CN105435754A - 一种微孔高比表面磁性高分子复合微球的制备方法 - Google Patents
一种微孔高比表面磁性高分子复合微球的制备方法 Download PDFInfo
- Publication number
- CN105435754A CN105435754A CN201510787092.7A CN201510787092A CN105435754A CN 105435754 A CN105435754 A CN 105435754A CN 201510787092 A CN201510787092 A CN 201510787092A CN 105435754 A CN105435754 A CN 105435754A
- Authority
- CN
- China
- Prior art keywords
- composite microsphere
- preparation
- surface magnetic
- micropore high
- micropore
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
- B01J13/06—Making microcapsules or microballoons by phase separation
- B01J13/14—Polymerisation; cross-linking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28009—Magnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28016—Particle form
- B01J20/28021—Hollow particles, e.g. hollow spheres, microspheres or cenospheres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/46—Materials comprising a mixture of inorganic and organic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/48—Sorbents characterised by the starting material used for their preparation
- B01J2220/4806—Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/48—Sorbents characterised by the starting material used for their preparation
- B01J2220/4812—Sorbents characterised by the starting material used for their preparation the starting material being of organic character
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Polymers (AREA)
- Medicinal Preparation (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Cosmetics (AREA)
- Manufacturing Of Micro-Capsules (AREA)
Abstract
本发明涉及一种微孔高比表面磁性高分子复合微球的制备方法,其技术特征在于:将单体与亲油性磁性粒子溶解、分散在溶剂中作为分散相,加入到连续相硅油中,搅拌获得分散相液滴,随后加入溶有催化剂的溶剂,利用同相相容的方法,促使单体交联得到具有微孔结构的高分子骨架,同时将磁性粒子包裹其中,得到微孔高比表面磁性高分子复合微球。这种微孔高比表面磁性高分子复合微球因为其大的比表面积、磁场下易分离等优异性质,在开放式水体处理、饮品安全等领域有着潜在应用价值。
Description
技术领域
本发明属于高分子复合微球的制备方法,具体涉及一种微孔高比表面磁性高分子复合微球的制备方法,将微孔高比表面高分子基体与磁性纳米粒子通过简单的一步法复合制备高比表面磁性复合吸附分离材料。
背景技术
磁性高分子复合微球相较于其他吸附分离材料,具有在磁场作用下快速分离富集的性质,因而在实际操作中可以简化操作工艺流程,同时相比于柱状填充料分离,可有效扩大接触面积并不受背压条件限制,因此在工业及科研领域备受关注。在吸附分离领域,为进一步提升磁性高分子复合微球的使用优势,一般通过提高其比表面积的方法提高其吸附或负载量。已有报道提高磁性高分子复合微球比表面积的主要方法有两种:一是在单体聚合制得高分子骨架过程中引入磁性粒子同时加入致孔剂造孔以提高比表面积(ZL201310063672.2,ZL201310056875.9,ZL201210151676.1);二是在高比表面高分子骨架基球孔道中原位生成磁性粒子得到高表面磁性复合微球(ZL201110311053.1,CN201310528523.9)。上述方法均可获得具有较高比表面积的磁性高分子复合微球,但聚合造孔技术较难得到比表面积高于800m2/g的微球,原位法得到微球磁性粒子较易溶出,因此高比表面积磁性高分子复合微球制备技术仍需深入研究和创新。
近年来,具有微孔结构的超高比表面材料不断受到关注,其较小的孔径使得材料可以拥有1000-5000m2/g的比表面积,但其受到单体及制备条件限制,一般材料为无规整形貌的粉末,尚未见到球形微孔结构超高比表面材料的报道。若果可以通过控制合成将该类材料与磁性粒子复合制备成复合微球,有望得到高性能的吸附分离材料。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种微孔高比表面磁性高分子复合微球的制备方法,以与单体交联体系不相容的硅油连续相,利用液滴受限反应,将微孔高比表面高分子基体与磁性纳米粒子通过简单的一步法复合制备得到了高比表面磁性复合微球。
技术方案
一种微孔高比表面磁性高分子复合微球的制备方法,其特征在于步骤如下:
步骤1:将单体溶解在溶剂Ⅰ中形成溶液A;其中单体的浓度为1~3mol·L-1;所述单体为双氯甲基蒽或双氯甲基蒽的衍生物;
步骤2:将磁性粒子加入到溶液A中,超声分散均匀后得溶液B;其中磁性粒子的质量浓度为0.2~2g·L-1;
步骤3:将溶液B与硅油混合搅拌30min,其中溶液B与硅油的体积比为1:10~20;
步骤4:在75~85℃之下保温反应10~24h。冷却至室温后,磁场分离得到黑褐色固体;
步骤5:采用溶剂Ⅱ对黑褐色固体进行清洗,并磁场分离,直至上清液为无色透明,再用水洗涤3遍,得到粗产品;
步骤6:将得到的粗产品装入纱布袋,采用甲醇对其进行索氏提取12h以上,经真空干燥即得微孔高比表面磁性高分子复合微球。
所述溶剂Ⅰ为1,2-二氯乙烷、正己烷、环己烷或苯。
所述溶剂Ⅱ为甲醇、乙醇或丙酮。
所述磁性粒子是油相稳定分散的四氧化三铁纳米粒子、三氧化二铁纳米粒子、铁氧体纳米粒子中的一种或几种的任意比混合。
所述硅油为25℃下动力学粘度大于500CPS的甲基硅油、乙基硅油、甲基苯基硅油或甲基氢基硅油。
所述催化剂为无水三氯化铁或无水三氯化铝。
有益效果
本发明提出的一种微孔高比表面磁性高分子复合微球的制备方法,将单体与亲油性磁性粒子溶解、分散在溶剂中作为分散相,加入到连续相硅油中,搅拌获得分散相液滴,随后加入溶有催化剂的溶剂,利用同相相容的方法,促使单体交联得到具有微孔结构的高分子骨架,同时将磁性粒子包裹其中,得到微孔高比表面磁性高分子复合微球。这种微孔高比表面磁性高分子复合微球因为其大的比表面积、磁场下易分离等优异性质,在开放式水体处理、饮品安全等领域有着潜在应用价值
附图说明
图1是微孔高比表面磁性高分子复合微球制备过程示意图
图2是微孔高比表面磁性高分子复合微球的SEM照片
图3是微孔高比表面磁性高分子复合微球的BET曲线
图4是微孔高比表面磁性高分子复合微球的孔径分布曲线
具体实施方式
现结合实施例、附图对本发明作进一步描述:
实施例1:具有超微孔磁性高分子复合微球的制备
将3.5g的1,4-对二氯苄溶解在10mL的1,2-二氯乙烷中,得到溶液A。称取10mg油相稳定分散的四氧化三铁纳米粒子加入到溶液A中,超声分散均匀后得溶液B。将溶液B加入到盛有120mL甲基硅油(25℃,500cps)的三口瓶内,开启搅拌。搅拌30min后,向其中加入溶有8g无水三氯化铁的1,2-二氯甲烷9.5mL。将体系升温至75℃,保温反应24h。冷却至室温后,磁场分离得到黑褐色固体,将其用甲醇进行清洗,磁场分离,直至上清液为无色透明,再用水洗涤3遍,得到粗产品。将得到的粗产品装入纱布袋,采用甲醇对其进行索氏提取12h以上,经真空干燥即得微孔高比表面磁性高分子复合微球。
实施例2:具有超微孔磁性高分子复合微球的制备
将2.6g的1,4-对二氯苄溶解在5mL的正己烷中,得到溶液A。称取8mg油相稳定分散的三氧化二铁纳米粒子加入到溶液A中,超声分散均匀后得溶液B。将溶液B加入到盛有60mL甲基硅油(25℃,1000cps)的三口瓶内,开启搅拌。搅拌30min后,向其中加入溶有5g无水三氯化铝的正己烷5mL。将体系升温至85℃,保温反应10h。冷却至室温后,磁场分离得到黑褐色固体,将其用甲醇进行清洗,磁场分离,直至上清液为无色透明,再用水洗涤3遍,得到粗产品。将得到的粗产品装入纱布袋,采用甲醇对其进行索氏提取12h以上,经真空干燥即得微孔高比表面磁性高分子复合微球。
实施例3:具有超微孔磁性高分子复合微球的制备
将2.8g的对苯二甲醇溶解在8mL的环己烷中,得到溶液A。称取12mg油相稳定分散的四氧化三铁纳米粒子加入到溶液A中,超声分散均匀后得溶液B。将溶液B加入到盛有90mL乙基硅油(25℃,800cps)的三口瓶内,开启搅拌。搅拌30min后,向其中加入溶有4.5g无水三氯化铁的环己烷5.5mL。将体系升温至80℃,保温反应20h。冷却至室温后,磁场分离得到黑褐色固体,将其用乙醇进行清洗,磁场分离,直至上清液为无色透明,再用水洗涤3遍,得到粗产品。将得到的粗产品装入纱布袋,采用甲醇对其进行索氏提取12h以上,经真空干燥即得微孔高比表面磁性高分子复合微球。
实施例4:具有超微孔磁性高分子复合微球的制备
将2.5g的对苯二甲醇溶解在8mL的1,2-二氯乙烷中,得到溶液A。称取15mg油相稳定分散的三氧化二铁纳米粒子加入到溶液A中,超声分散均匀后得溶液B。将溶液B加入到盛有100mL乙基硅油(25℃,1200cps)的三口瓶内,开启搅拌。搅拌30min后,向其中加入溶有7g无水三氯化铝的1,2-二氯乙烷10mL。将体系升温至75℃,保温反应15h。冷却至室温后,磁场分离得到黑褐色固体,将其用乙醇进行清洗,磁场分离,直至上清液为无色透明,再用水洗涤3遍,得到粗产品。将得到的粗产品装入纱布袋,采用甲醇对其进行索氏提取12h以上,经真空干燥即得微孔高比表面磁性高分子复合微球。
实施例5:具有超微孔磁性高分子复合微球的制备
将5.5g的9,10-双氯甲基蒽溶解在10mL的苯中,得到溶液A。称取15mg油相稳定分散的四氧化三铁纳米粒子加入到溶液A中,超声分散均匀后得溶液B。将溶液B加入到盛有120mL甲基苯基硅油(25℃,1000cps)的三口瓶内,开启搅拌。搅拌30min后,向其中加入溶有6.5g无水三氯化铝的苯15mL。将体系升温至79℃,保温反应18h。冷却至室温后,磁场分离得到黑褐色固体,将其用丙酮进行清洗,磁场分离,直至上清液为无色透明,再用水洗涤3遍,得到粗产品。将得到的粗产品装入纱布袋,采用甲醇对其进行索氏提取12h以上,经真空干燥即得微孔高比表面磁性高分子复合微球。
实施例6:具有超微孔磁性高分子复合微球的制备
将4.0g的9,10-双氯甲基蒽溶解在5mL的1,2-二氯乙烷中,得到溶液A。称取10mg油相稳定分散的四氧化三铁纳米粒子加入到溶液A中,超声分散均匀后得溶液B。将溶液B加入到盛有70mL甲基硅油(25℃,1500cps)的三口瓶内,开启搅拌。搅拌30min后,向其中加入溶有6g催无水三氯化铁的1,2-二氯甲烷7mL。将体系升温至82℃,保温反应22h。冷却至室温后,磁场分离得到黑褐色固体,将其用丙酮进行清洗,磁场分离,直至上清液为无色透明,再用水洗涤3遍,得到粗产品。将得到的粗产品装入纱布袋,采用甲醇对其进行索氏提取12h以上,经真空干燥即得微孔高比表面磁性高分子复合微球。
Claims (6)
1.一种微孔高比表面磁性高分子复合微球的制备方法,其特征在于步骤如下:
步骤1:将单体溶解在溶剂Ⅰ中形成溶液A;其中单体的浓度为1~3mol·L-1;所述单体为双氯甲基蒽或双氯甲基蒽的衍生物;
步骤2:将磁性粒子加入到溶液A中,超声分散均匀后得溶液B;其中磁性粒子的质量浓度为0.2~2g·L-1;
步骤3:将溶液B与硅油混合搅拌30min,其中溶液B与硅油的体积比为1:10~20;
步骤4:在75~85℃之下保温反应10~24h。冷却至室温后,磁场分离得到黑褐色固体;
步骤5:采用溶剂Ⅱ对黑褐色固体进行清洗,并磁场分离,直至上清液为无色透明,再用水洗涤3遍,得到粗产品;
步骤6:将得到的粗产品装入纱布袋,采用甲醇对其进行索氏提取12h以上,经真空干燥即得微孔高比表面磁性高分子复合微球。
2.根据权利要求1所述微孔高比表面磁性高分子复合微球的制备方法,其特征在于:所述溶剂Ⅰ为1,2-二氯乙烷、正己烷、环己烷或苯。
3.根据权利要求1所述微孔高比表面磁性高分子复合微球的制备方法,其特征在于:所述溶剂Ⅱ为甲醇、乙醇或丙酮。
4.根据权利要求1所述微孔高比表面磁性高分子复合微球的制备方法,其特征在于:所述磁性粒子是油相稳定分散的四氧化三铁纳米粒子、三氧化二铁纳米粒子、铁氧体纳米粒子中的一种或几种的任意比混合。
5.根据权利要求1所述微孔高比表面磁性高分子复合微球的制备方法,其特征在于:所述硅油为25℃下动力学粘度大于500CPS的甲基硅油、乙基硅油、甲基苯基硅油或甲基氢基硅油。
6.根据权利要求1所述微孔高比表面磁性高分子复合微球的制备方法,其特征在于:所述催化剂为无水三氯化铁或无水三氯化铝。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510787092.7A CN105435754B (zh) | 2015-11-17 | 2015-11-17 | 一种微孔高比表面磁性高分子复合微球的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510787092.7A CN105435754B (zh) | 2015-11-17 | 2015-11-17 | 一种微孔高比表面磁性高分子复合微球的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105435754A true CN105435754A (zh) | 2016-03-30 |
CN105435754B CN105435754B (zh) | 2017-08-22 |
Family
ID=55546648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510787092.7A Active CN105435754B (zh) | 2015-11-17 | 2015-11-17 | 一种微孔高比表面磁性高分子复合微球的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105435754B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107722280A (zh) * | 2017-10-30 | 2018-02-23 | 西北工业大学 | 一种酞菁铁聚合物的制备方法 |
CN107744802A (zh) * | 2017-10-30 | 2018-03-02 | 西北工业大学 | 一种大粒径高比表面磁性多孔复合微球的制备方法 |
CN109337646A (zh) * | 2018-11-05 | 2019-02-15 | 西北工业大学 | 一种磁性多孔碳微球及利用羟甲基二茂铁制备的方法 |
CN113649068A (zh) * | 2021-07-26 | 2021-11-16 | 电子科技大学 | 一种磁性聚芳醚腈复合光催化剂及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101549270A (zh) * | 2009-04-03 | 2009-10-07 | 西北工业大学 | 一种磁性高分子无机物复合微球的制备方法 |
CN103187137A (zh) * | 2013-04-28 | 2013-07-03 | 北京科技大学 | 一种油基磁性流体的制备方法 |
US20140144590A1 (en) * | 2012-11-23 | 2014-05-29 | Hon Hai Precision Industry Co., Ltd. | Adhesive structure, surface treating agent, and method of separating the same |
-
2015
- 2015-11-17 CN CN201510787092.7A patent/CN105435754B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101549270A (zh) * | 2009-04-03 | 2009-10-07 | 西北工业大学 | 一种磁性高分子无机物复合微球的制备方法 |
US20140144590A1 (en) * | 2012-11-23 | 2014-05-29 | Hon Hai Precision Industry Co., Ltd. | Adhesive structure, surface treating agent, and method of separating the same |
CN103187137A (zh) * | 2013-04-28 | 2013-07-03 | 北京科技大学 | 一种油基磁性流体的制备方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107722280A (zh) * | 2017-10-30 | 2018-02-23 | 西北工业大学 | 一种酞菁铁聚合物的制备方法 |
CN107744802A (zh) * | 2017-10-30 | 2018-03-02 | 西北工业大学 | 一种大粒径高比表面磁性多孔复合微球的制备方法 |
CN107744802B (zh) * | 2017-10-30 | 2019-12-27 | 西北工业大学 | 一种大粒径高比表面磁性多孔复合微球的制备方法 |
CN107722280B (zh) * | 2017-10-30 | 2020-10-02 | 西北工业大学 | 一种酞菁铁聚合物的制备方法 |
CN109337646A (zh) * | 2018-11-05 | 2019-02-15 | 西北工业大学 | 一种磁性多孔碳微球及利用羟甲基二茂铁制备的方法 |
CN109337646B (zh) * | 2018-11-05 | 2021-08-10 | 西北工业大学 | 一种磁性多孔碳微球及利用羟甲基二茂铁制备的方法 |
CN113649068A (zh) * | 2021-07-26 | 2021-11-16 | 电子科技大学 | 一种磁性聚芳醚腈复合光催化剂及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105435754B (zh) | 2017-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Anion assisted synthesis of large pore hollow dendritic mesoporous organosilica nanoparticles: understanding the composition gradient | |
CN105435754A (zh) | 一种微孔高比表面磁性高分子复合微球的制备方法 | |
Li et al. | Adsorption and desorption behaviors of DNA with magnetic mesoporous silica nanoparticles | |
Chen et al. | Facile deposition of Pd nanoparticles on carbon nanotube microparticles and their catalytic activity for Suzuki coupling reactions | |
Yeh et al. | Synthesis of hollow silica spheres with mesostructured shell using cationic− anionic-neutral block copolymer ternary surfactants | |
Du et al. | Hierarchically mesoporous silica nanoparticles: extraction, amino-functionalization, and their multipurpose potentials | |
Chai et al. | In situ one-pot construction of MOF/hydrogel composite beads with enhanced wastewater treatment performance | |
Liu et al. | Tunable assembly of organosilica hollow nanospheres | |
Li et al. | Interfacially controlled synthesis of hollow mesoporous silica spheres with radially oriented pore structures | |
Kerkhofs et al. | Self-Assembly of Pluronic F127 Silica Spherical Core–Shell Nanoparticles in Cubic Close-Packed Structures | |
CN103977748B (zh) | 一种磁性气凝胶及其制备方法 | |
CN102643513B (zh) | 一种间氨基苯酚-甲醛树脂球的制备方法和碳球的制备方法 | |
Miao et al. | Highly efficient nanocatalysts supported on hollow polymer nanospheres: Synthesis, characterization, and applications | |
Zhang et al. | Dependence of dye molecules adsorption behaviors on pore characteristics of mesostructured MOFs fabricated by surfactant template | |
Wang et al. | Hard-templating synthesis of mesoporous carbon spheres with controlled particle size and mesoporous structure for enzyme immobilization | |
Stadler et al. | Recyclable magnetic microporous organic polymer (MOP) encapsulated with palladium nanoparticles and Co/C nanobeads for hydrogenation reactions | |
Liu et al. | Ionic imprinted CNTs-chitosan hybrid sponge with 3D network structure for selective and effective adsorption of Gd (III) | |
Moreno-Castilla | Colloidal and micro-carbon spheres derived from low-temperature polymerization reactions | |
CN102389772B (zh) | 亲油性磁性凹凸棒土复合吸附剂的制备方法 | |
CN102580691B (zh) | 一种纤维素基-硅杂化微球及其制备方法 | |
Pawsey et al. | Pore structure and interconnectivity of CdS aerogels and xerogels by hyperpolarized Xenon NMR | |
Li et al. | Poly (acrylic acid) conjugated hollow mesoporous carbon as a dual-stimuli triggered drug delivery system for chemo-photothermal synergistic therapy | |
McCrary-Dennis et al. | Synthesis and characterization of polystyrene carbon nanotube nanocomposite for utilization in the displaced foam dispersion methodology | |
Wang et al. | Poly (amidoamine) dendrimer decorated dendritic fibrous nano-silica for efficient removal of uranium (VI) | |
Contin et al. | Metal nanoparticles inside microgel/clay nanohybrids: Synthesis, characterization and catalytic efficiency in cross-coupling reactions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |