(例如,数字域中的100%)播放,在轻度睡眠阶段N1、轻度睡眠N2、深度睡眠N3和REM睡眠阶段,可以以从预定的起始音量衰退的衰退音量播放和/或中断播放。
可以预设当前的欲睡状态和脑波信号之间的建模对应性。通过人工地从受试者的面貌确定当前的欲睡状态可以校准建模对应性。
可以提供表明总睡眠小时、睡眠开始/结束时间和轻度/深度/REM睡眠持续时间的比率的睡眠质量报告。这对于诊断任何与睡眠相关的疾病是有用的。
参考图2,描绘了用于声音诱导的睡眠的系统200。系统200包括配置成检测受试者201的脑波信号的检测器模块210、配置成分析脑波信号以确定受试者的当前的欲睡状态的分析器模块230、配置成基于脑波信号和声音的声学特征之间的量化的关联指数响应于当前欲睡状态选择声音的处理器模块250,以及配置成将声音播放给受试者的播放器模块270。
分析器模块230可以还配置成分析脑波信号以便确定睡眠阶段并且播放器模块270可以还配置成以响应于睡眠阶段确定的预定音量播放声音。睡眠阶段可以包括从包含清醒、轻度睡眠(N1)、轻度睡眠(N2)、深度睡眠(N3)和快速眼球运动(REM)睡眠的群组选择的阶段。
播放器模块270还可以配置成在清醒阶段以预定的起始音量播放声音,在轻度睡眠阶段N1、轻度睡眠N2、深度睡眠N3和REM睡眠阶段以从预定的起始音量衰退的衰退音量播放声音和/或中断播放声音。
处理器模块250还可以配置成提供表明总睡眠小时、睡眠开始/结束时间、和轻度/深度/REM睡眠持续时间的比率的睡眠质量报告。
处理器模块可以还配置成根据声音的预设顺序选择声音。
系统200还可以包括配置成预设当前的欲睡状态和脑波信号之间的建模对应性的建模模块220,其中通过人工地从受试者的面貌确定当前的欲睡状态来校准建模对应性。
系统200还可以包括三个预处理器(232、234和236),其配置成由检测的脑波信号来:1)检测噪声水平;2)获得受试者特定的基准线;以及3)提取包括纺锤波(spindle)、K-复合波(K-complex)、滤波带(德尔塔、西塔、阿尔法、西格玛、贝塔和伽马)的感知睡眠的特征。这将针对图4进行讨论。
参考图3,流程图300中描绘了根据本实施方式的用于声音诱导的睡眠的方法。在步骤310测量受试者201的脑波。在步骤330发送脑波以进行分析,步骤330同时地或者连续地包括在步骤331的实时睡眠阶段检测、在步骤333的欲睡状态检测以及在步骤335的脑波-声音关联。分析的细节将参考图4更加详细地进行讨论。在步骤331,从实时睡眠检测过程中的脑波确定睡眠阶段。在步骤337,响应于睡眠阶段可以确定若干参数/动作。例如,声音音量、唤醒控制或睡眠质量评估。在脑波被发送到欲睡状态检测之后确定当前的欲睡状态。从预先存储的量化的关联指数更新关联模式以适应受试者301的测量的脑波。在步骤350,将更新的关联模式发送至适应性声音选择。在步骤350,基于更新的关联模式,响应于当前的欲睡状态适应性地选择声音。与在步骤337确定的参数联合,在步骤370,发送选择的声音用于播放给受试者301。在受试者201的睡眠之前和期间,该过程将重复地进行。这样,基于每个个体受试者对于先前声音的脑响应而选择随后的声音。因此,通过针对每个特定的个体受试者适应性地选择声音,本方法提供了一种可个体化的睡眠诱导方法。
现在参考图4更加详细地描述包括图3中在步骤330的对睡眠阶段和欲睡状态的确定的脑波的分析。
脑波信号由头带式EEG传感器310测量。然后,将脑波信号发送至三个预处理器进行三个动作:感知睡眠的EEG特征提取432、噪声水平评估434,以及受试者特定的基准线检测436。噪声水平评估434用于检测EEG信号的噪声水平。受试者特定的基准线检测436用于获得对个每个受试者的基准线。基准线检测可以使用EEG信号的头两分钟执行。获得并保存谱功率分布模式作为受试者特定的基准线。以这种方式,个体地确定睡眠阶段并且然后响应于每个受试者个体地选择声音。噪声水平评估和受试者特定的基准线检测的结果被用于在稍后的阶段446调节并平滑提取的感知睡眠的EEG特征。
感知睡眠的EEG特征提取432从由EEG检测的脑波信号提取各种感知睡眠的特征,包括睡眠纺锤波、K-复合波和滤波带(德尔塔(0.3-4Hz)、西塔(4-8Hz)、阿尔法(8-12Hz)、西格玛(12-16Hz)、贝塔(16-32Hz)和伽马((32-64Hz)),如在步骤438所示。此外,计算每个历元(epoch)内的每个滤波带功率比的平均和偏差并获得每个滤波带的分布。在步骤440,提取的感知睡眠的EEG特征被供给至分类器。通过利用来自数据库420的数据离线训练分类器以在步骤460中将欲睡状态和非欲睡状态区分开来。分类器的输出是连续的参数,定义为欲睡度分数442。例如,如果欲睡度分数为10,则受试者可能处于清醒阶段(即,非欲睡状态),而如果欲睡度分数为90,则受试者可能处于深度睡眠阶段。然后,将分数发送至基于模糊规则的睡眠阶段检测器444以检测受试者的睡眠阶段,包括清醒阶段、轻度睡眠阶段(N1)、轻度睡眠阶段(N2)、深度睡眠阶段(N3)和REM睡眠阶段。EEG噪声水平和受试者特定的EEG基准线用于在步骤446调整检测的睡眠阶段。在步骤460使用由睡眠专家标记并保存在数据库420中的睡眠EEG数据来初始地训练基于规则的决策系统。当更多的EEG数据被连续地收集时将会得到基于规则的决策系统。在步骤448,应用平滑后处理器以提炼睡眠阶段。通过分析受试者的脑波而确定睡眠阶段。
声音的回放就音量来说根据在步骤337根据受试者的睡眠阶段(清醒、轻度睡眠、深度睡眠阶段以及快速眼球运动睡眠)被自动控制。举例来说,声音将在清醒阶段期间播放,但是在轻度睡眠阶段1(非REM阶段N1)期间、在轻度睡眠阶段2(非REM阶段N2)期间以及在深度睡眠阶段(非REM阶段N3)和REM睡眠阶段期间,将逐渐衰退并且完全中断。由于深度和REM睡眠阶段对于补充和修复人体以及学习和记忆巩固来说是重要的,因此在这些睡眠阶段期间不播放声音以避免干扰脑的这样的行为。以这种方式,本方法诱导快速并且良好质量的睡眠。
在步骤480,整夜的睡眠阶段数据将被合并到睡眠质量报告中,其综述了总睡眠小时、睡眠开始/结束时间以及轻度/深度/REM睡眠持续时间的比率。预处理的数据和报告将被存储到数据库中供睡眠检测模型进一步提炼。
可以现在参考图5更加详细地描述图3中在步骤333示出的欲睡状态检测。预先执行当前的欲睡状态和脑波信号之间脑响应的建模以获得预设的欲睡状态检测模型。这可以通过从受试者的面貌人工地对欲睡度分级以及通过记录脑波以校准模型而执行。例如,轻度睡眠阶段N1的视觉标志可以包括活跃的肌肉以及伴随眼睑温和地开和闭的眼睛缓慢滚动。在轻度睡眠阶段N2,受试者可能逐渐变得较难以唤醒。在深度睡眠阶段N3,受试者对于环境的响应性较低并且许多环境性刺激不再产生任何反应。REM睡眠阶段的视觉标志可以包括大多数肌肉不活动;并且与受试者清醒时相比唤醒和脑的氧气消耗更高。校准的模型将捕获欲睡状态(欲睡或非欲睡)的脑响应以区分声音刺激。
参考图5,声音刺激由受试者501接收。受试者501的脑波在建模阶段中被测量并且受试者501的欲睡状态被人工观察并分级以便利用该信息在欲睡状态检测模型333’形成预设的欲睡状态模型。在这之后,在欲睡状态检测模型333’确定的模型参数在实时阶段期间被用于从在欲睡状态检测模型333的脑波确定受试者的欲睡状态,其中欲睡状态检测模型333将脑波行为与预定的受试者欲睡状态关联。
采用了新颖的频率优化方法以建模对于声音刺激的脑响应。该想法是为了找到最优的谱滤波器以使得欲睡和非欲睡状态之间的分离最大化。以这种方式,受试者的欲睡状态通过其脑波量化,和本文介绍的其他模块一起,这是导致选择诱导更进一步的欲睡状态的最合适的声音的关键。使用来自大量受试者的预先记录的EEG信号而离线地进行建模过程以便获得更好的泛化性能。
参考图6,描绘了选择声音的步骤。基于检测的欲睡状态和量化的脑-声音关联,可以自动地并且适应性地从声音库选择最合适的声音以与受试者的当前脑状态相符。在声音库中,在步骤651测量对于每个声音的声音声学特征向量的欧几里得(Euclidean)距离并且计算声音的相似度。声音可以以响应于声音之间相似度而确定的顺序而存储。如果受试者的欲睡度正根据受试者的欲睡度分数而增加,则声音将继续播放并且将会选择具有与先前歌曲相似的声学特征的新声音以随后被播放。在另一方面,如果受试者的欲睡度没有根据受试者的欲睡度分数而增加,则声音将中断播放并且将会选择具有与先前歌曲最少相似声学特征的新声音以随后被播放。该选择过程在步骤653执行。
参考图7,在流程图700中描绘了用于声音诱导的睡眠的方法的操作。这是为了评估本文描述的方法。
使用具有256Hz采样率的头带采集了EEG信号。从二十八个健康的受试者收集了EEG信号。两个EEG电极被水平地附接到受试者的前额。左和右电极分别与FP1和FP2对应。具有已知声学特征的声音存储在声音库中。声音库包括来自特别地设计用于睡眠治疗的若干CD的40个乐曲段。
在评估过程之前,对于每个受试者接着进行了两个时间段(session)的数据收集。在开始数据收集之前,受试者被给予一些时间以冷静下来并集中精神聆听声音。指导每个受试者在聆听声音的时候舒服地坐下并使身体运动减到最少。在每个时间段,受试者连续地聆听声音并且在完成之后将每个声音段标记为欲睡或非欲睡。为了确认,之后问受试者以告知在聆听声音之后他们是否感觉欲睡。这些人工地分级的数据将用作用于评估的依据事实。
评估过程包括两部分:一部分是根据本方法选择声音而另一部分是随机地选择声音。
参考图7描述第一部分。该过程在步骤701对于受试者1开始。在步骤702和703从声音库随机选择第一声音并将其播放给受试者。在步骤704,对受试者关于他/她是否入睡进行估计。基于估计,如果受试者入睡则该过程将进行到步骤705或者如果受试者没有入睡的话该过程将进行到步骤707。第一声音在步骤705将中断播放。然而,如果受试者在他入睡之后觉醒,则该过程将从步骤706再次重新开始。第一声音在步骤707继续播放。在播放该声音的过程中,从步骤707到步骤704执行间隔检查以对受试者关于他/她是否入睡进行估计。所述检查可以每三秒钟周期地进行。在步骤707之后并且在第一声音播放结束时,在步骤708再次对受试者关于他的/她的欲睡度是否正在增加进行估计。基于估计,如果受试者的欲睡度正在增加则所述过程将行进到步骤706。在步骤706将播放声音库中的下一声音。备选地,如果受试者的欲睡度没有增加,则所述过程将行进到步骤709。在步骤709将根据本方法选择新的声音并在步骤703播放该新的声音。在任何情形中,所述过程都将从步骤703重复。
在评估过程的该第一部分,初始的第一声音从声音库中的声音随机地选择。之后,欲睡状态检测模块将根据受试者的当前的欲睡状态选择下一新的声音。新的声音基于脑波和声音的声学特征之间的量化的关联指数进行选择。该过程将继续,直到睡眠阶段检测模块发现受试者已经入睡并且决定中断播放声音为止。
除了在步骤709从声音库随机选择新的声音而不是基于本方法选择新的声音之外,评估过程的第二部分类似于第一部分地执行。
上面收集的基于人工地分级的数据,按照下面来计算欲睡百分数(就睡眠诱导而言声音对于每个受试者的有效性):
欲睡百分数=受试者感觉欲睡的声音的数量/声音的总数量 (14)
为了评估本实时的适应性声音选择,使用EEG信号和收集的声音的分级数据用于参考。在评估过程中,对于每个选择的声音,按照下面分别针对第一部分和第二部分计算精度。如果选择的声音的分级为“欲睡”,则其被视为“真阳性”,而如果分级为“非欲睡”,则其被视为“假阳性”。
精度=真阳性的数量/声音的总数量 (15)
表1中示出了二十八个受试者的结果。可以看到,对于第二部分(即,声音的随机选择)的精度(平均47.41)接近于声音的欲睡百分比(平均47.86)。然而,对于第一部分(即,基于提出的方法的适应性声音选择)的精度(平均88.11)比欲睡百分比高得多。这意味着基于当前脑状态的提出的方法的性能比随机音乐选择显著更加有效。
表1
因此,根据本实施方式,已经呈现了一种简单并且有效的睡眠诱导方法以及用于此的系统,其克服了现有技术的缺点。基于用户的EEG信号已经提出了一种用于产生欲睡度分数的方法。然而,可以在ECG信号被监测时应用本实施方式。睡眠度分数反映了对于声音刺激关于欲睡度的脑响应。已经提出了基于欲睡状态和声音之间的量化的关联指数适应性地选择声音的新的革新性方案,用于诱导更快和更佳的睡眠。已经提出了基于不同的睡眠阶段(清醒、轻度睡眠、深度睡眠和快速眼球运动睡眠)控制声音回放的新颖策略,利用前额脑波(EEG信号)由实时睡眠阶段检测器自动识别睡眠阶段。
尽管在本发明的前述详细描述中已经呈现了示例性实施方式,但是应当理解存在数量众多的变化。例如,本领域技术人员将从本文的教导中意识到在监测ECG信号时也可以应用本技术。
还应当意识到,示例性实施方式仅仅是例子而不以任何方式限制本发明的范围、可适用性、操作或配置。而是,前面的详细描述将给本领域技术人员提供用于实施本发明的示例性实施方式的便利的路线图,应当理解,在不背离随附的权利要求中阐明的本发明的范围的情况下可以对示例性实施方式中描述的元素和操作的方法的功能和布置作出各种改变。
Claims (19)
1.一种用于声音诱导的睡眠的方法,该方法包括:
检测受试者的脑波信号;
分析脑波信号以确定受试者的当前欲睡状态;
基于脑波信号和声音的声学特征之间的量化的关联指数响应于当前欲睡状态选择声音,其中,受试者的当前欲睡状态包括受试者的欲睡的状态和受试者的非欲睡的状态,并且其中,量化的关联指数通过确定受试者的脑波信号和声音的声学特征之间的相关性而获得,相关性使用典型相关性分析进行表达,典型相关性分析同时使受试者的脑波信号和声音的声学特征之间的相关性最大化并且使受试者的欲睡的状态和受试者的非欲睡的状态之间的区别最大化;以及
向受试者播放声音。
2.根据权利要求1所述的方法,其中分析脑波信号包括分析脑波信号以进一步确定睡眠阶段,并且播放声音包括以响应于睡眠阶段确定的预定音量播放声音。
3.根据权利要求2所述的方法,其中睡眠阶段包括从包含清醒阶段、轻度睡眠阶段N1、轻度睡眠阶段N2、深度睡眠阶段N3和快速眼球运动(REM)睡眠阶段的群组选择的阶段。
4.根据权利要求3所述的方法,其中以响应于睡眠阶段确定的预定音量播放声音包括在清醒阶段中以预定的起始音量播放声音,在轻度睡眠阶段N1、轻度睡眠阶段N2、深度睡眠阶段和REM睡眠阶段中以从预定的起始音量衰退的衰退音量播放声音并随后中断声音。
5.根据权利要求1所述的方法,还包括:
提供表明总睡眠小时、睡眠开始/结束时间和轻度/深度/REM睡眠阶段持续时间的比率的睡眠质量报告。
6.根据权利要求1所述的方法,其中选择声音包括根据预设的声音顺序选择声音。
7.根据权利要求1所述的方法,还包括:
预设当前欲睡状态和脑波信号之间的建模对应性,
其中通过人工地从受试者的面貌确定当前的欲睡状态而校准建模对应性。
8.根据权利要求1所述的方法,其中声学特征包括从包含音乐信号总体能量、节奏、亮度、粗糙度、梅尔倒谱系数、音高、不和谐度、调、色谱图、调式、音色重心和声段熵的群组中选择的特征。
9.根据权利要求1所述的方法,其中从环境音乐和自然声音计算声学特征。
10.一种用于声音诱导的睡眠的系统,所述系统包括:
检测器模块,其配置成检测受试者的脑波信号;
分析器模块,其配置成分析脑波信号以确定受试者的当前的欲睡状态,其中,受试者的当前欲睡状态包括受试者的欲睡的状态和受试者的非欲睡的状态;
处理器模块,其配置成基于脑波信号和声音的声学特征之间的量化的关联指数响应于当前欲睡状态选择声音,其中,所述处理器模块通过确定脑波信号和声音的声学特征之间的相关性而获得量化的关联指数,所述相关性使用典型相关性分析进行表达,典型相关性分析同时使受试者的脑波信号和声音的声学特征之间的相关性最大化并且使受试者的欲睡的状态和受试者的非欲睡的状态之间的区别最大化;以及
播放器模块,其配置成向受试者播放声音。
11.根据权利要求10所述的系统,其中分析器模块还配置成分析脑波信号以进一步确定睡眠阶段,并且播放器模块还配置成以响应于睡眠阶段确定的预定音量播放声音。
12.根据权利要求11所述的系统,其中睡眠阶段包括从包含清醒阶段、轻度睡眠阶段N1、轻度睡眠阶段N2、深度睡眠阶段N3和快速眼球运动(REM)睡眠阶段的群组选择的阶段。
13.根据权利要求12所述的系统,其中播放器模块还配置成在清醒阶段中以预定的起始音量播放声音,在轻度睡眠阶段N1、轻度睡眠阶段N2、深度睡眠阶段和REM睡眠阶段中以从预定的起始音量衰退的衰退音量播放声音并随后停止播放声音。
14.根据权利要求10所述的系统,其中处理器模块还配置成提供表明总睡眠小时、睡眠开始/结束时间、和轻度/深度/REM睡眠阶段持续时间的比率的睡眠质量报告。
15.根据权利要求10所述的系统,其中处理器模块还配置成根据预设的声音顺序选择声音。
16.根据权利要求10所述的系统,还包括:
建模模块,该建模模块配置成预设当前欲睡状态和脑波信号之间的建模对应性,
其中通过人工地从受试者的面貌确定当前的欲睡状态而校准建模对应性。
17.根据权利要求10所述的系统,其中声学特征包括从包含音乐信号总体能量、节奏、亮度、粗糙度、梅尔倒谱系数、音高、不和谐度、调、色谱图、调式、音色重心和声段熵的群组中选择的特征。
18.根据权利要求10所述的系统,其中从环境音乐和自然声音计算声学特征。
19.根据权利要求10所述的系统,还包括:
三个预处理器,其配置成从检测的脑波信号提取以:检测噪声水平、获得受试者特定的基准线,并且提取包括纺锤波、K-复合波、德尔塔滤波带宽、西塔滤波带宽、阿尔法滤波带宽、西格玛滤波带宽、贝塔滤波带宽和伽马滤波带宽的感知睡眠的特征。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG201304490-4 | 2013-06-11 | ||
SG2013044904 | 2013-06-11 | ||
PCT/SG2014/000271 WO2014200433A1 (en) | 2013-06-11 | 2014-06-11 | Sound-induced sleep method and a system therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105451801A CN105451801A (zh) | 2016-03-30 |
CN105451801B true CN105451801B (zh) | 2019-02-22 |
Family
ID=52022581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480044909.5A Active CN105451801B (zh) | 2013-06-11 | 2014-06-11 | 声音诱导的睡眠方法和用于该方法的系统 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9999743B2 (zh) |
EP (1) | EP3007755B1 (zh) |
CN (1) | CN105451801B (zh) |
SG (1) | SG11201510213UA (zh) |
WO (1) | WO2014200433A1 (zh) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3226751A4 (en) | 2014-12-05 | 2018-08-08 | Agency For Science, Technology And Research | Sleep profiling system with feature generation and auto-mapping |
WO2018001936A1 (en) * | 2016-06-27 | 2018-01-04 | Koninklijke Philips N.V. | System and method for adjusting the volume of auditory stimulation during sleep based on sleep depth latencies |
US10838685B2 (en) * | 2017-03-23 | 2020-11-17 | Fuji Xerox Co., Ltd. | Information processing device and non-transitory computer-readable medium |
FR3067241B1 (fr) * | 2017-06-12 | 2021-05-28 | Rythm | Systeme habitronique pour l'assistance a l'endormissement |
CN107715274A (zh) * | 2017-10-31 | 2018-02-23 | 陈锐斐 | 一种制作有助于睡眠的音乐的方法 |
WO2019096659A1 (en) * | 2017-11-20 | 2019-05-23 | Koninklijke Philips N.V. | System for delivering sensory stimulation to a user to enhance a cognitive domain in the user |
CN107998499A (zh) * | 2017-11-28 | 2018-05-08 | 广州视源电子科技股份有限公司 | 睡眠辅助内容的处理方法和系统、睡眠辅助服务器系统 |
CN108052012A (zh) * | 2017-12-18 | 2018-05-18 | 张馨予 | 睡眠环境智能调节系统及方法 |
CN107961430B (zh) * | 2017-12-21 | 2024-06-07 | 速眠创新科技(深圳)有限公司 | 睡眠诱导装置 |
CN108159547B (zh) * | 2018-02-07 | 2021-03-26 | 蔡佐宾 | 催眠方法及催眠系统 |
EP3669921A1 (en) * | 2018-12-17 | 2020-06-24 | Koninklijke Philips N.V. | A system and method for delivering auditory sleep stimulation |
CN110585554B (zh) * | 2019-09-24 | 2022-04-26 | 喜临门家具股份有限公司 | 一种助眠音乐控制系统 |
CN110841169B (zh) * | 2019-11-28 | 2020-09-25 | 中国科学院深圳先进技术研究院 | 一种用于睡眠调节的深度学习声音刺激系统和方法 |
WO2021115831A1 (en) * | 2019-12-09 | 2021-06-17 | Koninklijke Philips N.V. | System and method to shorten sleep latency |
CN111760160A (zh) * | 2020-07-01 | 2020-10-13 | 北京脑陆科技有限公司 | 一种基于eeg信号的助眠方法 |
CN114099894A (zh) * | 2020-08-26 | 2022-03-01 | 西安慧脑智能科技有限公司 | 脑波音频助眠方法、装置、设备及存储介质 |
CN111921062A (zh) * | 2020-09-02 | 2020-11-13 | 北京脑陆科技有限公司 | 一种基于便捷式eeg设备的声波干预记忆力增强系统 |
CN112121283A (zh) * | 2020-09-08 | 2020-12-25 | 杭州趣安科技有限公司 | 一种自适应放松辅助系统、方法、设备以及存储介质 |
CN113094018B (zh) * | 2021-04-09 | 2022-09-30 | 宁波奥克斯电气股份有限公司 | 睡眠控制方法及其装置、系统、电子设备、存储介质 |
CN113952582B (zh) * | 2021-12-20 | 2022-03-08 | 深圳市心流科技有限公司 | 一种基于脑电信号的中断冥想音效控制方法和设备 |
CN117322893A (zh) * | 2023-11-13 | 2024-01-02 | 无锡特文思达健康科技有限公司 | 一种基于Neurosky脑波信号的睡眠状态建模及部署方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4883067A (en) * | 1987-05-15 | 1989-11-28 | Neurosonics, Inc. | Method and apparatus for translating the EEG into music to induce and control various psychological and physiological states and to control a musical instrument |
CN101015451A (zh) * | 2007-02-13 | 2007-08-15 | 电子科技大学 | 一种音乐脑电分析方法 |
CN101272732A (zh) * | 2005-05-10 | 2008-09-24 | 索尔克生物学研究所 | 睡眠和清醒状态的自动检测 |
CN102438515A (zh) * | 2008-11-14 | 2012-05-02 | 索尔克生物学研究所 | 识别睡眠模式与清醒模式的方法及用途 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7749155B1 (en) * | 1996-08-30 | 2010-07-06 | Headwaters R+D Inc. | Digital sound relaxation and sleep-inducing system and method |
US6993380B1 (en) * | 2003-06-04 | 2006-01-31 | Cleveland Medical Devices, Inc. | Quantitative sleep analysis method and system |
US20070249952A1 (en) * | 2004-02-27 | 2007-10-25 | Benjamin Rubin | Systems and methods for sleep monitoring |
US20060293608A1 (en) * | 2004-02-27 | 2006-12-28 | Axon Sleep Research Laboratories, Inc. | Device for and method of predicting a user's sleep state |
US20100168503A1 (en) * | 2005-03-08 | 2010-07-01 | Sunnen Gerard V | Vibrational delta and theta brain wave induction apparatus and method for the stimulation of sleep |
US20080288023A1 (en) * | 2005-08-31 | 2008-11-20 | Michael Sasha John | Medical treatment using patient states, patient alerts, and hierarchical algorithms |
DE102008028751A1 (de) * | 2008-03-18 | 2009-09-24 | Bude, Friedrich, Dr. | Verfahren und Vorrichtung zur Erhaltung, Wiedererlangung oder Erhöhung der Aufmerksamkeit und Wachheit einer ermüdeten Person |
US10575751B2 (en) * | 2008-11-28 | 2020-03-03 | The University Of Queensland | Method and apparatus for determining sleep states |
EP2236078A1 (en) * | 2009-04-02 | 2010-10-06 | Koninklijke Philips Electronics N.V. | Processing a bio-physiological signal |
WO2012137213A1 (en) * | 2011-04-05 | 2012-10-11 | Neurokeeper Technologies Ltd. | System and method for detecting neurological deterioration |
WO2013061185A1 (en) | 2011-10-25 | 2013-05-02 | Koninklijke Philips Electronics N.V. | Sleep stage classification device with background oscillation emitter. |
-
2014
- 2014-06-11 CN CN201480044909.5A patent/CN105451801B/zh active Active
- 2014-06-11 EP EP14810250.2A patent/EP3007755B1/en active Active
- 2014-06-11 SG SG11201510213UA patent/SG11201510213UA/en unknown
- 2014-06-11 US US14/898,094 patent/US9999743B2/en active Active
- 2014-06-11 WO PCT/SG2014/000271 patent/WO2014200433A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4883067A (en) * | 1987-05-15 | 1989-11-28 | Neurosonics, Inc. | Method and apparatus for translating the EEG into music to induce and control various psychological and physiological states and to control a musical instrument |
CN101272732A (zh) * | 2005-05-10 | 2008-09-24 | 索尔克生物学研究所 | 睡眠和清醒状态的自动检测 |
CN101015451A (zh) * | 2007-02-13 | 2007-08-15 | 电子科技大学 | 一种音乐脑电分析方法 |
CN102438515A (zh) * | 2008-11-14 | 2012-05-02 | 索尔克生物学研究所 | 识别睡眠模式与清醒模式的方法及用途 |
Also Published As
Publication number | Publication date |
---|---|
US20160151602A1 (en) | 2016-06-02 |
WO2014200433A1 (en) | 2014-12-18 |
EP3007755A1 (en) | 2016-04-20 |
CN105451801A (zh) | 2016-03-30 |
US9999743B2 (en) | 2018-06-19 |
SG11201510213UA (en) | 2016-01-28 |
EP3007755B1 (en) | 2023-04-19 |
EP3007755A4 (en) | 2017-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105451801B (zh) | 声音诱导的睡眠方法和用于该方法的系统 | |
US20220249017A1 (en) | Deep sound stimulation system and method for sleep regulation | |
CN105833411A (zh) | 一种新型智能助眠和自然唤醒的方法及装置 | |
JP7007484B2 (ja) | 入眠潜時を決定するためのシステム及び方法 | |
CN206045144U (zh) | 一种新型智能助眠和自然唤醒的装置 | |
CN110947075A (zh) | 基于脑波音乐的个性化精神状态调节系统及调节方法 | |
Miranda et al. | On harnessing the electroencephalogram for the musical braincap | |
CN110706816A (zh) | 一种基于人工智能进行睡眠环境调控的方法及设备 | |
CN107463646A (zh) | 一种助眠音乐智能推荐方法及装置 | |
CN110167424A (zh) | 用于输出表示在睡眠期期间提供给对象的刺激的效果的指示符的系统和方法 | |
TWM487053U (zh) | 智慧型睡眠記錄裝置 | |
Ogg et al. | Psychophysiological indices of music-evoked emotions in musicians | |
CN112717253A (zh) | 基于脑电波监测的声光结合唤醒装置 | |
CN115227243A (zh) | 判别脑疲劳及情绪的自动检索背景音乐bci系统 | |
Lee et al. | Music for sleep and wake-up: an empirical study | |
AU2021101097A4 (en) | A system and method for automatic playlist generation by analysing human emotions through physiological signals | |
Putilov | Prospects of using electroencephalographic signatures of the chronoregulatory processes for meaningful, parsimonious and quantitative description of the sleep–wake sub-states | |
CN115335102B (zh) | 在大脑中产生反馈的方法、系统及大脑键盘 | |
Kaur et al. | Auditory Brainwave Entrainment System using Time-Series Analysis of EEG Signal | |
Merino Monge et al. | A preliminary study about the music influence on EEG and ECG signals | |
JP7411944B2 (ja) | 刺激提示システム、刺激提示方法、および、プログラム | |
Steffert | Real-time electroencephalogram sonification for neurofeedback | |
Hoodgar | Neural Correlations of Improving in Auditory Temporal Discrimination based on Entropy of EEG Signals | |
Djedou et al. | Can sequence mining improve your morning mood? toward a precise non-invasive smart clock | |
Erwinsson et al. | Enhancing wake-up with Apple watch using only heart rate: reducing sleep inertia by waking up from lighter sleep |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |