CN105449114B - Cs2CO3掺杂石墨烯为电子注入层的有机电致发光器件 - Google Patents
Cs2CO3掺杂石墨烯为电子注入层的有机电致发光器件 Download PDFInfo
- Publication number
- CN105449114B CN105449114B CN201410428684.5A CN201410428684A CN105449114B CN 105449114 B CN105449114 B CN 105449114B CN 201410428684 A CN201410428684 A CN 201410428684A CN 105449114 B CN105449114 B CN 105449114B
- Authority
- CN
- China
- Prior art keywords
- layer
- graphene
- electron injecting
- injecting layer
- organic electroluminescence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 36
- 238000005401 electroluminescence Methods 0.000 title claims abstract description 14
- FJDQFPXHSGXQBY-UHFFFAOYSA-L Cs2CO3 Substances [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 claims abstract description 25
- 229910000024 caesium carbonate Inorganic materials 0.000 claims abstract description 24
- 238000001704 evaporation Methods 0.000 claims abstract description 10
- 230000008020 evaporation Effects 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 7
- 230000027756 respiratory electron transport chain Effects 0.000 claims abstract description 7
- 230000005540 biological transmission Effects 0.000 claims abstract description 5
- 239000011521 glass Substances 0.000 claims abstract description 4
- 238000010438 heat treatment Methods 0.000 claims abstract description 3
- 238000001947 vapour-phase growth Methods 0.000 claims abstract description 3
- 230000005525 hole transport Effects 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 44
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910052571 earthenware Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- -1 graphite Alkene Chemical class 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Landscapes
- Electroluminescent Light Sources (AREA)
Abstract
本发明属于有机电致发光器件领域,具体涉及一种采用Cs2CO3掺杂石墨烯为电子注入层来提高器件效率和亮度的有机电致发光器件,该有机电致发光器件的结构依次包括:ITO阳极、空穴传输层、发光层兼电子传输层、电子注入层、阴极,所述的电子注入层为Cs2CO3掺杂石墨烯,采用有机气相沉积的方法将Cs2CO3和石墨烯同时加热蒸发,然后沉积到ITO玻璃上得到其薄膜,该器件具有操作简单、高效率、制备成本较低的特点。
Description
技术领域
本发明属于有机电致发光器件领域,具体涉及一种采用Cs2CO3掺杂石墨烯为电子注入层来提高器件效率和亮度的有机电致发光器件。
背景技术
有机电致发光器件(organic light-emitting device,OLED)具有自主发光、耗能低、宽视角、成本较低、效率高及显色指数高等诸多优点,已引起学术界和产业界的高度重视[1-3]。自1987年美国柯达公司的邓青云等人首次对有机电致发光器件做了相关报道以来,有机电致发光技术也逐步成为了新一代平板显示和照明行业的研究热点。近年来,有机电致发光器件已经基本具备了产业化的条件,但仍存在成品率不高,稳定性差,发光效率不够理想等问题,这些问题,应该从新材料的使用,器件结构和工艺的优化等途径加以解决。
通过器件结构优化或制作工艺的优化,来改善器件中的载流子注入和传输机制的研究十分广泛[4],我们课题组也曾经采用电子阻挡或磁场作用等一些物理手段取得了一些有意义的结果[5-7]。但为进一步满足大范围商业化应用的需求,还需要进一步提高其性能,降低成本,研究人员不断从器件制备方法,新材料合成等角度进行探索,以寻求OLED更高的效率。Hou等[8]把新型碳材料C60引入到OLED中,采用MoO3/C60 作为双空穴注入层应用倒置型顶发射OLED中,提高了空穴注入,器件发光效率明显提高。Wu等[9]也将C60/NPB:MoO3作为互连层应用在有机叠层器件中,效率得到明显提高。 LU等[10]采用C60 掺杂NPB 作为OLED的空穴注入层,极大地提高了器件的效率和稳定性,郭颂等采用氧化石墨烯作为共蒸镀掺杂材料应用在OLED 中[11],OLED器件性能也得到提高。新的有机材料合成应用在OLED中,近年来已有很多研究和报道[12-14] ,但存在材料合成工艺复杂,成本较高等不足。石墨烯(Graphene)[15,16] 作为一种半导体材料,因其特有的光电特性成为这几年来研究热点,其具有很高的载流子迁移率,据报道达15000 cm2 /V.S,还具有非常好的传导性和透明度[17],作为一种碳的同素异形体,基本构成元素碳元素自然界存有量丰富,价格便宜,无毒性,无污染。其功函数(4.6 ev)和ITO的功函数比较接近的(4.8 ev),碳纳米管作为OLED的阳极已经有报道[18,19],石墨烯作为透明电极替代ITO作为阳极应用于OLED已经开展了相关的研究工作[20-22],但在OLED的结构设计中直接采用石墨烯,及其对OLED性能影响方面的工作尚未见相关报道。我们利用将石墨烯应用在OLED结构设计中,将石墨烯掺杂在Cs2CO3中作为电子注入层,有效地提高了OLED的效率和亮度。
参考文献
[1] Zhong Ze, Dai Yanfeng, Ma Dongge,et al. Facile synthesis oforgano-soluble surface-grafted all-single-layer graphene oxide as hole-injecting buffer material in organic light-emitting diodes[J].Journal of Materials Chemistry ,2011,21(16):6040-6045.
[2] Justin Thomas K R, Kapoor Neha, Prasad Bolisetty M N K, et al.Pyrene-fluorene hybrids containing acetylene linkage as color-tunableemitting materials for organic light-emitting diodes [J].J Org Chem,2012, 77(8):3921-3932.
[3]D’Andrade Brain W, Holmes Russell J, Forrest StephenR. Efficientorganic electro phosphrescent white-light-emitting device with a triple dopedemissive layer [J].Adv Mater.2004, 16(7) :624-628.
[4]Tae-Hee Han, Mi-Ri Choi, Seong-Hoon Woo, et al. Molecularlycontrolled interfacial layer strategy toward highly efficient simple-structured organic light-emitting diodes [J]. Adv Mater. 2012, 24(11):1487-1493.
[5] 姜文龙,孟凡超,丛林等.基于BAlq的有机电致发光器件的磁效应[J].光电子·激光. 2011,22(1):5-8.
[6] 丁桂英,姜文龙,常喜等.基于不同掺杂浓度双量子阱OLED的磁电阻效应[J].光电子·激光.2012,23(7):1285-1290.
[7] 姜文龙,薛志超,常喜,等. CdS薄层对有机电致发光器件性能的影响[J].光电子·激光.2013,24(1):11-15.
[8] Jianhua Hou, Jiang Wu, Zhiyuan Xie, et al . Efficient invertedtop-emitting organic light-emitting diodes using ultrathin MoO3/C60 bilayerstructure to enhance hole injection[J].Appl. Phys. Lett. 2009, 95(20):203508-1-3.
[9] Xiaoming Wu, Wentao Bi, Yulin Hua, et al. C60/N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine:MoO3 as Theinterconnection layer for high efficient tandem blue fluorescent organiclight-emitting diodes[J].Appl. Phys. Lett. 2013, 102(24): 243302-1-5.
[10] Yuan Y,Grozea D,Lu Z H.Fullerene-Doped Hole Transport MolecularFilms for Organic Light-Emiting Diodes[J] .Appl. Phys. Lett.2005(86):143509-143511.
[11] GUO Song,DU Xiao-gang,LIU Xiao-yun, et al.Graphene Oxide asDoping Material for Assembling OLEDs via Thermal Co-evaporation with NPB andAlq3[J]. Chin.J.Lumin.2013,34(5) :595-599.
[12] Ze Zhong,Yanfeng Dai,Dong ge Ma,et al.Facile synthesis oforgano-soluble surface-grafted all-single-layer graphene oxide as hole-injecting buffer material in organic light-emitting diodes[J].Journal ofMaterials Chemistry.2011,21(16):6040 -6045.
[13] 张迪,杨刚,文雯,等.一种新型磷光材料的电致发光特性研究[J].光电子·激光.2009,20(6):754-757.
[14]丁桂英,韩强,王广德,等.锌金属配合物BFHQZn的白色有机电致发光器件[J].光电子·激光.2010,21(3):340-343.
[15]K.S.Novoselov, A.K.Geim, S.V.Morozov, et al. Electric FieldEffect in Atomically Thin Carbon Films[J].Science. 2004,306:666-669.
[16]K. S. Kim, Y. Zhao, H. Jang, et al. Large-scale pattern growth ofgraphene films for stretchable transparent electrodes[J].Nature .2009,457:706-710.
[17] Geim, A. K. and Novoselov, K. S. The rise of graphene[J]. NatureMaterials. 2007, 6 (3): 183-191.
[18]D.H.Zhang, K.Ryu, X.L.Liu, et al. Transparent, Conductive, andFlexible Carbon Nanotube Films and Their Application in Organic Light-Emitting Diodes[J].Nano Lett. 2006,6(9):1880-1886.
[19]C.D.Williams, R.O.Robles, M.Zhang, et al. Carbon nanotube sheetsas electrodes in organic light-emitting diodes [J].Appl.Phys.Lett. 2008,93(18):183104-183106.
[20]Kim K S,Zhao Y,Jang H,et al.Large-scale pattern growth ofgraphene films for stretchable transparent electrodes[J].Nature,2009,457:706-710.
[21]Wu J B,Agrawal M,Becerril H A,et al.Organic light-emitting diodeson solution-processed graphene transparent electrodes[J]. ACS Nano,2010,4(1):43-48.
[22]T.Sun, Z. L.Wang, Z. J. Shi, et al.Multilayered graphene used asanode of organic light emitting devices[J].Appl. Phys. Lett. 2008,96(5):133301-133303。
发明内容
为了解决背景技术中有机电致发光器件成品率不高,稳定性差,发光效率不够理想等问题,本发明的目的是一种新的OLED的电子注入层的结构,采用Cs2CO3掺杂石墨烯为电子注入层应用在有机电致发光器件中,从而提高器件的效率和亮度,且合成方法简单,器件易于制备。
本发明的目的是这样实现的,该有机电致发光器件的结构依次包括: ITO阳极、空穴传输层、发光层兼电子传输层、电子注入层,阴极,所述的电子注入层为Cs2CO3掺杂石墨烯,采用有机气相沉积的方法将Cs2CO3和石墨烯同时加热蒸发,然后沉积到ITO玻璃上得到其薄膜。
所述的电子注入层的厚度为1 nm ,石墨烯掺杂到Cs2CO3中,其中Graphene与Cs2CO3的质量分数之比为1:4,石墨烯掺杂浓度为20%。
所述的空穴传输层厚度为50nm,发光层兼电子传输层的厚度为80nm,电子注入层的厚度为1nm,阴极的厚度为100nm。
本发明的优点和效果是:
1、本发明提供了一种操作简单、高效的OLED电子注入层的制备方法,该方法成本较低,可以有效的提高OLED的效率;
2、本发明提高OLED的亮度,还可以显著提高器件效率;
3、以本发明为基础,还可以制备性能更好的白光OLED。
附图说明:
图1为本发明器件的结构图。
图2为本发明电子注入层分别为LiF,Graphene: Cs2CO3时的电压-亮度特性曲线。
图3为本发明电子注入层分别为LiF,Graphene: Cs2CO3时的电压-电流密度特性曲线。
图4为本发明电子注入层分别为LiF,Graphene: Cs2CO3时的电压-效率特性曲线。
五、具体实施方式
实施例1
由附图1所示:本发明器件的结构依次包括: ITO阳极、空穴传输层,发光层兼电子传输层、电子注入层,阴极,其中NPB作为空穴传输层,Alq3作为电子传输层兼发光层,Graphene: Cs2CO3作为电子注入层。
所述的电子注入层的厚度为1 nm ,其中石墨烯掺杂到Cs2CO3中,其中Graphene与Cs2CO3的质量分数之比为1:4,石墨烯掺杂浓度为20%。
所述的空穴传输层厚度为50nm,发光层兼电子传输层的厚度为80nm,电子注入层的厚度为1nm,阴极的厚度为100nm。
将ITO玻璃衬底分别用丙酮(分析纯)、乙醇(分析纯)、去离子水各反复擦洗3次,然后再采用丙酮、乙醇、去离子水各超声处理3次,每次为15分钟,然后放到120oC恒温箱中干燥,器件的制备在多源有机气相分子束沉积系统(该设备由沈阳市久达真空技术研究所生产)中进行,将N,N’-di(naphthalene-1-yl)-N,N’-diphenyl-benzidine(NPB)、tris(8-hydroxyquinolino)-aluminum (Alq3)、Graphene、Cs2CO3分别放在不同的蒸发源的石英坩埚中,Al挂在蒸发源的钨丝上,每个蒸发源的温度可以单独控制,按附图1中的器件结构蒸镀不同的有机材料层,在生长的过程中系统的真空度维持在 4×10-4 Pa 左右,而通过调节不同蒸发源的温度,控制每个蒸发源的蒸发速率,得到不同的掺杂比例,制备出目标器件,结构是ITO/NPB 50nm/Alq3 80nm/Graphene: Cs2CO3,(其中Graphene的掺杂浓度为20%)1nm/Al阴极100nm。
器件制备成功之后,在室温下采用美国生产的 PR655 光度计和Keithley-2400电流-电压源组成的测试系统来测试其性能,得到器件的电流、亮度、色坐标等性能参数,有机膜的厚度是由上海产的FTM-V型石英晶体膜厚仪来监测的。
实施例2
步骤以及测试同实施例1相同,制备出器件的结构为:ITO/NPB 50nm/Alq3 80nm/LiF0.5nm/Al阴极100nm。
结论:由图2,图3和图4所示,采用Graphene: Cs2CO3作为电子注入层的OLED器件效率同采用传统LiF作为电子注入层的OLED器件相比较,电子注入层缓冲层为Graphene:Cs2CO3的OLED器件最大亮度为7701 cd/m2,最大效率为2.02 cd/A;而LiF层作为电子注入层的器件,最大亮度为6564 cd/m2,最大效率为0.78 cd/A,采用电子注入层缓冲层为Graphene: Cs2CO3的OLED器件效率是采用LiF层作为电子注入层的器件效率的2.59倍,OLED器件的亮度,效率都得到了明显的提高。
Claims (1)
1.Cs2CO3掺杂石墨烯为电子注入层的有机电致发光器件,器件的结构依次是:ITO阳极、空穴传输层、发光层兼电子传输层、电子注入层、阴极,其特征在于:电子注入层为Cs2CO3掺杂石墨烯,采用有机气相沉积的方法将Cs2CO3和石墨烯同时加热蒸发,然后沉积到ITO玻璃上得到其薄膜;所述的空穴传输层厚度为50nm,发光层兼电子传输层的厚度为80nm,电子注入层的厚度为1nm,阴极的厚度为100nm;其中,电子注入层中Graphene与Cs2CO3的质量分数之比为1:4,石墨烯掺杂浓度为20%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410428684.5A CN105449114B (zh) | 2014-08-28 | 2014-08-28 | Cs2CO3掺杂石墨烯为电子注入层的有机电致发光器件 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410428684.5A CN105449114B (zh) | 2014-08-28 | 2014-08-28 | Cs2CO3掺杂石墨烯为电子注入层的有机电致发光器件 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105449114A CN105449114A (zh) | 2016-03-30 |
CN105449114B true CN105449114B (zh) | 2018-01-16 |
Family
ID=55559085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410428684.5A Expired - Fee Related CN105449114B (zh) | 2014-08-28 | 2014-08-28 | Cs2CO3掺杂石墨烯为电子注入层的有机电致发光器件 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105449114B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110504384B (zh) * | 2019-08-29 | 2022-04-12 | 京东方科技集团股份有限公司 | 有机电致发光器件和显示面板 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101106180A (zh) * | 2006-06-08 | 2008-01-16 | 统宝光电股份有限公司 | 影像显示系统 |
CN101800293A (zh) * | 2010-03-15 | 2010-08-11 | 彩虹集团公司 | 有机发光二极管及其绝缘层和隔离柱的制作方法 |
CN101885704A (zh) * | 2009-05-12 | 2010-11-17 | 北京大学 | 一种电子传输材料及其有机电致发光器件 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101639855B1 (ko) * | 2011-05-20 | 2016-07-14 | 국립대학법인 야마가타대학 | 유기 전자 디바이스 및 그 제조 방법 |
CN103606633B (zh) * | 2013-11-28 | 2016-03-02 | 电子科技大学 | 一种有机电致发光与光伏一体化器件及制备方法 |
-
2014
- 2014-08-28 CN CN201410428684.5A patent/CN105449114B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101106180A (zh) * | 2006-06-08 | 2008-01-16 | 统宝光电股份有限公司 | 影像显示系统 |
CN101885704A (zh) * | 2009-05-12 | 2010-11-17 | 北京大学 | 一种电子传输材料及其有机电致发光器件 |
CN101800293A (zh) * | 2010-03-15 | 2010-08-11 | 彩虹集团公司 | 有机发光二极管及其绝缘层和隔离柱的制作方法 |
Non-Patent Citations (1)
Title |
---|
阴极修饰层对SubPc/C60倒置型有机太阳能电池性能的影响;李青 等;《物理学报》;20130508;第62卷(第12期);第128803-1-6页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105449114A (zh) | 2016-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102306134B1 (ko) | 페로브스카이트 광전 소자, 제조 방법 및 페로브스카이트 재료 | |
Wu et al. | Efficient organic blue‐light‐emitting devices with double confinement on terfluorenes with ambipolar carrier transport properties | |
KR101620870B1 (ko) | 표면 개질된 산화아연을 전자전달층 물질로 포함하는 발광 다이오드 | |
CN104701459B (zh) | 一种有机发光二极管器件及显示面板、显示装置 | |
KR20160025337A (ko) | 그래핀 양자점을 이용한 발광 소자 및 그의 제조 방법 | |
Liu et al. | Aggregation-induced enhanced emission materials for efficient white organic light-emitting devices | |
JPWO2008062642A1 (ja) | 半導体装置及びその製造方法 | |
Wu et al. | Flexible white phosphorescent organic light emitting diodes based on multilayered graphene/PEDOT: PSS transparent conducting film | |
JP6367389B2 (ja) | 有機エレクトロルミネセントデバイス | |
Zhang et al. | Active emitting layer thickness dependence and interfaces engineering studies on the performance of DOPPP white organic light emitting diodes | |
CN105449114B (zh) | Cs2CO3掺杂石墨烯为电子注入层的有机电致发光器件 | |
Seo et al. | Codoped spacer ratio effect of hybrid white organic light-emitting diodes | |
Yu et al. | Fine-tuning the thicknesses of organic layers to realize high-efficiency and long-lifetime blue organic light-emitting diodes | |
Hwang et al. | Blue fluorescent organic light emitting diodes with multilayered graphene anode | |
Mu et al. | Low driving voltage in an organic light-emitting diode using MoO3/NPB multiple quantum well structure in a hole transport layer | |
Peng et al. | Organic light-emitting diodes using novel embedded al gird transparent electrodes | |
Noh et al. | 17.1: Invited paper: Inverted oled | |
CN112679414B (zh) | 基于热激活延迟荧光材料的超厚非掺杂电致发光器件及其制备方法 | |
Kumar et al. | Photonic and optoelectronic applications of graphene: graphene-based transparent conducting electrodes for LED/OLED | |
Zhou et al. | Efficient blue-green and green electroluminescent devices obtained by doping iridium complexes into hole-block material as supplementary light-emitting layer | |
Chang et al. | Application of ultra-thin CdS film as buffer layer in non-doped blue organic light-emitting diodes | |
Gao et al. | Improved light extraction of organic light emitting diodes with a nanopillar pattering structure | |
Srivastava et al. | Comparative study of graphene and its derivative materials as an electrode in OLEDs | |
Zhang et al. | Flexible white organic light-emitting diodes based on single-walled carbon nanotube: poly (3, 4-ethylenedioxythiophene)/poly (styrene sulfonate) transparent conducting film | |
CN112289942B (zh) | 基于绿色热激活延迟荧光材料的掺杂电子器件及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180116 |
|
CF01 | Termination of patent right due to non-payment of annual fee |