CN105428090B - 具有高输出电压的纤维状超级电容器及其制备方法 - Google Patents

具有高输出电压的纤维状超级电容器及其制备方法 Download PDF

Info

Publication number
CN105428090B
CN105428090B CN201510914750.4A CN201510914750A CN105428090B CN 105428090 B CN105428090 B CN 105428090B CN 201510914750 A CN201510914750 A CN 201510914750A CN 105428090 B CN105428090 B CN 105428090B
Authority
CN
China
Prior art keywords
ultracapacitor
fibrous
preparation
output voltage
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510914750.4A
Other languages
English (en)
Other versions
CN105428090A (zh
Inventor
彭慧胜
孙浩
付雪梅
解松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201510914750.4A priority Critical patent/CN105428090B/zh
Publication of CN105428090A publication Critical patent/CN105428090A/zh
Application granted granted Critical
Publication of CN105428090B publication Critical patent/CN105428090B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

本发明属于超级电容器技术领域,具体涉及一种具有高输出电压的纤维状超级电容器及其制备方法。本发明在表面缠绕取向碳纳米管薄膜的可拉伸纤维上,通过共用电极的结构设计,可在单根纤维实现超级电容器有效串联。通过调控超级电容器单元数目,可获得不同的输出电压,最高可达1000V。该超级电容器性能稳定,在50%应变下拉伸100000次,容量维持在初始值的95.6%;在0.8 cm曲率半径下弯曲100000次,容量可以保持在初始值的96.6%;在2 A/g电流密度下循环充放电100000次,容量仍可保持为初始值的83.6%。该纤维状超级电容器成本低廉且可连续制备,兼具良好的柔性、可拉伸性和高集成性,在可穿戴和微电子器件领域显示出广阔的应用前景。

Description

具有高输出电压的纤维状超级电容器及其制备方法
技术领域
本发明属于超级电容器技术领域,具体涉及一种具有高输出电压的纤维状超级电容器及其制备方法。
背景技术
自然界是先进科学与技术的灵感源泉[1-5]。尽管仿生材料已被广泛研究,以实现各种各样的功能,但是通过模仿生物结构,设计结构更复杂、功能可调控的电子器件却很罕见。电鳗是动物界最大生物电流生产者,能够产生高放电电压来击晕猎物和避开捕食者。为了在细胞和基因水平上理解发电细胞的电流产生过程,科学家们已开展了大量的研究工作[6-10]。尽管电鳗身上的单个发电细胞只产生一个大约为0.15 V的电压,但是成千上万个发电细胞规律地串联排列即可产生高达600 V的电压。数十年来,这种独特的现象激发了大量科学家和工程师去开发类似功能材料[6,7-10]。然而自然界的这种奇妙的设计从来没有被借鉴用于制造高性能的电子设备。此外,设计复杂可控的电子设备时,有效的、可精确控制的连接是至关重要的,同时也是微电子学发展的一个挑战[11-14]。以超级电容器为例,水系电解液与有机电解液相比更加安全,因此更适合应用于可穿戴设备领域。但是受限于水的热力学分解电位(1.23 V),其最大的工作电压很难满足绝大多数电子设备的电压要求;而传统工业采用的外接导线连接的方法有许多缺点,例如制备工艺复杂,成本高昂,安全性差,集成度较低等,这些缺点在连接大量器件时尤为明显。因此,通过简单而有效的方法实现多个超级电容器的有效串联,并保持其整体性和集成性显得非常重要。
发明内容
本发明的目的在于提供一种工艺简单、成本低廉、柔软性和可拉伸性好的具有高输出电压的纤维状超级电容器及其制备方法。
本发明通过共用电极的设计,在单根纤维实现超级电容器的有效串联,可获得高达1000V的输出电压。此外,该纤维状超级电容器还具有高度稳定性,在50%应变下拉伸100000次,容量维持在初始值的95.6%;在0.8 cm曲率半径下弯曲100 000次,容量可以保持在初始值的96.6%;在2 A/g 电流密度下循环充放电100 000次,容量仍可保持为初始值的83.6%。该纤维状超级电容器制备简单,成本低廉,具有良好的柔性、可拉伸性、集成性,不需要使用外接导线即可实现高输出电压,在可穿戴设备和微电子领域具有广阔的应用前景。
本发明提供上述具有高输出电压的纤维状超级电容器的制备方法,具体步骤为:
(1)具有间隔电极结构的可拉伸纤维电极的制备:在旋转平移台上,将导电材料(例如碳纳米管、石墨烯、金属颗粒、导电高分子及上述复合材料的复合材料)均匀的涂覆或卷裹于一根直径为5-4000 μm纤维(包括可拉伸和不可拉伸纤维)表面。导电材料层厚度可控制在0.1-103μm之间。每隔0.6-10.2 cm,以宽度为0.05-0.3 cm间距去除纤维上的导电材料,于是在一根纤维上形成若干节(如2-1001节)间距为0.05-0.3 cm的间隔电极单元;
(2)具有共用电极结构的高电压超级电容器的构建:留取每节导电电极单元的中间部分作为共用电极,其余部分均匀涂抹凝胶电解液。于是相邻两共用电极间形成一个超级电容器单元(如附图1每个虚线方框所示),超级电容器单元之间以串联方式连接。通过改变单元数目可得到不同输出电压的纤维状超级电容器。
本发明所制备的具有高输出电压的纤维状超级电容器,避免了常规金属导线的使用就可实现有效的串联,从而实现高输出电压,而且具有柔性、可拉伸性、可穿戴性和高稳定性,可通过引入赝电容材料进一步提高比容,还可与太阳能电池集成实现高输出电压、高性能的自供电体系,在可穿戴设备和微电子领域具有巨大的应用前景。
附图说明
图1为具有高电压的可拉伸纤维状超级电容器的制备方法。其中a,碳纳米管缠绕的纤维状电极的制备方法示意图; b,具备共用电极结构的超级电容器的组装方法示意图;c,串联高电压超级电容器结构示意图。
图2为a,具有不同节数的纤维状超级电容器的充电曲线图;b,纤维状超级电容器可达最高电压与超级电容器单元数目关系图。
图3为具有高电压的纤维状超级电容器曲率半径0.8cm弯曲(a)、50%应变下拉伸(b)不同次数和充放电不同次数的容量变化情况。
图4为具有高电压的纤维状超级电容器编织成织物并用于储能应用的光学照片。其中a-c为纤维状超级电容器编织成织物并与T恤衫集成;d-f为具有高电压超级电容器编织成织物用于驱动电子表;g,h为多根具有高电压的纤维状超级电容器用于驱动57盏LED灯。
具体实施方式
实施例1
(1)通过化学气相沉积法合成可纺的多壁碳纳米管阵列,催化剂使用Fe (1.2nm)/ Al2O3 (3 nm),乙烯为碳源,氩气和氢气的混合气体为载气;
(2)在旋转平移台上,将宽度为1.0cm取向多壁碳纳米管薄膜,以60°的螺旋角连续地将碳纳米管薄膜缠绕到可拉伸纤维状基底上,重复2次,得到碳纳米管薄膜厚度为0.32 μm的可拉伸导电纤维。将制得的纤维在由0.75 M/L硫酸和0.10 M/L苯胺构成的水系电解液中预浸20分钟,在0.75 V电位下以Ag/AgCl为参比电极进行电化学聚合,控制聚苯胺质量分数为50%,用去离子水中冲洗,得到碳纳米管/聚苯胺复合电极;
(3)以单个间隔电极长度2.2 cm,间隔0.2 cm去除可拉伸导电纤维上的导电材料,在一根纤维上得到11节间距为0.2 cm、间隔电极长度为2.2 cm的可拉伸纤维状电极;
(4)将凝胶态电解液(质量百分比:10%磷酸、10%聚乙烯醇、80%水)以喷涂方式涂抹于可拉伸纤维上,通过遮挡住间隔电极中间的0.2 cm部分使其避免涂布电解液,作为共用电极。晾干电解液,得到最高输出电压为10V的可拉伸纤维状超级电容器。
实施例2
(1)通过化学气相沉积法合成可纺的多壁碳纳米管阵列,催化剂使用Fe (1.2nm)/ Al2O3 (3 nm),乙烯为碳源,氩气和氢气的混合气体为载气;
(2)在旋转平移台上,将宽度为1.0 cm取向多壁碳纳米管薄膜,以60°的螺旋角连续地将碳纳米管薄膜缠绕到可拉伸纤维状基底上,重复20次,得到碳纳米管薄膜厚度为3.2μm的可拉伸导电纤维。将制得的纤维在由0.80 M/L硫酸和0.15 M/L苯胺构成的水系电解液中预浸30分钟,在0.8 V电位下以Ag/AgCl为参比电极进行电化学聚合,控制聚苯胺质量分数为70%,并用去离子水中冲洗,得到碳纳米管/聚苯胺复合电极;
(3)以单个间隔电极长度5.2 cm,间隔0.2 cm去除可拉伸导电纤维上的导电材料,在一根纤维上得到101节间距为0.2 cm、间隔电极长度为5.2 cm的可拉伸纤维状电极;
(4)将凝胶态电解液(质量百分比:10%磷酸、12%聚乙烯醇、78%水)以喷涂方式涂抹于可拉伸纤维上,通过遮挡住间隔电极中间的0.2 cm部分使其避免涂布电解液,作为共用电极。晾干电解液,得到最高输出电压为100 V的可拉伸纤维状超级电容器。
实施例3
(1)通过化学气相沉积法合成可纺的多壁碳纳米管阵列,催化剂使用Fe (1.5nm)/ Al2O3 (4 nm),乙烯为碳源,氩气和氢气的混合气体为载气;
(2)在旋转平移台上,将宽度为1.0 cm取向多壁碳纳米管薄膜,卷裹于直径为500μm的可拉伸纤维基底上,以60°的螺旋角连续地将碳纳米管薄膜缠绕到可拉伸纤维状基底上,重复100次,得到碳纳米管薄膜厚度为16μm的可拉伸导电纤维;
(3)以单个间隔电极长度7.2 cm,间隔0.2 cm去除可拉伸导电纤维上的导电材料,在一根纤维上得到21节间距为0.2 cm、间隔电极长度为7.2 cm的可拉伸纤维状电极;
(4)将凝胶态电解液(质量百分比:10%磷酸、10%聚乙烯醇、80%水)以喷涂方式涂抹于可拉伸纤维上,通过遮挡住间隔电极中间的0.2 cm部分使其避免涂布电解液,作为共用电极。晾干电解液,得到最高输出电压为20V的可拉伸纤维状超级电容器。
参考文献
[1]Savage, N. Nature 2015, 519, S7-S9.
[2]Y. Zheng, H. Bai, Z. Huang, X. Tian, F.-Q. Nie, Y. Zhao, J. Zhai,L. Jiang, Nature 2010, 463, 640-643.
[3]Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi,Z. Liu, H. Park, C. Lu, R. H. Kim, Nature 2013, 497, 95-99.
[4]J. Gould, Nature 2015, 519, S2-3.
[5]K. Y. Ma, P. Chirarattananon, S. B. Fuller, R. J. Wood, Science2013, 340, 603-607.
[6]M. Noda, S. Shimizu, T. Tanabe, T. Takai, T. Kayano, T. Ikeda, H.Takahashi, H. Nakayama, Y. Kanaoka, N. Minamino, Nature 1984, 312, 121-127.
[7]A. L. Gotter, M. A. Kaetzel, J. R. Dedman, Comp. Biochem. Phys. A.1998, 119, 225–241.
[8]X. U. Jian, D. A. Lavan, Nat. Nanotechnol. 2008, 3, 666-670.
[9]K. Catania, Science 2014, 346, 1231-1234.
[10] J. R. Gallant, L. L. Traeger, J. D. Volkening, H. Moffett, P. H.Chen, C. D. Novina, G. N. Phillips, R. Anand, G. B. Wells, M. Pinch, Science2014, 344, 1522-1525.
[11] a) D. Yu, K. Goh, H. Wang, L. Wei, W. Jiang, Q. Zhang, L. Dai,Y. Chen, Nat. Nanotechnol.2014, 9, 555-562; b) D. Yu, K. Goh, Q. Zhang, L.Wei, H. Wang, W. Jiang, Y. Chen, Adv. Mater.2014, 26, 6790-6797.
[12] a) Q. Meng, H. Wu, Y. Meng, K. Xie, Z. Wei, Z. Guo, Adv.Mater.2014, 26, 4100-4106; b) K. Wang, Q. Meng, Y. Zhang, Z. Wei, M. Miao,Adv. Mater.2013, 25, 1494-1498.
[13] a) L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy, H.Sun, C. Gao, Nat. Commun.2014, 5,3754; b) B. Zheng, T. Huang, L. Kou, X.Zhao, K. Gopalsamy, C. Gao, J. Mater. Chem. A2014, 2, 9736-9743.
[14] H. Sun, X. You, J. Deng, X. Chen, Z. Yang, J. Ren, H. Peng, Adv.Mater.2014, 26, 2868-2873.。

Claims (3)

1.一种具有高输出电压的纤维状超级电容器的制备方法,其特征在于具体步骤为:
(1)具有间隔电极结构的可拉伸纤维电极的制备:在旋转平移台上,将导电材料均匀的涂覆或卷裹于一根直径为5-4000 μm可拉伸纤维表面;导电材料层厚度控制在0.05-103μm之间;每隔0.6-10.2 cm,以0.05-0.3 cm的宽度去除纤维上的导电材料,在一根纤维上形成多节间距为0.05-0.3 cm的间隔电极单元;
(2)具有共用电极结构的高电压超级电容器的构建:留取每节导电电极单元的中间部分作为共用电极,其余部分均匀涂抹超级电容器的电解液,于是在相邻两共用电极间形成一个超级电容器单元,各超级电容器单元之间以串联方式连接;通过控制超级电容器单元数目,则得到不同输出电压的纤维状超级电容器。
2.根据权利要求1所述的具有高输出电压的纤维状超级电容器的制备方法,其特征在于所述导电材料为碳纳米管、石墨烯、金属颗粒或导电高分子,或上述材料中几种的复合材料。
3.由权利要求1所述的制备方法制备得到的具有高输出电压的纤维状超级电容器。
CN201510914750.4A 2015-12-13 2015-12-13 具有高输出电压的纤维状超级电容器及其制备方法 Active CN105428090B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510914750.4A CN105428090B (zh) 2015-12-13 2015-12-13 具有高输出电压的纤维状超级电容器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510914750.4A CN105428090B (zh) 2015-12-13 2015-12-13 具有高输出电压的纤维状超级电容器及其制备方法

Publications (2)

Publication Number Publication Date
CN105428090A CN105428090A (zh) 2016-03-23
CN105428090B true CN105428090B (zh) 2017-12-29

Family

ID=55506231

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510914750.4A Active CN105428090B (zh) 2015-12-13 2015-12-13 具有高输出电压的纤维状超级电容器及其制备方法

Country Status (1)

Country Link
CN (1) CN105428090B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107151646B (zh) * 2017-05-18 2021-07-09 西安交通大学 一种基于发电细胞的活性生物电池构建方法
CN107564730B (zh) * 2017-07-06 2019-07-05 复旦大学 一种荧光纤维状超级电容器纤维及其制备方法
CN108428567B (zh) * 2018-03-13 2020-12-25 东华大学 一种石墨烯基串联线状超级电容器的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103390467A (zh) * 2013-07-04 2013-11-13 复旦大学 一种弹性导电纤维的制备方法
CN103400702A (zh) * 2013-07-04 2013-11-20 复旦大学 一种弹性的同轴线状超级电容器及其制备方法
WO2014135877A1 (en) * 2013-03-06 2014-09-12 Brunel University Supercapacitor
CN104252973A (zh) * 2014-09-04 2014-12-31 复旦大学 一种可变色的纤维状超级电容器及其制备方法
CN104992844A (zh) * 2015-06-24 2015-10-21 复旦大学 一种可拼接的超级电容器及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014135877A1 (en) * 2013-03-06 2014-09-12 Brunel University Supercapacitor
CN103390467A (zh) * 2013-07-04 2013-11-13 复旦大学 一种弹性导电纤维的制备方法
CN103400702A (zh) * 2013-07-04 2013-11-20 复旦大学 一种弹性的同轴线状超级电容器及其制备方法
CN104252973A (zh) * 2014-09-04 2014-12-31 复旦大学 一种可变色的纤维状超级电容器及其制备方法
CN104992844A (zh) * 2015-06-24 2015-10-21 复旦大学 一种可拼接的超级电容器及其制备方法

Also Published As

Publication number Publication date
CN105428090A (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
Hu et al. MXene-coated silk-derived carbon cloth toward flexible electrode for supercapacitor application
Wang et al. Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites
Li et al. High‐performance polypyrrole/graphene/SnCl2 modified polyester textile electrodes and yarn electrodes for wearable energy storage
Yang et al. A highly stretchable, fiber‐shaped supercapacitor
Lv et al. Nanocarbon‐based materials for flexible all‐solid‐state supercapacitors
Sun et al. Electrochemical capacitors with high output voltages that mimic electric eels
Yun et al. Layer-by-layer assembly of reduced graphene oxide and MXene nanosheets for wire-shaped flexible supercapacitors
Li et al. New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors
Meng et al. Enhancing electrochemical performance of graphene fiber-based supercapacitors by plasma treatment
Lee et al. Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries
Singh et al. Embedded PEDOT: PSS/AgNFs network flexible transparent electrode for solid-state supercapacitor
Liu et al. Nanostructured graphene composite papers for highly flexible and foldable supercapacitors
Miao et al. Polyaniline-coated electrospun carbon nanofibers with high mass loading and enhanced capacitive performance as freestanding electrodes for flexible solid-state supercapacitors
Kumar et al. Flexible, large-area, all-solid-state supercapacitors using spray deposited PEDOT: PSS/reduced-graphene oxide
Pan et al. Novel wearable energy devices based on aligned carbon nanotube fiber textiles
Niu et al. A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes
Dai et al. A Flexible micro-supercapacitor based on a pen ink-carbon fiber thread
Cao et al. Boosting supercapacitor performance of carbon fibres using electrochemically reduced graphene oxide additives
Xiong et al. Graphene nanopetal wire supercapacitors with high energy density and thermal durability
Du et al. Ultrahigh‐Strength Ultrahigh Molecular Weight Polyethylene (UHMWPE)‐Based Fiber Electrode for High Performance Flexible Supercapacitors
Ye et al. A knittable fibriform supercapacitor based on natural cotton thread coated with graphene and carbon nanoparticles
Wang et al. A consecutive spray printing strategy to construct and integrate diverse supercapacitors on various substrates
CN104240973A (zh) 一种透明、柔性的超级电容器织物及其制备方法
WO2012135238A1 (en) Method to increase the capacitance of electrochemical carbon nanotube capacitors by conformal deposition of nanoparticles
Dong et al. Vertically aligned carbon nanotubes/graphene hybrid electrode as a TCO-and Pt-free flexible cathode for application in solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant