CN105441128B - 一种加氢工艺的控温方法及其设计方法和用途 - Google Patents

一种加氢工艺的控温方法及其设计方法和用途 Download PDF

Info

Publication number
CN105441128B
CN105441128B CN201510780561.2A CN201510780561A CN105441128B CN 105441128 B CN105441128 B CN 105441128B CN 201510780561 A CN201510780561 A CN 201510780561A CN 105441128 B CN105441128 B CN 105441128B
Authority
CN
China
Prior art keywords
temperature
reactor
hydrogen
separator
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510780561.2A
Other languages
English (en)
Other versions
CN105441128A (zh
Inventor
李苏安
邓清宇
王坤朋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZHONGKE CHUANGYI TECH DEVELOPMENT Co Ltd
Original Assignee
ZHONGKE CHUANGYI TECH DEVELOPMENT Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZHONGKE CHUANGYI TECH DEVELOPMENT Co Ltd filed Critical ZHONGKE CHUANGYI TECH DEVELOPMENT Co Ltd
Priority to CN201510780561.2A priority Critical patent/CN105441128B/zh
Priority to PCT/CN2015/095205 priority patent/WO2016176983A1/zh
Publication of CN105441128A publication Critical patent/CN105441128A/zh
Application granted granted Critical
Publication of CN105441128B publication Critical patent/CN105441128B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means

Abstract

本发明的一种加氢工艺的控温方法及其设计方法和用途,所述控温方法包括向加氢设备中注入冷却剂以控制温度,注入位置分别位于某级或多级反应器入口前的管道、某级或多级分离器入口前的管道中和/或某级或多级分离器上,所述冷却剂通过至少一根冷却管路输送且流量可控。本发明的控温方法操作简便,工程实施上容易实现,可有效防止反应器飞温和漩涡流的形成,同时避免分离器内发生结焦现象,极大地提高了加氢设备的运行稳定性。

Description

一种加氢工艺的控温方法及其设计方法和用途
技术领域
本发明涉及一种多重优化的浆态床加氢设备控温方法及其设计方法和用途,所述加氢设备包括浆态床加氢反应器和分离系统,属于石油化工和煤化工领域。
背景技术
近年来,随着原油开采量的不断增加和常规原油储量的不断减少,原油劣质化趋势越来越严重,原油直接蒸馏得到的中间馏分油及焦化、催化裂化等二次加工得到的中间馏分中的S、N含量也相应增加。但市场对轻质油的需求不断增加,人们的环保意识也不断增强,环保法律法规对发动机尾气排放要求更加严格,各种燃油标准要求S、N的含量也更加苛刻。因此,如何将含硫、氮等杂质较高的中间馏分加工成满足环保要求的产品是各炼厂所面临的重要问题。在此现实环境下,重油加氢、煤直接液化和油煤混炼技术受到重视,这些技术采用浆态床加氢反应器对重质烃原料在催化剂作用下进行加氢裂化,采用分离系统将反应产物进行逐级分离得到轻油产物。
加氢裂化反应工艺的实质是高温、高压、临氢、强放热催化加氢过程,若操作不当很容易发生飞温,飞温是指反应器处在非稳定的操作状态下,当操作参数有小的扰动,反应器的局部地方或整个反应器中的温度急剧升高失去控制。若反应器温度一旦系统超过860℃,轻则造成催化剂烧结失活或者反应器内构件损坏,重则导致反应器壁损坏,甚至发生着火爆炸的恶性事故。而分离器内的温度一旦升高,则会发生大量的缩聚反应,造成严重的结焦和堵塞,影响分离效果,甚至造成整个装置的停工。因此,如何在保证或必要时牺牲加氢转化率的情况下,严格控制加氢设备的温度,使整个系统处于稳定状态是工程设计和操作的重要任务,这不仅关系到反应器和分离系统运行的稳定性和分离效果,更关系到整个装置乃至全厂的安全和稳定运行。
关于反应器控温方法,目前有些文献和专利提到将冷却剂全部直接加到反应器中以降低反应器温度。但是直接向反应器中添加冷却剂会破坏反应平衡,造成反应器中不同部位的反应进度、密度不一,进而形成漩涡流,不利于反应的进行,且如果冷却剂选用不当会发生副反应,一方面产生大量的副产物,可能会腐蚀整个系统,另一方面会使反应系统的操作参数发生变化,不利于控制系统稳定。
关于分离系统控温方法,目前的做法大多是设置单级或两级分离器,分离器只起到闪蒸作用,物料只在进入分离器前通过换热器和空冷进行降温,这样做的好处是操作方便,分离器上少开口,减少了泄露的可能性。但是这样做带来的后果是一旦分离器内的温度升高,无法及时地向上游控温系统做出反映,造成分离器内发生大量的缩聚反应,造成严重的结焦和堵塞,给整个装置的停工,甚至是全厂性的停工,带来极大的损失。
对于在重油加氢、煤直接液化和油煤混炼技术中的浆态床反应器,由于重质烃原料中的S、N含量高,需要二级以上串联的反应器才能将重质烃原料充分加氢;对于分离系统,由于反应器出口物料组份复杂,简单通过一台高温高压分离器无法将气液相完全分离,需要两台以上分离器的有机组合,高温高压分离器直接连接反应器出口,而后逐级降温和降压逐一分离出不同组分气液产物,达到理想分离效果。
因此,针对浆态床反应设备中的浆态床反应器以及分离系统,本发明提出了有效控温方法。
发明内容
本发明提供一种多重优化的浆态床加氢设备控温方法,在各级反应器之间的管道中打入冷却介质,使得冷却剂与反应物料在管道中充分混合,形成均匀介质后进入下一级反应器,从而降低反应器内温度。
本发明的技术方案:
一种多重优化的加氢设备控温方法,向某级或多级反应器入口前的管道注入冷却剂,所述冷却剂通过至少一根冷却管路输送且流量可控。
所述方法还包括向某级或多级分离器上和/或某级或多级分离器入口前的管道中注入冷却剂。
所述冷却剂包括冷氢或冷油或二者的混合物,所述冷氢为循环氢,纯度为85vol%以上,温度为30-250℃;所述冷油为所述浆态床反应器中产生的循环重油,温度为50-450℃。
所述冷却管路为1~8根,每根管路上设置有温度自控阀和/或手阀以及温度传感器。
所述反应器级数为2-3级,所述分离器级数为2-6级。
当所述反应器级数为三级,所述分离器级数为六级时,一级反应器入口前的温度控制在350-465℃,一、二级反应器间温度控制在380-480℃,二、三级反应器间温度控制在360-480℃,高温高压离器操作温度控制在300-470℃,操作压力为17-22MPa,反应器出口物料分离的停留时间为0.5-60分钟,后续分离器操作温度和操作压力均不超过高温高压分离器的操作温度和压力,停留时间为0.5-60分钟。
优选的,反应氢气分为两路加热,一路在氢气加热炉中加热,一路与原料混合后在原料加热炉中加热;然后所述氢气加热炉出口的氢气一路与所述反应氢气与原料的混合物料混合后进入所述一级反应器,一路与所述一级反应器出口的物流混合后进入所述二级反应器,一路与所述二级反应器出口的物流混合后进入所述三级反应器,一路进入所述高温高压分离器。
一种优化控温的浆态床加氢设备,在某级或多级的反应器和分离器入口前的管道和/或分离器上连通至少一根冷却管路,所述冷却管路中的冷却剂为冷氢或冷油或二者的混合物,所述冷却剂的量可控。
上述的一种多重优化的浆态床加氢设备控温方法的用途,用于重油加氢工艺、煤直接液化工艺和油煤混炼工艺中的反应器和分离器,所述重油包括重质原油、渣油、催化油浆、脱油沥青、煤焦油的一种或者多种组合,所述煤包括褐煤、烟煤、不粘煤中的一种或者多种组合,所述油煤混炼工艺中油与煤的比例范围为97:3-30:70。
一种多重优化的浆态床加氢设备控温设计方法,向加氢设备中注入冷却剂以控制温度,注入位置分别位于某级或多级反应器入口前的管道、某级或多级分离器入口前的管道中和/或某级或多级分离器上,所述冷却剂通过至少一根冷却管路输送且流量可控。
本发明的技术效果:
本发明的一种多重优化的浆态床加氢设备控温方法,为了控制反应器温度且维持反应器内的反应状态稳定,在反应器入口之间的管道处注入冷却剂,这样冷却剂与上一级反应器的出口物料在管道中充分混和后进入下一级反应器,由于反应物料的温度得到降低,从而控制下一级反应器的温度在合理范围内,保证反应器内反应体系和密度均一,避免形成漩涡流。本发明的控温方法根据实际需要,当某级反应器或多级反应器的温度升高时,则向相应的反应器入口前的管道中通入冷却剂,每个注入位置设计多根冷却管路,每根管路的流量可调节,根据目标温度与反应器温度的差异,调节流量以控制反应器处于安全温度范围内。因此本发明的控温方法操作简便,工程实施上容易实现,防止分离器飞温和漩涡流的形成,极大地提高了加氢设备的运行稳定性。
本发明的控温方法还包括向浆态床分离系统中通入冷却剂,控制分离器的温度,以将分离器内的缩聚反应降到最少,结焦的可能性降到最小,提高液、固分离效率,从而提高液体收率和循环氢纯度。
循环氢或循环重油为重油加氢的中间产物,易于得到、成本低,同时也是加氢反应的反应物,不会在反应器中生成副产物,与原来反应体系内的反应物一样,可能发生的反应也一致,不会改变原来反应体系的操作参数,使整个加氢体系的稳定容易控制。
每根冷却管路上设置温度控制阀或手阀以及温度传感器,提高温控的可操作性、安全性,且便于自动化控制。
浆态床加氢系统包括2-3级反应器和2-6级分离器,以实现充分的加氢和分离得到更多的液态油。本方法特别适用于反应器级间,可充分合理地利用了上一级反应物的反应热,实现热量的高效利用,同时保证下一级反应器稳定。由于分离器内几乎不发生反应,较稳定,因此本方法可直接应用于分离器上,快速实现降温效果。
对于一级反应器的温度控制,可通过注入冷却剂控温,也可通过设置两路氢气分别加热再混合的方式控温。一方面,一路氢气单独加热至较高温度后与原料加热炉出口的较低温度的混合物料混合,通过控制混合比例从而调节一级反应器入口的温度;另一方面,较高温度的氢气分别向二级或三级反应器入口、高温高压分离器入口通入,以增加二级或三级反应器、分离器内的氢分压,从而解决了多级反应器因氢分压不够而反应不充分的问题以及分离器因温度高、氢分压低而导致沥青烯发生缩聚反应的问题。
本方法特别适用于固体含量较多、采用现有控温方法无法实现温度均一控制的重油加氢工艺、煤直接液化工艺和油煤混炼工艺中的浆态床反应器以及分离系统。由于浆态床反应器内加氢裂化反应为强放热反应,且对反应温度有严格的要求,因此在设计反应器时需要对不同工况下的反应进度、放热量和温升做出准确计算,通过控制反应器的入口温度来稳定反应器的操作温度。另外,浆态床分离系统直接连接反应器出口,温度较高,容易发生副反应,影响分离效果。因此,本方法充分考虑了浆态床反应器和分离器的反应特点,对浆态床反应器及分离器内的温度进行高效地控制,保证加氢设备长期稳定运行,避免出现安全事故。
附图说明
图1为本发明实施例的浆态床加氢及反应流程示意图;
图2为本发明实施例的浆态床反应器的控温方法示意图;
图3为本发明实施例的分离系统的控温方法示意图。
图中各标号列示如下:
1-氢气高分气换热器;2-氢气加热炉;3-原料加热炉;4-一级反应器;5-二级反应器;6-高温高压分离器;7-补充氢气;8-循环氢气;9-原料;10-热高分气体;11-冷油;12-冷氢;13-反应产物;14-高温低压分离器;15-中温低压分离器;16-常温常压分离器;17-中温高压分离器;18-常温高压分离器;19-脱盐水;20-尾气;21-常温油;22-废水;23-中温油;24-高温油。
具体实施方式
为进一步阐述本发明的具体特征,将结合附图和具体实施例加以说明。
本实施例为油煤混炼工艺中涉及的浆态床加氢设备控温方法,加氢反应器为二级,分离器为6级,具体控温过程如下:
如图1所示,本发明实施例的浆态床反应器的加氢和反应流程,首先补充氢气7与循环氢气8混合,然后与高温高压分离器6出口气体即热高分气体10在氢气高分气换热器1处换热升温至425℃氢气。然后20%的氢气与油煤浆进料9混合后进入原料加热炉3升温至365℃的混合物流,80%的氢气进入氢气加热炉2升温至535℃的高温氢气。接着高温氢气分为三路输送:一部分与混合物流,控制进料温度为385℃进入一级反应器4发生加氢反应;一部分与一级反应器出口物料混合后进入二级反应器5进一步发生加氢反应,氢气进料为一级反应器氢气进料的1/15;一部分从底部进入高温高压分离器6。
如图2所示,为本发明实施例的浆态床反应器的控温方法示意图,当温度传感器检测到二级反应器5的反应温度升高超过正常温度范围时,则向一、二级反应器间的管道中通入冷却剂,冷却介质包括油煤混炼工艺中自产的循环重油—冷油11,温度为225℃,两根冷却管道,以及循环氢气—冷氢12,纯度为95.5vol%,温度为55℃,通过4根冷却管路输送,通过自动阀门控制流量为(补充流量数据),直到二级反应器内的温度控制在410-420℃范围内,关闭阀门,停止注入冷却剂。
从二级反应器出口流出的反应产物13进入高温高压分离器6,操作温度是420℃,操作压力是18.7MPa,为使其操作温度保持稳定,通过温度传感器控制向其中打入的冷油11或冷氢12的流量使高温高压分离器6的温度稳定在420℃左右,具体见图3,高温高压分离器6上部分离出的气相经冷却至后,进入中温高压分离器17,液相经液位控制阀调节后进入高温低压分离器14;中温高压分离器17操作温度是285℃,操作压力是18.6MPa,上部分离出的气相经冷却、注水和二次冷却后进入常温高压分离器18,液相经液位控制阀调节后进入中温低压分离器15;常温高压分离器18操作温度是55℃,操作压力是18.5MPa,上部分离出的气相作为循环氢8使用,常温高压分离器18下部的液相经液位控制阀调节后进入常温低压分离器16;高温低压分离器14操作温度是420℃,操作压力是3.0MPa,为使其操作温度保持稳定,通过温度传感器控制向其中打入的冷油11或冷氢12的流量使高温低压分离器14的温度稳定在420℃左右(具体见图3),上部分离出的气相经冷却后进入中温低压分离器15,液相经液位控制阀调节后作为高温油24出分离器;中温低压分离器15操作温度是285℃,操作压力是2.9MPa,上部气相经冷却后进入常温低压分离器16,液相经液位控制阀调节后作为中温油23出分离器;常温低压分离器操作温度是55℃,操作压力是2.8MPa,上部气相作为尾气20出分离器进入气体处理装置,下部液相作为常温油21出分离器,集液包里含有碳酸氢铵和硫化铵的废水22去废水处理装置。
本实施例在实际运行中,保证了一级反应器4内温度的稳定和反应物的均匀,同时二级反应器5内的温度、反应物和氢分压以及高温高压分离器6内氢分压也保持稳定,且未发生结焦现象。
除了通过氢气与原料的加热及输送方式控制了一级反应器4的温度外,也可采用在一级反应器4入口前的管道通入冷却剂的方式,但采用本实施例的控制氢气加热方式以控制一级反应器入口温度的方法为更优选的方式。若反应器级数为三级,则三级反应器控温方法同上述二级反应器的控温方法。
从上述实施例可以看出,使用本发明的一种多重优化的浆态床反应设备控温方法,能够保证各级反应器内各处的温度均匀,使整个反应系统处于稳定状态;能够准确控制分离器的操作温度,使分离系统处于一种稳态的操作条件下,对气相来讲,达到了既减轻下游装置的操作压力,又保证了循环氢的纯度的目的,对液相来讲,则是保证了液收率,分离效果达到最佳。
所使用的冷却剂为循环氢和循环重油,即是反应中间产物和也是反应原料,这样做的好处是:(1)循环氢和循环重油容易获得;(2)不会产生副产物;(3)体系操作参数变化小,使系统处于可控状态;(4)使用两种来源的介质对温度的控制更加有保障。
以上所述仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (8)

1.一种多重优化的浆态床加氢设备控温方法,其特征在于向重油加氢工艺、煤直接液化工艺和油煤混炼工艺的某级或多级反应器入口前的管道注入冷却剂,所述冷却剂通过至少一根冷却管路输送且流量可控,所述方法还包括向某级或多级分离器上和/或某级或多级分离器入口前的管道中注入冷却剂,所述冷却剂包括冷氢或冷油或二者的混合物,所述冷氢为循环氢,纯度为85vol%以上,温度为30-250℃;所述冷油为所述浆态床反应器中产生的循环重油,温度为50-450℃。
2.根据权利要求1所述方法,其特征在于所述冷却管路为1~8根,每根管路上设置有温度自控阀和/或手阀以及温度传感器。
3.根据权利要求1所述方法,其特征在于所述反应器级数为2-3级,所述分离器级数为2-6级。
4.根据权利要求3所述方法,其特征在于所述反应器级数为三级,所述分离器级数为六级,一级反应器入口前的温度控制在350-465℃,一、二级反应器间温度控制在380-480℃,二、三级反应器间温度控制在360-480℃,高温高压分离器操作温度控制在300-470℃,操作压力为17-22MPa,反应器出口物料分离的停留时间为0.5-60分钟,后续分离器操作温度和操作压力均不超过高温高压分离器的操作温度和压力,停留时间为0.5-60分钟。
5.根据权利要求4所述方法,其特征在于反应氢气分为两路加热,一路在氢气加热炉中加热,一路与原料混合后在原料加热炉中加热;然后所述氢气加热炉出口的氢气一路与所述反应氢气与原料的混合物料混合后进入所述一级反应器,一路与所述一级反应器出口的物流混合后进入所述二级反应器,一路与所述二级反应器出口的物流混合后进入所述三级反应器,一路进入所述高温高压分离器。
6.一种优化控温的浆态床加氢设备,其特征在于在某级或多级的反应器和分离器入口前的管道连通至少一根冷却管路,所述冷却管路中的冷却剂为冷氢或冷油或二者的混合物,所述冷却剂的量可控,所述冷却剂包括冷氢或冷油或二者的混合物,所述冷氢为循环氢,纯度为85vol%以上,温度为30-250℃;所述冷油为所述浆态床反应器中产生的循环重油,温度为50-450℃。
7.权利要求1-5所述的一种多重优化的浆态床加氢设备控温方法的用途,其特征在于用于重油加氢工艺、煤直接液化工艺和油煤混炼工艺中的反应器和分离器,所述重油包括重质原油、渣油、催化油浆、脱油沥青、煤焦油的一种或者多种组合,所述煤包括褐煤、烟煤、不粘煤中的一种或者多种组合,所述油煤混炼工艺中油与煤的质量比的比例范围为97:3-30:70。
8.一种多重优化的浆态床加氢设备控温设计方法,其特征在于向重油加氢工艺、煤直接液化工艺和油煤混炼工艺的加氢设备中注入冷却剂以控制温度,注入位置分别位于某级或多级反应器入口前的管道、某级或多级分离器入口前的管道中,所述冷却剂通过至少一根冷却管路输送且流量可控,所述冷却剂包括冷氢或冷油或二者的混合物,所述冷氢为循环氢,纯度为85vol%以上,温度为30-250℃;所述冷油为所述浆态床反应器中产生的循环重油,温度为50-450℃。
CN201510780561.2A 2015-05-07 2015-11-13 一种加氢工艺的控温方法及其设计方法和用途 Active CN105441128B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201510780561.2A CN105441128B (zh) 2015-05-07 2015-11-13 一种加氢工艺的控温方法及其设计方法和用途
PCT/CN2015/095205 WO2016176983A1 (zh) 2015-05-07 2015-11-20 一种加氢工艺的控温方法及其设计方法和用途

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510229692.1A CN104888666A (zh) 2015-05-07 2015-05-07 一种浆态床反应器控温方法及其设计方法和用途
CN2015102296921 2015-05-07
CN201510780561.2A CN105441128B (zh) 2015-05-07 2015-11-13 一种加氢工艺的控温方法及其设计方法和用途

Publications (2)

Publication Number Publication Date
CN105441128A CN105441128A (zh) 2016-03-30
CN105441128B true CN105441128B (zh) 2017-07-28

Family

ID=54021873

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510229692.1A Pending CN104888666A (zh) 2015-05-07 2015-05-07 一种浆态床反应器控温方法及其设计方法和用途
CN201510780561.2A Active CN105441128B (zh) 2015-05-07 2015-11-13 一种加氢工艺的控温方法及其设计方法和用途

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201510229692.1A Pending CN104888666A (zh) 2015-05-07 2015-05-07 一种浆态床反应器控温方法及其设计方法和用途

Country Status (2)

Country Link
CN (2) CN104888666A (zh)
WO (1) WO2016176983A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105273747B (zh) 2015-11-18 2017-05-03 北京中科诚毅科技发展有限公司 一种浆态床加氢反应器的控温措施及其设计方法和用途
CN108531217A (zh) * 2017-03-01 2018-09-14 何巨堂 导液降温式碳氢料加氢反应器三相产物的分离方法
CN110591763B (zh) * 2019-09-10 2021-01-15 南京延长反应技术研究院有限公司 一种煤间接液化的智能强化控制系统及工艺

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358359A (en) * 1979-09-07 1982-11-09 Chevron Research Company Two-stage coal liquefaction process with process-derived solvent having a low heptane-insolubles content
DE3141380A1 (de) * 1981-10-17 1983-05-05 GfK Gesellschaft für Kohleverflüssigung mbH, 6600 Saarbrücken Verfahren zum hydrieren von kohle
CN100473714C (zh) * 2006-06-28 2009-04-01 中国石油集团工程设计有限责任公司抚顺分公司 一种迅速降低催化裂化汽油加氢反应产物温度的急冷装置
CN102260527B (zh) * 2011-06-29 2014-05-28 中国石油大学(华东) 高硫、高酸劣质重油临氢催化热裂解-加氢处理新工艺
CN103131470B (zh) * 2011-11-25 2015-07-22 中国石油天然气股份有限公司 一种固定床渣油加氢处理方法
CN104277879B (zh) * 2013-07-05 2016-08-24 任相坤 一种中低温煤焦油的两级浆态床加氢工艺
CN103861532B (zh) * 2014-03-03 2015-11-18 北京华石联合能源科技发展有限公司 一种射流曝气三相均质反应器

Also Published As

Publication number Publication date
CN104888666A (zh) 2015-09-09
CN105441128A (zh) 2016-03-30
WO2016176983A1 (zh) 2016-11-10

Similar Documents

Publication Publication Date Title
CN102292151B (zh) 生产烯烃的绝热反应器
CN105441128B (zh) 一种加氢工艺的控温方法及其设计方法和用途
CN104877700B (zh) 一种粉煤热解加氢反应器及热解加氢反应方法
CN111234876A (zh) 超临界水气化制氢的物料分级预热及超温保护系统与方法
CN104388116A (zh) 一种重劣质油高效转化工艺
CN104987885A (zh) 一种费托合成油和煤焦油共加氢生产国标油的工艺及装置
CN104877707B (zh) 一种多重优化的加氢系列方法及其设计方法和用途
CN204058379U (zh) 一种劣质催化柴油加氢改质装置换热优化系统
CN205152158U (zh) 一种煤焦油悬浮床加氢裂化装置
CN100473712C (zh) 催化裂化全馏分汽油加氢改质工艺流程
CN102603455B (zh) 乙烯装置碳二物料的回收工艺及装置
CN105273751B (zh) 一种多重优化的分离器组合系统及其设计方法和用途
CN101250435B (zh) 一种烃类加氢转化方法
CN111234873A (zh) 一种能量回收及废水零排放的超临界水气化系统和方法
CN103421542A (zh) 一种柴油加氢处理工艺
CN104560182A (zh) 汽柴油加氢精制装置的工作流程及其应用和一种汽柴油加氢精制的方法
CN104560098B (zh) 一种煤直接液化方法
CN102115679A (zh) 一种生产低硫柴油的方法及装置
CN105316041B (zh) 一种渣油加氢方法
CN105985804B (zh) 一种重质油加工工艺及加工装置
CN101250434B (zh) 一种烃类加氢转化方法
CN106497601A (zh) 一种两段全循环加氢方法
CN105316037B (zh) 渣油加氢的方法
CN109022031A (zh) 减少污水排放的延迟焦化方法和重油加工方法
CN211896824U (zh) 超临界水气化制氢的物料分级预热及超温保护系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant