CN105447211B - 标准线性固体模型的稳定性条件数值解的计算方法及系统 - Google Patents

标准线性固体模型的稳定性条件数值解的计算方法及系统 Download PDF

Info

Publication number
CN105447211B
CN105447211B CN201410419958.4A CN201410419958A CN105447211B CN 105447211 B CN105447211 B CN 105447211B CN 201410419958 A CN201410419958 A CN 201410419958A CN 105447211 B CN105447211 B CN 105447211B
Authority
CN
China
Prior art keywords
equation
standard linear
solid model
linear solid
elastomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410419958.4A
Other languages
English (en)
Other versions
CN105447211A (zh
Inventor
肖云飞
姜宇东
白俊雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Geophysical Research Institute
Original Assignee
China Petroleum and Chemical Corp
Sinopec Geophysical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Geophysical Research Institute filed Critical China Petroleum and Chemical Corp
Priority to CN201410419958.4A priority Critical patent/CN105447211B/zh
Publication of CN105447211A publication Critical patent/CN105447211A/zh
Application granted granted Critical
Publication of CN105447211B publication Critical patent/CN105447211B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Complex Calculations (AREA)

Abstract

本发明公开了一种标准线性固体模型的稳定性条件数值解的计算方法及系统,方法包括:构建标准线性固体模型;确定模型有限差分解的稳定性条件的状态传递矩阵;获取多组参数集,并使每组参数集中包括第一弹性体的弹性系数、第二弹性体的弹性系数、阻尼器的黏滞系数、频率和介质密度;在设定空间差分精度和空间网格步长下,依次利用各组参数集并通过计算机计算使状态传递矩阵的特征值的模小于1的时间步长;确定时间步长为数值解。本发明能定量化确定更符合实际黏弹介质的标准线性固体模型数值模拟的时间步长,确定时间步长后可确保基于标准线性固体黏弹介质数值模拟的顺利完成,保证效率,节约成本,最终运用模拟结果解决实际地震勘探中的地质问题。

Description

标准线性固体模型的稳定性条件数值解的计算方法及系统
技术领域
本发明涉及地震勘探基础应用技术领域,尤其涉及一种标准线性固体模型的有限差分解的稳定性条件数值解的计算方法及系统。
背景技术
地震数值模拟是地震勘探和地震学的重要基础,同时也是了解复杂介质中地震波传播规律的重要工具,其作用贯穿于整个地震采集、处理和解释中。随着地震勘探开发的深入,常规的弹性介质理论难以满足实际介质需求。地震波在实际地层中传播时,能量和相位都发生改变,直接影响地震资料的分辨率,实际地层表现出一定的黏弹特性,因此通过对黏弹介质中的地震波进行数值模拟,来研究和分析地震波传播过程中的衰减特征,对实际地震资料分辨率的提高非常有意义。但是确保黏弹介质数值模拟稳定(即时间步长的确定)是一个急需解决的问题,这关系到模拟算法的成败,也关系到模拟效率的高低。
目前主要运用黏弹固体模型来表征实际介质的粘滞特性,应用最广的黏弹固体模型主要包括:Kelvin-Voigt固体模型、Maxwell固体模型和标准线性固体模型(也称为标准线性黏弹固体模型)。其中,Kelvin-Voigt固体模型不能考虑应力作用下应变的突然变化,也不能表示应力消失后的剩余应变,Maxwell固体模型不具备蠕变特征,两者都不足以描述大多数黏弹介质的特征,但是标准线性固体模型可以同时考虑具备应变突然变化和剩余应变及蠕动特征,因此,标准线性固体模型能更加全面表征实际地层的黏弹特性,相比较而言更符合实际情况,所以进行标准线性固体模型的黏弹介质数值模拟是非常有必要的。
现有技术中标准线性固体模型的黏弹介质数值模拟主要是全三维、全波场的模拟,此种方法的计算量非常大,从而产生的费用(主要体现在电力、存储设备、人力等资源的消耗)是巨大的,数值模拟的效率低,因此有必要提供一种计算方法定量化地给出标准线性固体模型数值模拟时间步长(即标准线性固体模型的有限差分解的稳定性条件数值解),从而更高效、更成功地指导数值模拟的进行。
发明内容
本发明所要解决的技术问题是现有技术中采用全三维、全波场的模拟方法产生的费用高、数值模拟效率低的缺陷。
为了解决上述技术问题,本发明提供了一种标准线性固体模型的稳定性条件数值解的计算方法及系统。
本发明的技术方案为:
一种标准线性固体模型的稳定性条件数值解的计算方法,包括:
构建标准线性固体模型,并使所述标准线性固体模型包括彼此串联的第一弹性体和第二弹性体、以及与所述第一弹性体并联的阻尼器;
确定所述标准线性固体模型有限差分解的稳定性条件的状态传递矩阵;
获取多组参数集,并使每组参数集中包括所述第一弹性体的弹性系数、所述第二弹性体的弹性系数、所述阻尼器的黏滞系数、频率和介质密度;
在设定的空间差分精度和空间网格步长下,依次利用各组所述参数集并通过计算机计算使得所述状态传递矩阵的特征值的模小于1的时间步长;
确定计算得出的时间步长为标准线性固体模型的稳定性条件数值解。
优选的是,所述确定所述标准线性固体模型有限差分解的稳定性条件的状态传递矩阵包括:
确定所述标准线性固体模型的本构方程 其中p为总应力,ε为总应变,弹性系数为M1的所述第一弹性体的应变与黏滞系数为M2的所述 阻尼器的应变相等,M3为所述第二弹性体的弹性系数;
根据总应变ε与质点位移(u,v,w)间的关系方程以及所述本构方程,得到第一方程:
对所述第一方程的左右两边分别对时间求二次偏导数,得到第二方程:
利用所述第二方程和声波的纳维尔方程得到第三方程:
其中ρ为所述介质密度;
将所述第三方程中的应力取空间傅里叶变换,得到第四方程:其中为总应力p的空间傅里叶变换,k 为波数;
对所述第四方程中的时间偏导数用差分近似,得到第五方程:
其中分别为第n-2,n-1,n,n+1时刻的值,并且所述波数k满足:在所述空间差分精度为2N的情况下,x,y,z三个方向上的空 间网格步长分别为Δx,Δy,Δz,al为对应所述空间差分精度2N的空间差分系数,Δt为所 述时间步长;
根据所述第五方程,得到所述标准线性固体模型有限差分解的稳定性条件的状态 传递矩阵其中:
优选的是,所述方法还包括:在计算得出的所述时间步长后,根据所述参数集计算所述标准线性固体模型的品质因子,并根据所述参数集和所述品质因子计算所述标准线性固体模型的介质速度。
优选的是,在设定的空间差分精度和空间网格步长下,依次利用各组所述参数集,运用安装在所述计算机上的Matlab仿真软件编程计算使得所述状态传递矩阵的特征值的模小于1的时间步长。
一种标准线性固体模型的稳定性条件数值解的计算系统,包括:
模型构建单元,用于构建标准线性固体模型,并使所述标准线性固体模型包括彼此串联的第一弹性体和第二弹性体、以及与所述第一弹性体并联的阻尼器;
状态传递矩阵确定单元,用于确定所述标准线性固体模型有限差分解的稳定性条件的状态传递矩阵;
参数集获取单元,用于获取多组参数集,并使每组参数集中包括所述第一弹性体的弹性系数、所述第二弹性体的弹性系数、所述阻尼器的黏滞系数、频率和介质密度;
时间步长计算单元,用于在设定的空间差分精度和空间网格步长下,依次利用各组所述参数集并通过计算机计算使得所述状态传递矩阵的特征值的模小于1的时间步长;
稳定性条件数值解确定单元,用于确定计算得出的时间步长为标准线性固体模型的稳定性条件数值解。
优选的是,所述状态传递矩阵确定单元包括:
本构方程确定单元,用于确定所述标准线性固体模型的本构方程其中p为总应力,ε为总应变,弹性系数为M1的所 述第一弹性体的应变与黏滞系数为M2的所述阻尼器的应变相等,M3为所述第二弹性体的弹 性系数;
第一方程确定单元,用于根据总应变ε与质点位移(u,v,w)间的关系方程以及所述本构方程确定单元确定的本构方程,得到第一方程:
第二方程确定单元,用于对所述第一方程确定单元得到的第一方程的左右两边分别对时间求二次偏导数,得到第二方程:
第三方程确定单元,用于利用所述第二方程确定单元得到的第二方程和声波的纳 维尔方程得到第三方程:
其中ρ为所述介质密度;
第四方程确定单元,用于将所述第三方程确定单元得到的第三方程中的应力取空 间傅里叶变换,得到第四方程:其中 为总应力p的空间傅里叶变换,k为波数;
第五方程确定单元,用于对所述第四方程确定单元得到的第四方程中的时间偏导数用差分近似,得到第五方程:
其中分别为第n-2n-1nn+1时刻的值,并且所述波数k满足:在所述空间差分精度为2N的情况下,x,y,z三个方向上的空 间网格步长分别为Δx,Δy,Δz,al为对应所述空间差分精度2N的空间差分系数,Δt为所 述时间步长;
状态传递矩阵子确定单元,用于根据所述第五方程确定单元得到的第五方程,得 到所述标准线性固体模型有限差分解的稳定性条件的状态传递矩阵其中:
优选的是,所述系统还包括:
品质因子计算单元,用于在所述时间步长计算单元计算得出所述时间步长后,根据所述参数集获取单元获取的参数集计算所述标准线性固体模型的品质因子;
介质速度计算单元,用于在所述时间步长计算单元计算得出所述时间步长后,根据所述参数集获取单元获取的参数集和所述品质因子计算所述标准线性固体模型的介质速度。
优选的是,所述时间步长计算单元,具体用于在设定的空间差分精度和空间网格步长下,依次利用各组所述参数集,运用安装在所述计算机上的Matlab仿真软件编程计算使得所述状态传递矩阵的特征值的模小于1的时间步长。
与现有技术相比,上述方案中的一个或多个实施例可以具有如下优点或有益效果:
应用本发明实施例提供的标准线性固体模型的稳定性条件数值解的计算方法及系统,从标准线性固体模型出发,进而得到标准线性固体模型有限差分解的稳定性条件的状态传递矩阵,通过选取相应的时间步长使状态传递矩阵的特征值的模小于1来满足黏弹数值模拟的稳定,从而能够定量化确定更符合实际黏弹介质的标准线性固体模型数值模拟的时间步长,指导数值模拟顺利完成,同时也使模拟的效率得以保障,最终运用模拟结果来解决实际地震勘探中的一些地质问题。相比于现有技术中采用全三维、全波场的模拟方法进行标准线性固体模型的黏弹介质数值模拟,本发明在确定时间步长后可确保基于标准线性固体黏弹介质数值模拟的顺利完成,保证效率,节约成本,因此在实际工作中,此项发明效果是非常显著的。
本发明的其它特征和优点将在随后的说明书中阐述,并且部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例共同用于解释本发明,并不构成对本发明的限制。在附图中:
图1示出了本发明实施例标准线性固体模型的稳定性条件数值解的计算方法的流程图;
图2示出了标准线性固体模型的结构示意图;
图3示出了本发明实施例中确定所述标准线性固体模型有限差分解的稳定性条件的状态传递矩阵的方法的流程图;
图4示出了应用本发明实施例所述的计算方法,针对不同组合的参数集确定的品质因子,时间步长与介质速度之间的关系曲线;
图5示出了应用本发明实施例所述的计算方法,针对不同组合的参数集确定的介质速度,时间步长与品质因子之间的关系曲线;
图6示出了本发明实施例标准线性固体模型的稳定性条件数值解的计算系统的结构示意图;
图7示出了本发明实施例中状态传递矩阵确定单元的结构示意图。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。需要说明的是,只要不构成冲突,本发明中的各个实施例以及各实施例中的各个特征可以相互结合,所形成的技术方案均在本发明的保护范围之内。
为解决现有技术中采用全三维、全波场的模拟方法进行标准线性固体模型的黏弹介质数值模拟,产生的费用高,模拟效率低的缺陷,本发明实施例提供了一种标准线性固体模型的稳定性条件数值解的计算方法,该方法能够定量化确定更符合实际黏弹介质的标准线性固体模型数值模拟的时间步长,指导数值模拟顺利完成,同时也使模拟的效率得以保障,节约了成本。
如图1所示,是本发明实施例标准线性固体模型的稳定性条件数值解的计算方法的流程图,所述标准线性固体模型的稳定性条件数值解的计算方法,包括以下步骤:
步骤101:构建标准线性固体模型,并使所述标准线性固体模型包括彼此串联的第一弹性体和第二弹性体、以及与所述第一弹性体并联的阻尼器。
具体地,标准线性固体模型的结构示意图可参照图2,该标准线性固体模型包括第一弹性体1、第二弹性体3和阻尼器2,其中第一弹性体1与第二弹性体3串联连接,并且第一弹性体1和阻尼器2并联连接,并且第一弹性体1的弹性系数表示为M1,第二弹性体3的弹性系数表示为M3,阻尼器2的黏滞系数表示为M2,第一弹性体1和阻尼器2的应变相等,均表示为ε1,第二弹性体3的应变表示为ε2。
步骤102:确定所述标准线性固体模型有限差分解的稳定性条件的状态传递矩阵。
具体地,标准线性固体模型有限差分解的稳定性条件的状态传递矩阵的确定方法,将在本发明的下一实施例中进行详细地说明。
步骤103:获取多组参数集,并使每组参数集中包括所述第一弹性体1的弹性系数、所述第二弹性体3的弹性系数、所述阻尼器2的黏滞系数、频率和介质密度。
具体地,在本步骤中,准备多组参数集,以备在步骤104中进行时间步长的计算。每组参数集中包括5个参数,分别为第一弹性体1的弹性系数M1、所述第二弹性体3的弹性系数M3、所述阻尼器2的黏滞系数M2、频率ω(这里ω=2πf)和介质密度ρ。
步骤104:在设定的空间差分精度和空间网格步长下,依次利用各组所述参数集并通过计算机计算使得所述状态传递矩阵的特征值的模小于1的时间步长。
具体地,所述设定的空间差分精度表示为2N,在所述空间差分精度为2N的情况下,x,y,z三个方向上的空间网格步长分别表示为Δx,Δy,Δz。在设定所述空间差分精度2N和空间网格步长下,依次将各组参数集输入至计算机内,通过计算机计算使得所述状态传递矩阵的特征值的模小于1的时间步长。这里,需要使用计算机计算时间步长的原因是,通过步骤102得到的标准线性固体模型有限差分解的稳定性条件的状态传递矩阵特别复杂,无法直接求取该状态传递矩阵的特征值表达式,从而也就无法计算使得该状态传递矩阵的模小于1的时间步长。
步骤105:确定计算得出的时间步长为标准线性固体模型的稳定性条件数值解。
在本实施例中,应用本发明实施例提供的标准线性固体模型的稳定性条件数值解的计算方法,从标准线性固体模型出发,进而得到标准线性固体模型有限差分解的稳定性条件的状态传递矩阵,通过选取相应的时间步长使状态传递矩阵的特征值的模小于1来满足黏弹数值模拟的稳定,从而能够定量化确定更符合实际黏弹介质的标准线性固体模型数值模拟的时间步长,指导数值模拟顺利完成,同时也使模拟的效率得以保障,最终运用模拟结果来解决实际地震勘探中的一些地质问题。相比于现有技术中采用全三维、全波场的模拟方法进行标准线性固体模型的黏弹介质数值模拟,本方法在确定时间步长后可确保基于标准线性固体黏弹介质数值模拟的顺利完成,保证效率,节约成本,因此在实际工作中,此项发明效果是非常显著的。
进一步地,如图3所示,是本发明实施例中确定所述标准线性固体模型有限差分解的稳定性条件的状态传递矩阵的方法的流程图,该方法包括以下步骤:
步骤201:首先得出控制标准线性固体模型的方程为:
ε=ε12 (2)
又因为ε2=p/M3,将该公式代入(2)式,再联合(1)式,消去ε1和ε2后,得到应力与应变的关系(即标准线性固体模型的本构方程)为:
其中p为总应力,ε为总应变,ε1为弹性系数为M1的第一弹性体1的应变、以及黏滞系数为M2的阻尼器2的应变,ε2为弹性系数为M3的第二弹性体3的应变。
步骤202:总应变ε与质点位移(u,v,w)间的关系方程为:
将(4)式代入上述本构方程(即式(3)),得到第一方程(即式(5)):
步骤203:对所述第一方程(即式(5))的左右两边分别对时间t求二次偏导数,得到第二方程(即式(6)):
步骤204:利用所述第二方程(即式(6))和声波的纳维尔方程:
得到第三方程(即式(8)):
其中,ρ为介质密度。
步骤205:将所述第三方程(即式(8))中的应力取空间傅里叶变换,得到第四方程(即式(9)):
其中,为总应力p的空间傅里叶变换,k为波数。
步骤206:对所述第四方程(即式(9))中的时间偏导数用差分近似,得到第五方程(即式(10)):
其中分别为第n-2,n-1,n,n+1时刻的值,并且所述波数k满足:在所述空间差分精度为2N的情况下,
x,y,z三个方向上的空间网格步长分别为Δx,Δy,Δz,al为对应所述空间差分精度2N的空间差分系数,Δt为所述时间步长。
步骤207:根据所述第五方程(即式(10)),得到所述标准线性固体模型有限差分解 的稳定性条件的状态传递矩阵其中:
在本实施例中,通过上述步骤可以确定标准线性固体模型的有限差分解的稳定性条件的状态传递矩阵,另外根据本实施例中涉及的所有的公式可以看出,该状态传递矩阵实际上是关于以下9个参数的表达式:M1(第一弹性体1的弹性系数)、M2(阻尼器2的黏滞系数)、M3(第二弹性体3的弹性系数)、ω(频率)、ρ(介质密度)、Δx,Δy,Δz(空间网格步长)、2N(空间差分精度)、al(空间差分系数)和Δt(时间步长),也就是说,可以在设定上述前8个参数的基础上,借助计算机计算得出满足下列要求的时间步长Δt:得到的时间步长需要使得状态传递矩阵的特征值的模小于1。
进一步地,所述方法还包括以下步骤:在计算得出的所述时间步长后,根据所述参数集计算所述标准线性固体模型的品质因子,并根据所述参数集和所述品质因子计算所述标准线性固体模型的介质速度。
下面结合具体实例、以及图4和图5说明本实施例,设定空间网格步长Δx=Δy=Δz=5m,经查二阶导数2N各阶精度的权系数值(据孙成禹,2007),空间差分精度的空间差分系数依次分别为:
a0=-2.7222222,a-1=a1=1.5000000,a-2=a2=-0.15000000,a-3=a3=0.011111111。
标准线性固体模型的品质因子的计算公式:
标准线性固体模型的介质速度的计算公式:
当Q→∞时,变为弹性介质情形: 上述介质速度的计算公式变为:
通过设置不同参数集(M1,M2,M3,ω,ρ),使得品质因子Q的取值分别为1、10、100、1000的情况下,时间步长Δt与介质速度v的定量关系(如图4所示);或者通过设置不同参数集(M1,M2,M3,ω,ρ),使得介质速度v的取值分别为500m/s、1000m/s、1500m/s、2000m/s、3000m/s、4000m/s和5000m/s的情况下,时间步长Δt与品质因子Q的定量关系(如图5所示)。由图4和图5可知,在设置特定参数集的情况下,可以找到相应的时间步长。另外,从图4和图5中还可以看出,随着介质速度的增大,稳定性条件变差,要求的时间步长变小。
进一步地,在上述步骤104中,运用安装在所述计算机上的Matlab仿真软件编程计算所述时间步长,值得说明的是,利用Matlab求解使得一个复杂矩阵满足特定需求时该矩阵中某个参量的取值,是本领域技术人员常规采用的技术手段,故在本文中不再进行展开说明。
相应地,本发明实施例还提供一种标准线性固体模型的稳定性条件数值解的计算系统,图6示出了本发明实施例标准线性固体模型的稳定性条件数值解的计算系统的结构示意图,如图6所示,该系统包括:
模型构建单元301,用于构建标准线性固体模型,并使所述标准线性固体模型包括彼此串联的第一弹性体1和第二弹性体3、以及与所述第一弹性体1并联的阻尼器2;
状态传递矩阵确定单元302,用于确定所述模型构建单元301构建的标准线性固体模型的有限差分解的稳定性条件的状态传递矩阵;
参数集获取单元303,用于获取多组参数集,并使每组参数集中包括所述第一弹性体1的弹性系数、所述第二弹性体3的弹性系数、所述阻尼器2的黏滞系数、频率和介质密度;
时间步长计算单元304,用于在设定的空间差分精度和空间网格步长下,依次利用所述参数集获取单元303获取的各组参数集并通过计算机计算使得所述状态传递矩阵确定单元302确定的状态传递矩阵的特征值的模小于1的时间步长;
稳定性条件数值解确定单元305,用于确定所述时间步长计算单元304计算得出的时间步长为标准线性固体模型的稳定性条件数值解。
进一步地,如图7所示,是本发明实施例中状态传递矩阵确定单元302的结构示意图,所述状态传递矩阵确定单元302包括:
本构方程确定单元401,用于确定所述标准线性固体模型的本构方程其中p为总应力,ε为总应变,弹性系数为M1的所 述第一弹性体1的应变与黏滞系数为M2的所述阻尼器2的应变相等,M3为所述第二弹性体3的 弹性系数;
第一方程确定单元402,用于根据总应变ε与质点位移(u,v,w)间的关系方程以及所述本构方程确定单元401确定的本构方程,得到第一方程:
第二方程确定单元403,用于对所述第一方程确定单元402得到的第一方程的左右两边分别对时间求二次偏导数,得到第二方程:
第三方程确定单元404,用于利用所述第二方程确定单元403得到的第二方程和声 波的纳维尔方程得到第三方程:
其中ρ为所述介质密度;
第四方程确定单元405,用于将所述第三方程确定单元404得到的第三方程中的应 力取空间傅里叶变换,得到第四方程: 其中为总应力p的空间傅里叶变换,k为波数;
第五方程确定单元406,用于对所述第四方程确定单元405得到的第四方程中的时间偏导数用差分近似,得到第五方程:
其中分别为第n-2,n-1,n,n+1时刻的值,并且所述波数k满足:在所述空间差分精度为2N的情况下,x,y,z三个方向上的空 间网格步长分别为Δx,Δy,Δz,al为对应所述空间差分精度2N的空间差分系数,Δt为所 述时间步长;
状态传递矩阵子确定单元407,用于根据所述第五方程确定单元406得到的第五方 程,得到所述标准线性固体模型有限差分解的稳定性条件的状态传递矩阵 其中:
进一步地,所述系统还包括品质因子计算单元和介质速度计算单元,其中品质因子计算单元用于在所述时间步长计算单元304计算得出所述时间步长后,根据所述参数集获取单元303获取的参数集计算所述标准线性固体模型的品质因子;所述介质速度计算单元,用于在所述时间步长计算单元304计算得出所述时间步长后,根据所述参数集获取单元303获取的参数集和所述品质因子计算所述标准线性固体模型的介质速度。
特别地,在本发明的一优选的实施例中,所述时间步长计算单元304,具体用于在设定的空间差分精度和空间网格步长下,依次利用各组所述参数集,运用安装在所述计算机上的Matlab仿真软件编程计算使得所述状态传递矩阵的特征值的模小于1的时间步长。
上述各单元的具体处理过程可参照前面本发明实施例的方法中的描述,在此不再赘述。
在本实施例中,应用本发明实施例提供的标准线性固体模型的稳定性条件数值解的计算系统,从标准线性固体模型出发,进而得到标准线性固体模型有限差分解的稳定性条件的状态传递矩阵,通过选取相应的时间步长使状态传递矩阵的特征值的模小于1来满足黏弹数值模拟的稳定,从而能够定量化确定更符合实际黏弹介质的标准线性固体模型数值模拟的时间步长,指导数值模拟顺利完成,同时也使模拟的效率得以保障,最终运用模拟结果来解决实际地震勘探中的一些地质问题。相比于现有技术中采用全三维、全波场的模拟方法进行标准线性固体模型的黏弹介质数值模拟,本系统在确定时间步长后可确保基于标准线性固体黏弹介质数值模拟的顺利完成,保证效率,节约成本,因此在实际工作中,此项发明效果是非常显著的。
本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
虽然本发明所公开的实施方式如上,但所述的内容只是为了便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属技术领域内的技术人员,在不脱离本发明所公开的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (6)

1.一种标准线性固体模型的稳定性条件数值解的计算方法,其特征在于,包括:
构建标准线性固体模型,并使所述标准线性固体模型包括彼此串联的第一弹性体和第二弹性体、以及与所述第一弹性体并联的阻尼器;
确定所述标准线性固体模型有限差分解的稳定性条件的状态传递矩阵;
获取多组参数集,并使每组参数集中包括所述第一弹性体的弹性系数、所述第二弹性体的弹性系数、所述阻尼器的黏滞系数、频率和介质密度;
在设定的空间差分精度和空间网格步长下,依次利用各组所述参数集并通过计算机计算使得所述状态传递矩阵的特征值的模小于1的时间步长;
确定计算得出的时间步长为标准线性固体模型的稳定性条件数值解;
其中,所述确定所述标准线性固体模型有限差分解的稳定性条件的状态传递矩阵包括:
确定控制所述标准线性固体模型的方程为:
ε=ε12
其中,p为总应力,M1为所述第一弹性体的弹性系数,ε1为所述第一弹性体和所述阻尼器的应变,M2为所述阻尼器的黏滞系数,M3为所述第二弹性体的弹性系数,ε2为所述第二弹性体的应变,且ε2=p/M3,ε为总应变;
根据控制所述标准线性固体模型的方程和关系式ε2=p/M3,确定所述标准线性固体模型的本构方程
根据总应变ε与质点位移(u,v,w)间的关系方程以及所述本构方程,得到第一方程:
对所述第一方程的左右两边分别对时间求二次偏导数,得到第二方程:
利用所述第二方程和声波的纳维尔方程得到第三方程:
其中ρ为所述介质密度;
将所述第三方程中的应力取空间傅里叶变换,得到第四方程:其中为总应力p的空间傅里叶变换,k为波数;
对所述第四方程中的时间偏导数用差分近似,得到第五方程:
其中分别为第n-2,n-1,n,n+1时刻的值,并且所述波数k满足:在所述空间差分精度为2N的情况下,x,y,z三个方向上的空间网格步长分别为Δx,Δy,Δz,al为对应所述空间差分精度2N的空间差分系数,Δt为所述时间步长;
根据所述第五方程,得到所述标准线性固体模型有限差分解的稳定性条件的状态传递矩阵其中:
2.根据权利要求1所述的方法,其特征在于,所述方法还包括:在计算得出的所述时间步长后,根据所述参数集计算所述标准线性固体模型的品质因子,并根据所述参数集和所述品质因子计算所述标准线性固体模型的介质速度。
3.根据权利要求1所述的方法,其特征在于,在设定的空间差分精度和空间网格步长下,依次利用各组所述参数集,运用安装在所述计算机上的Matlab仿真软件编程计算使得所述状态传递矩阵的特征值的模小于1的时间步长。
4.一种标准线性固体模型的稳定性条件数值解的计算系统,其特征在于,包括:
模型构建单元,用于构建标准线性固体模型,并使所述标准线性固体模型包括彼此串联的第一弹性体和第二弹性体、以及与所述第一弹性体并联的阻尼器;
状态传递矩阵确定单元,用于确定所述标准线性固体模型有限差分解的稳定性条件的状态传递矩阵;
参数集获取单元,用于获取多组参数集,并使每组参数集中包括所述第一弹性体的弹性系数、所述第二弹性体的弹性系数、所述阻尼器的黏滞系数、频率和介质密度;
时间步长计算单元,用于在设定的空间差分精度和空间网格步长下,依次利用各组所述参数集并通过计算机计算使得所述状态传递矩阵的特征值的模小于1的时间步长;
稳定性条件数值解确定单元,用于确定计算得出的时间步长为标准线性固体模型的稳定性条件数值解;
其中,所述状态传递矩阵确定单元包括:
本构方程确定单元,用于根据控制所述标准线性固体模型的方程ε=ε12和关系式ε2=p/M3,确定所述标准线性固体模型的本构方程其中,p为总应力,M1为所述第一弹性体的弹性系数,ε1为所述第一弹性体和所述阻尼器的应变,M2为所述阻尼器的黏滞系数,M3为所述第二弹性体的弹性系数,ε2为所述第二弹性体的应变,且ε2=p/M3,ε为总应变;
第一方程确定单元,用于根据总应变ε与质点位移(u,v,w)间的关系方程以及所述本构方程确定单元确定的本构方程,得到第一方程:
第二方程确定单元,用于对所述第一方程确定单元得到的第一方程的左右两边分别对时间求二次偏导数,得到第二方程:
第三方程确定单元,用于利用所述第二方程确定单元得到的第二方程和声波的纳维尔方程得到第三方程:
其中ρ为所述介质密度;
第四方程确定单元,用于将所述第三方程确定单元得到的第三方程中的应力取空间傅里叶变换,得到第四方程:其中为总应力p的空间傅里叶变换,k为波数;
第五方程确定单元,用于对所述第四方程确定单元得到的第四方程中的时间偏导数用差分近似,得到第五方程:
其中分别为第n-2,n-1,n,n+1时刻的值,并且所述波数k满足:在所述空间差分精度为2N的情况下,x,y,z三个方向上的空间网格步长分别为Δx,Δy,Δz,al为对应所述空间差分精度2N的空间差分系数,Δt为所述时间步长;
状态传递矩阵子确定单元,用于根据所述第五方程确定单元得到的第五方程,得到所述标准线性固体模型有限差分解的稳定性条件的状态传递矩阵其中:
5.根据权利要求4所述的系统,其特征在于,所述系统还包括:
品质因子计算单元,用于在所述时间步长计算单元计算得出所述时间步长后,根据所述参数集获取单元获取的参数集计算所述标准线性固体模型的品质因子;
介质速度计算单元,用于在所述时间步长计算单元计算得出所述时间步长后,根据所述参数集获取单元获取的参数集和所述品质因子计算所述标准线性固体模型的介质速度。
6.根据权利要求4所述的系统,其特征在于,所述时间步长计算单元,具体用于在设定的空间差分精度和空间网格步长下,依次利用各组所述参数集,运用安装在所述计算机上的Matlab仿真软件编程计算使得所述状态传递矩阵的特征值的模小于1的时间步长。
CN201410419958.4A 2014-08-22 2014-08-22 标准线性固体模型的稳定性条件数值解的计算方法及系统 Active CN105447211B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410419958.4A CN105447211B (zh) 2014-08-22 2014-08-22 标准线性固体模型的稳定性条件数值解的计算方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410419958.4A CN105447211B (zh) 2014-08-22 2014-08-22 标准线性固体模型的稳定性条件数值解的计算方法及系统

Publications (2)

Publication Number Publication Date
CN105447211A CN105447211A (zh) 2016-03-30
CN105447211B true CN105447211B (zh) 2018-10-02

Family

ID=55557387

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410419958.4A Active CN105447211B (zh) 2014-08-22 2014-08-22 标准线性固体模型的稳定性条件数值解的计算方法及系统

Country Status (1)

Country Link
CN (1) CN105447211B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289260A (ja) * 2008-05-27 2009-12-10 Livermore Software Technology Corp 非線形の構造的応答の数値シミュレーションにおける接触貫通を制限するシステムおよび方法
CN101615219A (zh) * 2009-08-04 2009-12-30 北京师范大学 一种模拟输移扩散问题的高精度差分方法
CN103605633A (zh) * 2013-09-22 2014-02-26 西安交通大学 一种粗网格大时间步时域有限差分方法
CN103699798A (zh) * 2013-12-25 2014-04-02 中国石油天然气股份有限公司 一种实现地震波场数值模拟方法
CN103792573A (zh) * 2012-10-26 2014-05-14 中国石油化工股份有限公司 一种基于频谱融合的地震波阻抗反演方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289260A (ja) * 2008-05-27 2009-12-10 Livermore Software Technology Corp 非線形の構造的応答の数値シミュレーションにおける接触貫通を制限するシステムおよび方法
CN101615219A (zh) * 2009-08-04 2009-12-30 北京师范大学 一种模拟输移扩散问题的高精度差分方法
CN103792573A (zh) * 2012-10-26 2014-05-14 中国石油化工股份有限公司 一种基于频谱融合的地震波阻抗反演方法
CN103605633A (zh) * 2013-09-22 2014-02-26 西安交通大学 一种粗网格大时间步时域有限差分方法
CN103699798A (zh) * 2013-12-25 2014-04-02 中国石油天然气股份有限公司 一种实现地震波场数值模拟方法

Also Published As

Publication number Publication date
CN105447211A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
CN104122585B (zh) 基于弹性波场矢量分解与低秩分解的地震正演模拟方法
De La Puente et al. Discontinuous Galerkin methods for wave propagation in poroelastic media
CN105260581B (zh) 舰船机电控制设备虚拟振动和冲击试验方法
WO2023087451A1 (zh) 基于观测数据自编码的多尺度无监督地震波速反演方法
CN105158797B (zh) 一种基于实际地震资料的交错网格波动方程正演的方法
CN103135132A (zh) Cpu/gpu协同并行计算的混合域全波形反演方法
CN104965223B (zh) 粘声波全波形反演方法及装置
CN105911584B (zh) 一种隐式交错网格有限差分弹性波数值模拟方法及装置
Jeremić et al. Seismic behavior of NPP structures subjected to realistic 3D, inclined seismic motions, in variable layered soil/rock, on surface or embedded foundations
CN107894618B (zh) 一种基于模型平滑算法的全波形反演梯度预处理方法
CN104965222B (zh) 三维纵波阻抗全波形反演方法及装置
CN106569262B (zh) 低频地震数据缺失下的背景速度模型重构方法
Pagani et al. Free vibration analysis of composite plates by higher-order 1D dynamic stiffness elements and experiments
CN106483559A (zh) 一种地下速度模型的构建方法
Shi et al. Free vibration analysis of moderately thick rectangular plates with variable thickness and arbitrary boundary conditions
CN109444954A (zh) 裂缝数值的模拟方法、装置、电子设备及存储介质
CN107014704A (zh) 一种基于黏弹性波传播分析的短岩杆黏性系数测试方法
CN106662665B (zh) 用于更快速的交错网格处理的重新排序的插值和卷积
CN107894367A (zh) 一种输电线路湿陷性黄土本构模拟方法
CN111257930B (zh) 一种黏弹各向异性双相介质区域变网格求解算子
Zhou et al. Stochastic vibration suppression of composite laminated plates based on negative capacitance piezoelectric shunt damping
CN106646597A (zh) 基于弹簧网络模型的正演模拟方法及装置
CN105447211B (zh) 标准线性固体模型的稳定性条件数值解的计算方法及系统
CN104036101B (zh) 基于脉冲响应函数的弹性连接子结构综合方法
Xia et al. A general 3d lattice spring model for modeling elastic waves

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant