CN105406716B - 用于单有源桥转换器的系统和方法 - Google Patents

用于单有源桥转换器的系统和方法 Download PDF

Info

Publication number
CN105406716B
CN105406716B CN201510452908.0A CN201510452908A CN105406716B CN 105406716 B CN105406716 B CN 105406716B CN 201510452908 A CN201510452908 A CN 201510452908A CN 105406716 B CN105406716 B CN 105406716B
Authority
CN
China
Prior art keywords
diode
coupled
switch
switching device
secondary coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510452908.0A
Other languages
English (en)
Other versions
CN105406716A (zh
Inventor
S.F.S.埃尔-巴巴里
S.H.施拉姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Technology AG
Original Assignee
ABB Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Schweiz AG filed Critical ABB Schweiz AG
Publication of CN105406716A publication Critical patent/CN105406716A/zh
Application granted granted Critical
Publication of CN105406716B publication Critical patent/CN105406716B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop

Abstract

提供了一种单有源桥转换器(101)。单有源桥转换器包括:包括初级线圈(110)和次级线圈(112)的变压器(106);电耦合到初级线圈并且包括H桥电路(114)的初级侧电路(102);以及电耦合到次级线圈的次级侧电路(104),次级侧电路包括配置成选择性地使变压器次级线圈短路的开关(200,302,402,902)。

Description

用于单有源桥转换器的系统和方法
背景技术
本发明的领域一般涉及功率转换器,并且更具体地说,涉及单有源桥功率转换器。
鲁棒的功率系统允许向一个或更多个负载供应功率。此类功率系统可包括发电,输电,功率变换和转换的组合以供应用于电、光、机械和/或核应用和负载的能量。在实现功率系统和体系结构时,实际考虑包括成本、大小、可靠性和实现的简便性。
至少一些功率系统包括诸如交流(AC)到直流(DC)转换器、DC到DC转换器、DC到AC转换器和AC到AC转换器的功率转换器。图1是已知的DC到DC功率转换系统10的电路图,该系统10包括单有源桥转换器11(即,仅在一侧上包括H桥的转换器)。具体而言,转换器11包括通过变压器16耦合到次级侧14的初级侧12。初级侧12包括H桥20,但次级侧14不包括任何有源组件。相应地,转换器11不是双向的。
此外,为确保转换器11的适当操作,变压器16较大,导致转换器11具有较高成本和较大的占用面积(footprint)。具体而言,变压器匝数比设计成在降压操作中操作,并且不反映在初级与次级侧之间的电压比。相应地,比较大的无功功率由变压器吸收,阻止最佳有功/视在功率比,并且要求较大的变压器。
发明内容
一方面,提供了一种单有源桥转换器。单有源桥转换器包括:包括初级线圈和次级线圈的变压器;电耦合到初级线圈并且包括H桥电路的初级侧电路;以及电耦合到次级线圈的次级侧电路,次级侧电路包括配置成选择性地使变压器次级线圈短路的开关。
另一方面,提供了一种功率转换系统。功率转换系统包括电源、负载和耦合在电源与负载之间的单有源桥转换器。单有源桥转换器包括:包括初级线圈和次级线圈的变压器;电耦合到初级线圈并且包括H桥电路的初级侧电路;以及电耦合到次级线圈的次级侧电路,次级侧电路包括配置成选择性地使变压器次级线圈短路的开关。
在又一方面,提供了一种用于操作功率转换系统的方法。方法包括:在电源与负载之间电耦合单有源桥转换器,单有源桥转换器包括具有初级线圈和次级线圈的变压器、电耦合到初级线圈并且具有H桥电路的初级侧电路以及电耦合到次级线圈的次级侧电路;并且操作开关以选择性地使变压器次级线圈短路。
技术方案1:一种单有源桥转换器,包括:
变压器,包括初级线圈和次级线圈;
电耦合到所述初级线圈并且包括H桥电路的初级侧电路;以及
电耦合到所述次级线圈的次级侧电路,所述次级侧电路包括配置成选择性地使所述变压器次级线圈短路的开关。
技术方案2:如技术方案1所述的单有源桥转换器,其中所述次级线圈包括第一端和第二端,并且其中所述开关电耦合在所述第一端与第二端之间。
技术方案3:如技术方案1所述的单有源桥转换器,其中所述开关包括:
第一二极管;
与所述第一二极管串联电耦合的第二二极管;
与所述第一二极管并联电耦合的第一开关装置;以及
与所述第二二极管并联电耦合的第二开关装置,其中所述开关可操作以在通过所述第一二极管和所述第二开关装置的第一方向上以及在通过所述第二二极管和所述第一开关装置的第二方向上传导电流,以及其中所述第二方向与所述第一方向相反。
技术方案4:如技术方案4所述的单有源桥转换器,其中所述第一开关装置和第二开关装置至少之一是IGBT。
技术方案5:如技术方案4所述的单有源桥转换器,其中在相反的方向上偏置所述第一二极管和第二二极管。
技术方案6:如技术方案1所述的单有源桥转换器,其中所述开关包括:
第一电流路径,包括与第二二极管串联的第一二极管;
第二电流路径,包括与第四二极管串联的第三二极管,其中所述第二电流路径与所述第一电流路径并联电耦合;以及
电耦合在第一节点与第二节点之间的开关装置,其中所述第一节点定位在所述第一二极管与第二二极管之间,并且其中所述第二节点定位在所述第三二极管与第四二极管之间。
技术方案7:如技术方案6所述的单有源桥转换器,其中所述开关装置是IGBT。
技术方案8:如技术方案1所述的单有源桥转换器,其中所述单有源桥转换器包括直流(DC)到DC转换器。
技术方案9:一种功率转换系统,包括:
电源;
负载;以及
耦合在所述电源与所述负载之间的单有源桥转换器,所述单有源桥转换器包括:
变压器,包括初级线圈和次级线圈;
电耦合到所述初级线圈并且包括H桥电路的初级侧电路;以及
电耦合到所述次级线圈的次级侧电路,所述次级侧电路包括配置成选择性地使所述变压器次级线圈短路的开关。
技术方案10:如技术方案9所述的功率转换系统,还包括以通信方式耦合到所述开关的控制器,所述控制器可操作以控制所述开关以选择性地使所述变压器次级线圈短路。
技术方案11:如技术方案9所述的功率转换系统,其中所述次级线圈包括第一端和第二端,并且其中所述开关电耦合在所述第一端与第二端之间。
技术方案12:如技术方案9所述的功率转换系统,其中所述开关包括:
第一二极管;
与所述第一二极管串联电耦合的第二二极管;
与所述第一二极管并联电耦合的第一开关装置;
与所述第二二极管并联电耦合的第二开关装置,其中所述开关可操作以在通过所述第一二极管和所述第二开关装置的第一方向上以及在通过所述第二二极管和所述第一开关装置的第二方向上传导电流,以及其中所述第二方向与所述第一方向相反。
技术方案13:如技术方案12所述的功率转换系统,其中所述第一开关装置和第二开关装置至少之一是IGBT。
技术方案14:如技术方案12所述的功率转换系统,其中在相反的方向上偏置所述第一二极管和第二二极管。
技术方案15:如技术方案9所述的功率转换系统,其中所述开关包括:
第一电流路径,包括与第二二极管串联的第一二极管;
第二电流路径,包括与第四二极管串联的第三二极管,其中所述第二电流路径与所述第一电流路径并联电耦合;以及
电耦合在第一节点与第二节点之间的开关装置,其中所述第一节点定位在所述第一二极管与第二二极管之间,并且其中所述第二节点定位在所述第三二极管与第四二极管之间。
技术方案16:如技术方案15所述的功率转换系统,其中所述开关装置是IGBT。
技术方案17:如技术方案9所述的功率转换系统,其中所述电源是直流(DC)电源,并且其中所述单有源桥转换器包括直流(DC)到DC转换器。
技术方案18:一种用于操作功率转换系统的方法,所述方法包括:
在电源与负载之间电耦合单有源桥转换器,所述单有源桥转换器包括:具有初级线圈和次级线圈的变压器;电耦合到所述初级线圈并且具有H桥电路的初级侧电路;以及电耦合到所述次级线圈的次级侧电路;以及
操作开关以选择性地使所述变压器次级线圈短路。
技术方案19:如技术方案18所述的方法,其中操作开关包括操作包含以下组件的开关:第一电极;与所述第一电极串联电耦合的第二电极;与所述第一二极管并联电耦合的第一开关装置;以及与所述第二二极管并联电耦合的第二开关装置,其中所述开关可操作以在通过所述第一二极管和所述第二开关装置的第一方向上以及在通过所述第二二极管和所述第一开关装置的第二方向上传导电流,以及其中所述第二方向与所述第一方向相反。
技术方案20:如技术方案18所述的方法,其中操作开关包括操作包含以下组件的开关:第一电流路径,包括与第二二极管串联的第一二极管;第二电流路径,包括与第四二极管串联的第三二极管,其中所述第二电流路径与所述第一电流路径并联电耦合;以及电耦合在第一节点与第二节点之间的开关装置,其中所述第一节点定位在所述第一二极管与第二二极管之间,并且其中所述第二节点定位在所述第三二极管与第四二极管之间。
附图说明
图1是已知功率转换系统的电路图。
图2是示范功率转换系统的电路图。
图3是备选示范功率转换系统的电路图。
图4是备选示范功率转换系统的电路图。
图5是绘出用于已知单有源桥转换器的电压与功率的曲线图。
图6是绘出用于示范单有源桥转换器的电压与功率的曲线图。
图7是绘出用于已知单有源桥转换器的电压与峰值电流的曲线图。
图8是绘出用于示范单有源桥转换器的电压与峰值电流的曲线图。
图9是备选示范功率转换系统的电路图。
图10是备选示范功率转换系统的电路图。
具体实施方式
提供了单有源桥转换器的示范实施例。单有源桥转换器包括使用变压器相互电耦合的初级侧电路和次级侧电路。次级侧电路包括配置成选择性使变压器次级线圈短路的开关,从而提供优于至少一些已知单有源桥转换器的性能改进。
图2是包括单有源桥(SAB)转换器101的示范功率转换系统100的电路图。如本文中使用的,“单有源桥转换器”指只在一侧上包括H桥或H桥电路的转换器。也就是说,单有源桥转换器的一侧不包括H桥。此外,在“单有源桥转换器”中的术语“有源”仅指在转换器中有源(与无源相反)组件的使用,并且不暗示或要求转换器实际上当前在操作状态中运行。另外,术语“H桥”或“H桥电路”指包括四个(例如,固态或机械)开关的电路。具体而言,布置了四个开关,使得第一开关和第二开关串联电耦合,第三开关和第四开关串联电耦合,并且电连接在位于第一开关与第二开关之间的第一节点与位于第三开关与第四开关之间的第二节点之间延伸。
在示范实施例中,转换器101包括初级侧102和次级侧104(在本文中也称为初级侧电路和次级侧电路)。变压器106耦合在初级102与次级侧104之间。在示范实施例中,转换器101是直流(DC)到DC转换器。备选地,转换器101可以是如本文中所述运行的任何类型的转换器。施加到变压器106的泄漏电感的在初级侧102上的电压与在次级侧104上的电压之间的差驱动电流,并且确定转换器101的输出功率。
变压器106包括耦合到初级侧102的初级线圈110和耦合到次级侧104的次级线圈112。初级侧102包括由第一开关116、第二开关118、第三开关120和第四开关122形成的H桥114。在示范实施例中,每个开关116、118、120和122包括在绝缘栅双极晶体管(IGBT) 126的集电极与发射极之间电耦合的二极管124。备选地,每个开关116、118、120和122可以是使转换器101能够如本文中所述运行的任何开关装置。
在示范实施例中,初级线圈110包括第一端130和第二端132。第一端130电耦合到在第一开关116与第二开关118之间的第一节点134,并且第二端132电耦合到在第三开关120与第四开关122之间的第二节点136。初级侧102还包括与第一开关116和第二开关118的串联连接以及第三开关120和第四开关122的串联连接并联电耦合的第一电容器138。
如图2所示,系统100包括耦合到初级侧102的多个电池140(即,电源)。电池140提供DC电压到初级侧102。一对断路器142在电池140与H桥114之间电耦合。例如响应于故障的检测,断路器使电池140与H桥114能够断开电连接。
通过选择性断开和/或闭合开关116、118、120和122,跨初级线圈110的电压和通过初级线圈110的电流能够得到控制。在示范实施例中,每个开关116、118、120和122的状态(即,断开或闭合)由以通信方式耦合到开关116、118、120和122的控制器150控制。
在示范实施例中,控制器150由以通信方式耦合到存储器装置154以便执行指令的处理器152实现。在一些实施例中,可执行指令存储在存储器装置154中。备选地,控制器150可使用使控制器150能够控制转换器101的操作的任何电路实现。
在示范实施例中,控制器150通过对处理器152进行编程来执行本文中所述一个或更多个操作。例如,通过将操作编码为一个或更多个可执行指令并且通过提供存储器装置154中的可执行指令,可对处理器152进行编程。处理器152可包括一个或更多个处理单元(例如,在多核配置中)。此外,处理器152可使用一个或更多个异构处理器系统实现,系统中主处理器与辅助处理器存在于单个芯片上。作为另一说明性示例,处理器152可以是包含相同类型的多个处理器的对称多核处理器系统。此外,处理器152可使用任何适合的可编程电路实现,可编程电路包括一个或更多个系统和微控制器、微处理器、精简指令集电路(RISC)、专用集成电路(ASIC)、可编程逻辑电路、现场可编程门阵列(FPGA)以及能够执行本文中所述功能的任何其它电路。
在示范实施例中,存储器装置154是允许存储和检索诸如可执行指令和/或其它数据的信息的一个或更多个装置。存储器装置154可包括一个或更多个计算机可读媒体,诸如但不限于动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、固态盘和/或硬盘。存储器装置154可配置成存储应用源代码、应用目标代码、感兴趣的源代码部分、感兴趣的目标代码部分、配置数据、执行事件和/或任何其它类型的数据,但不限于此。
在示范实施例中,次级侧104包括第一二极管160、第二二极管162、第三二极管164和第四二极管166。在相同方向上偏置第一二极管160和第二二极管162,并且在相同方向上偏置第三二极管164和第四二极管166。类似于初级线圈110,变压器106的次级线圈112包括第一端170和第二端172。第一端170电耦合到在第一二极管160与第二二极管162之间的第三节点174,并且第二端172电耦合到在第三二极管164与第四二极管166之间的第四节点176。次级侧104还包括与第三二极管164和第四二极管166并联电耦合的第二电容器180。此外,负载182耦合到次级侧104。具体而言,负载182与第二电容器180并联电耦合。
如图2所示,在示范实施例中,次级侧104包括开关200。如本文中详细所述,开关200便于在零向量状态(即,在次级侧104上DC电压基本上为零的状态)中操作次级侧104。
如图2所示,开关200包括与第二二极管162并联电耦合的第一开关装置202以及与第四二极管166并联电耦合的第二开关装置204。在示范实施例中,第一开关装置202和第二开关装置204是IGBT。备选地,第一开关装置202和第二开关装置204可以是使系统100能够如本文中所述运行的任何开关组件。
在示范实施例中,控制器150以通信方式耦合到第一开关装置202和第二开关装置204。相应地,控制器150控制第一开关装置202和第二开关装置204每个是在断开状态还是闭合状态。
在第一开关装置202和第二开关装置204之一闭合时,第二二极管162和第四二极管166中的相关联二极管被旁路,其中形成通过第一开关装置202和第二开关装置204中的闭合开关装置的电流路径。例如,在第一开关装置202闭合的情况下,电流在从第一开关装置202的集电极到发射极并且通过第四二极管166的第一方向上流动。另一方面,在第二开关装置204闭合的情况下,电流在从第二开关装置202的集电极到发射极并且通过第一二极管162的第二相反方向上流动。相应地,能够在任一方向上选择性地流动电流。此功能性称为零向量。此外,闭合第一开关装置202和第二开关装置204使次级线圈112短路,因为第一端170和第二端172相互直接连接。在第一端170和第二端172相互连接的情况下,跨次级线圈112施加的电压基本上为零。
在示范实施例中,第一开关装置202和第二开关装置204分别与第二二极管162和第四二极管166并联电耦合。备选地,为了实现等同的功能性,第一开关装置202和第二开关装置204可分别与第一二极管160和第三二极管164并联电耦合。
图3是包括单有源桥(SAB)转换器301的备选示范功率转换系统300的电路图。除非另有指示,否则,系统300和转换器301包括与系统100和转换器101(均在图2中示出)相同的组件,并且基本上类似于系统100和转换器101。
如图3所示,次级侧104包括开关302,开关302包括与第二电流路径306并联的第一电流路径304。第一电流路径304包括与第二二极管310串联的第一二极管308,并且第二电流路径306包括与第四二极管314串联的第三二极管312。在相反方向上偏置第一二极管308和第二二极管310,并且在相反方向上偏置第三二极管312和第四二极管314。
开关302的第一节点320电耦合到次级线圈112的第一端170。第一节点320定位在第一二极管308与第三二极管312之间。开关302的第二节点322电耦合到次级线圈112的第二端172。第二节点322定位在第二二极管310与第四二极管314之间。
开关装置330耦合在第三节点332与第四节点334之间。第三节点332定位在第一二极管308与第二二极管310之间,并且第四节点334定位在第三二极管312与第四二极管314之间。在示范实施例中,开关装置330是具有耦合到第三节点332的集电极以及耦合到第四节点334的发射极的IGBT。备选地,开关装置330可以是使系统300能够如本文中所述运行的任何开关装置。
在示范实施例中,控制器150以通信方式耦合到开关装置330。相应地,控制器150控制开关装置330是在断开状态还是闭合状态。
当开关装置330闭合时,形成从第一端170,通过第一二极管308,通过开关装置330,通过第四二极管314到第二端172的电流路径。相应地,闭合开关装置330使次级线圈112短路,因为第一端170和第二端172相互直接连接。在第一端170和第二端172相互连接的情况下,跨次级线圈112施加的电压基本上为零。
图4是包括单有源桥(SAB)转换器401的备选示范功率转换系统400的电路图。除非另外指示,否则,系统400和转换器401包括与系统100和转换器101(均在图2中示出)相同的组件,并且基本上类似于系统100和转换器101。
如图4所示,次级侧104包括在第一端170与第二端172之间电耦合的开关402。开关402串联包括与第一二极管406并联的第一开关装置404以及与第二二极管410并联的第二开关装置408。在相反方向上偏置第一二极管406和第二二极管410。
在示范实施例中,第一开关装置404和第二开关装置408各自是具有耦合在晶体管的集电极与发射极之间的关联的二极管406与410的IGBT。备选地,第一开关装置404和第二开关装置408可以是使系统400能够如本文中所述运行的任何开关装置。
控制器150以通信方式耦合到第一开关装置404和第二开关装置408。相应地,控制器150控制第一开关装置404和第二开关装置408是在断开状态还是闭合状态。
在第一开关装置404和第二开关装置408之一闭合时,形成从第一端170通过第一开关装置404和第二开关装置408之一,旁路第一二极管406和第二二极管410之一,到第二端172的电流路径。例如,闭合第一开关装置404使电流在通过第二二极管410并且从第一开关装置404的集电极到发射极的第一方向上流动。另一方面,闭合第二开关装置408促使电流在通过第一二极管406并且从第二开关装置408的集电极到发射极的第二相反方向上流动。相应地,闭合第一开关装置404和第二开关装置408之一使次级线圈112短路,因为第一端170和第二端172相互直接连接。在第一端170和第二端172相互连接的情况下,跨次级线圈112施加的电压基本上为零。
如上所述,使用诸如开关200、302或402的开关使次级侧104能够在零向量状态中操作,从而提供优于至少一些已知单有源桥转换器的优点。在本文中所述特定实施例中,开关位于转换器的次级侧上。备选地,在一些实施例中,开关位于转换器的初级侧上,或者跨变压器106的三级线圈(未示出)。
图5是绘出用于诸如单有源桥转换器11(图1中示出)的已知单有源桥转换器的初级电压与传输功率能力的曲线图502。与此相比,图6是绘出用于诸如转换器101的改进的单有源桥转换器的初级电压与传输功率能力的曲线图504。如通过图5和6的比较所展示的,转换器11要求比转换器101基本上更大的变压器设计以实现与转换器101类似的功率传输能力。例如,转换器11具有L=27µH的电感和n=1/17的匝数比,而转换器101具有L=70µH的电感和n=1/11的匝数比。
另外,转换器101能够基本上类似于双有源桥转换器(即,在两侧上均包括H桥的转换器)进行操作。然而,不同于双有源桥转换器,转换器101利用两个有源组件(第一开关装置202和第二开关装置204),与双有源桥转换器的次级侧H桥中的四个有源组件相反。
图7是绘出用于诸如单有源桥转换器11(图1中示出)的已知单有源桥转换器的电压与峰值电流的曲线图602。与此相比,图8是绘出用于诸如转换器101的改进的单有源桥转换器的电压与峰值电流的曲线图604。相应地,曲线图602与曲线图502相关联,并且曲线图604与曲线图504相关联。如通过图7和8的比较所展示的,对于通过转换器传输的相同有功功率,转换器101具有比转换器11基本上更低的峰值电流。高峰值电流影响装置选择、冷却、变压器额定值等。相应地,与转换器11相比,用于相同有功功率传输的转换器101的更低峰值电流是有利的。
图9是包括单有源桥(SAB)转换器901的备选示范功率转换系统900的电路图。除非另外指示,否则,系统900和转换器901包括与系统100和转换器101(均在图2中示出)相同的组件,并且基本上类似于系统100和转换器101。值得注意的是,转换器101比转换器301(图3中示出)和转换器401(图1中示出)利用更少的有源和无源装置。
如图9所示,次级侧104包括开关902,开关902包括耦合在第一二极管160、第二二极管162、第三二极管164与第四二极管166之间的开关装置904。具体而言,开关装置904电耦合在第五节点906(定位在第一二极管160与第三二极管164之间)与第六节点908(定位在第二二极管162与第四二极管166)之间。在示范实施例中,开关装置904是具有耦合到第五节点906的集电极以及耦合到第六节点908的发射极的IGBT。备选地,开关装置904可以是使系统300能够如本文中所述运行的任何开关装置。
次级侧104还包括在第五节点906与第二端172之间串联电耦合的第一电容器912和第五二极管910,以及在第六节点908与第二端172之间串联电耦合的第二电容器916和第六二极管914。在示范实施例中,控制器150以通信方式耦合到开关装置904。相应地,控制器150控制开关装置904是在断开状态还是闭合状态。
当开关装置904闭合时,形成从第一端170,通过第一二极管160,通过开关装置904,通过第四二极管166到第二端172的电流路径。相应地,闭合开关装置330使次级线圈112短路,因为第一端170和第二端172相互直接连接。在第一端170和第二端172相互连接的情况下,跨次级线圈112施加的电压基本上为零。
图10是包括单有源桥(SAB)转换器1001的备选示范功率转换系统1000的电路图。除非另外指示,否则,系统1000和转换器1001包括与系统900和转换器901(均在图9中示出)相同的组件,并且基本上类似于系统1000和转换器1001。
与转换器901比较,转换器1001包括在初级侧102上另外的AC开关1002。AC开关1002串联包括与第一二极管1006并联的第一开关装置1004和与第二二极管1010并联的第二开关装置1008。在相反方向上偏置第一二极管1006和第二二极管1010。在示范实施例中,转换器1001还包括与第六二极管914并联耦合的电阻器1020和电容器1022。
在示范实施例中,第一开关装置1004和第二开关装置1008各自是具有耦合在晶体管的集电极与发射极之间的关联的二极管1006与1010的IGBT。备选地,第一开关装置1004和第二开关装置1008可以是使系统1000能够如本文中所述运行的任何开关装置。
控制器150以通信方式耦合到第一开关装置1004和第二开关装置1008。相应地,控制器150控制第一开关装置1004和第二开关装置1008是在断开状态还是闭合状态。
当第一开关装置1004和第二开关装置1008之一闭合时,形成从第一端130通过第一开关装置1004和第二开关装置1008之一,旁路第一二极管1006和第二二极管1010之一,到第二端132的电流路径。例如,闭合第一开关装置1004促使电流在通过第二二极管1010并且从第一开关装置1004的集电极到发射极的第一方向上流动。另一方面,闭合第二开关装置1008促使电流在通过第一二极管1006,并且从第二开关装置1008的集电极到发射极的第二相反方向上流动。相应地,闭合第一开关装置1004和第二开关装置1008之一使初级线圈110短路,因为第一端130和第二端132相互直接连接。在第一端130和第二端132相互连接的情况下,跨初级线圈110施加的电压基本上为零。这提供了用于电磁干扰目的的优点。
与至少一些已知单有源桥转换器相比,本文中所述单有源桥转换器利用更小的变压器,具有更低峰值电流,并且具有改进的功率能力。此外,虽然比双有源桥转换器使用更少的有源组件,但本文中所述单有源桥转换器类似于双有源桥转换器执行。另外,本文中所述单有源桥转换器可在多种应用中实现,包括运输业应用、配电应用、海底电力应用以及可再生能源应用。
上面详细描述了用于单有源桥转换器的系统和方法的示范实施例。系统和方法不限于本文所述的特定实施例,而是,系统的组件和/或方法的操作可与本文所述的其它组件和/或操作独立并且分离地利用。此外,所述组件和/或操作也可在其它系统、方法和/或装置中定义或与其组合使用,并且不限于仅通过本文中所述的系统实践。
除非另有说明,否则,在本文中所示和所述的本发明的实施例中的操作的执行或进行的顺序不是必需的。也就是说,除非另有说明,否则,操作可按任何顺序执行,并且本发明的实施例可包括另外的操作或比本文中公开的操作更少的操作。例如,预期特定操作在另一操作之前、同时或之后执行或运行是在本发明的方面的范围内。
虽然本发明的各种实施例的特定特征可在一些附图中示出而未在其它附图中示出,但这只是为方便起见。根据本发明的原理,可与任何其它附图的任何特征组合地引用和/或要求保护附图的任何特征。
此书面描述使用示例来公开本发明(包括最佳模式),并且也使得本领域的任何技术人员能够实践本发明,包括制作和使用任何装置或系统并执行任何包含的方法。本发明可取得专利的范围由权利要求定义,并且可包括本领域技术人员想到的其它示例。如果此类其它示例具有与权利要求的字面语言没有不同的结构元素,或者如果它们包括具有与权利要求的字面语言没有实质不同的等同结构元素,则它们预期在权利要求的范围内。
附图标记说明
10  功率转换系统
11  转换器
12  初级侧
14  次级侧
16  变压器
20  H桥
100  功率转换系统
101  转换器
102  初级侧
104  次级侧
106  变压器
110  初级线圈
112  次级线圈
114  H桥
116  第一开关
118  第二开关
120  第三开关
122  第四开关
124  二极管
126  IGBT
130  第一端
132  第二端
134  第一节点
136  第二节点
138  第一电容器
140  电池
142  断路器
150  控制器
152  处理器
154  存储器装置
160  第一二极管
162  第二二极管
164  第三二极管
166  第四二极管
170  第一端
172  第二端
174  第三节点
176  第四节点
180  第二电容器
182  负载
200  开关
202  第一开关装置
204  第二开关装置
300  功率转换系统
301  转换器
302  开关
304  第一电流路径
306  第二电流路径
308  第一二极管
310  第二二极管
312  第三二极管
314  第四二极管
320  第一节点
322  第二节点
330  开关装置
332  第三节点
334  第四节点
400  功率转换系统
401  转换器
402  开关
404  第一开关装置
406  第一二极管
408  第二开关装置
410  第二二极管
502  曲线图
504  曲线图
602  曲线图
604  曲线图
900  功率转换系统
901  转换器
902  开关
904  开关装置
906  第五节点
908  第六节点
910  第五二极管
912  第一电容器
914  第六二极管
916  第二电容器
1000 功率转换系统
1001 转换器
1002 AC开关
1004 第一开关装置
1006 第一二极管
1008 第二开关装置
1010 第二二极管
1020 电阻器
1022 电容器

Claims (6)

1.一种单有源桥转换器,包括:
变压器,包括初级线圈和次级线圈;
电耦合到所述初级线圈并且包括H桥电路的初级侧电路;以及
电耦合到所述次级线圈的次级侧电路,所述次级侧电路包括:
开关,其耦合到所述次级线圈,所述开关经配置以选择性的短路所述次级线圈,所述开关包括:
串联耦合的第一二极管和第二二极管,其中所述次级线圈的第一侧耦合到界定于所述串联耦合的第一二极管和第二二极管之间的第一节点;
串联耦合的第三二极管和第四二极管,其中所述次级线圈的第二侧耦合到界定于所述串联耦合的第三二极管和第四二极管之间的第二节点;以及
开关装置,其电耦合在界定于所述第一二极管和所述第三二极管之间的第三节点与界定于所述第二二极管和所述第四二极管之间的第四节点之间,其中当所述开关装置闭合时,所述开关装置被配置成使施加在所述次级线圈上的电压为零;以及
无源电路,其耦合到所述次级线圈的输出,所述无源电路包括:
第五二极管,其串联电耦合到第一电容器,所述串联耦合的第五二极管和第一电容器在第一侧直接连接到界定于所述第三节点处的所述开关的输出,并且在第二侧耦合到所述次级线圈的所述第二侧;以及
第六二极管,其串联电耦合到第二电容器,所述串联耦合的第六二极管和第二电容器在第一侧直接连接到界定于所述第四节点处的所述开关的输出,并且在第二侧耦合到所述次级线圈的所述第二侧。
2.如权利要求1所述的单有源桥转换器,其中所述次级线圈包括第一端和第二端,并且其中所述开关电耦合在所述第一端与第二端之间。
3.如权利要求1所述的单有源桥转换器,其中所述开关装置是IGBT。
4.如权利要求1所述的单有源桥转换器,其中所述单有源桥转换器包括直流(DC)到DC转换器。
5.一种功率转换系统,包括:
电源;
负载;以及
耦合在所述电源与所述负载之间的单有源桥转换器,所述单有源桥转换器包括:
变压器,包括初级线圈和次级线圈;
电耦合到所述初级线圈并且包括H桥电路的初级侧电路;以及
电耦合到所述次级线圈的次级侧电路,所述次级侧电路包括:
开关,其耦合到所述次级线圈,所述开关经配置以选择性的短路所述次级线圈,所述开关包括:
串联耦合的第一二极管和第二二极管,其中所述次级线圈的第一侧耦合到界定于所述串联耦合的第一二极管和第二二极管之间的第一节点;
串联耦合的第三二极管和第四二极管,其中所述次级线圈的第二侧耦合到界定于所述串联耦合的第三二极管和第四二极管之间的第二节点;以及
开关装置,其电耦合在界定于所述第一二极管和所述第三二极管之间的第三节点与界定于所述第二二极管和所述第四二极管之间的第四节点之间,其中当所述开关装置闭合时,所述开关装置被配置成使施加在所述次级线圈上的电压为零;以及
无源电路,其耦合到所述次级线圈的输出,所述无源电路包括:
第五二极管,其串联电耦合到第一电容器,所述串联耦合的第五二极管和第一电容器在第一侧直接连接到界定于所述第三节点处的所述开关的输出,并且在第二侧耦合到所述次级线圈的所述第二侧;以及
第六二极管,其串联电耦合到第二电容器,所述串联耦合的第六二极管和第二电容器在第一侧直接连接到界定于所述第四节点处的所述开关的输出,并且在第二侧耦合到所述次级线圈的所述第二侧。
6.如权利要求5所述的功率转换系统,还包括以通信方式耦合到所述开关的控制器,所述控制器可操作以控制所述开关以选择性地使所述变压器次级线圈短路。
CN201510452908.0A 2014-07-30 2015-07-29 用于单有源桥转换器的系统和方法 Active CN105406716B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/447,189 US10305387B2 (en) 2014-07-30 2014-07-30 Systems and methods for single active bridge converters
US14/447189 2014-07-30

Publications (2)

Publication Number Publication Date
CN105406716A CN105406716A (zh) 2016-03-16
CN105406716B true CN105406716B (zh) 2020-03-17

Family

ID=53546155

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510452908.0A Active CN105406716B (zh) 2014-07-30 2015-07-29 用于单有源桥转换器的系统和方法

Country Status (3)

Country Link
US (1) US10305387B2 (zh)
EP (1) EP2980976B1 (zh)
CN (1) CN105406716B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11081968B2 (en) * 2019-06-12 2021-08-03 Delta Electronics, Inc. Isolated boost converter
US11548397B2 (en) * 2020-09-29 2023-01-10 GM Global Technology Operations LLC Electric powertrain with battery system having a three-state high-voltage contactor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102801328A (zh) * 2011-05-26 2012-11-28 日立电脑机器股份有限公司 电源装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4564895A (en) 1983-09-12 1986-01-14 Sundstrand Corporation Neutrally clamped PWM half-bridge inverter
US4541288A (en) 1983-10-27 1985-09-17 General Electric Company Operating circuit for magnetoelastic force/pressure sensors
US7145787B2 (en) 1994-04-26 2006-12-05 Comarco Wireless Technologies, Inc. Programmable power supply
US5710698A (en) 1994-09-30 1998-01-20 Lockheed Martin Energy Systems, Inc. Delta connected resonant snubber circuit
DE69524572T2 (de) 1995-04-28 2002-08-22 St Microelectronics Srl Leseverstärkerschaltung für Halbleiterspeicheranordnungen
DE19823917A1 (de) 1997-06-03 1998-12-10 Fuji Electric Co Ltd Stromrichtervorrichtung
US5892666A (en) 1998-03-31 1999-04-06 Gucyski; Jeff Push-pull switching power supply having increased efficiency and incorporating power factor correction
AU2002363744A1 (en) 2001-11-13 2003-05-26 Synqor, Inc. Half-bridge isolation stage topologies
DE10200827A1 (de) 2002-01-11 2003-07-24 Philips Intellectual Property Verfahren zum Steuern einer Schaltungsanordnung für die Wechselspannungsversorgung eines Plasma-Display-Panels
US6937483B2 (en) 2002-01-16 2005-08-30 Ballard Power Systems Corporation Device and method of commutation control for an isolated boost converter
CN100364200C (zh) 2004-02-12 2008-01-23 三菱电机株式会社 功率变换器
US7782639B2 (en) 2004-02-24 2010-08-24 Vlt, Inc. Adaptively configured and autoranging power converter arrays
US7106605B2 (en) * 2004-06-30 2006-09-12 General Motors Corporation DC converter circuit with overshoot protection
FR2900513B1 (fr) 2006-04-26 2010-05-21 Thales Sa Dispositif de transfert de puissance isole perfectionne
EP2294685A4 (en) 2008-05-05 2014-03-05 Xantrex Technology Inc METHOD AND APPARATUS FOR CONVERTING CONTINUOUS CURRENT INTO AN ALTERNATING CURRENT
ATE545190T1 (de) * 2008-07-09 2012-02-15 Sma Solar Technology Ag Dc/dc-wandler
EP2144359A2 (de) * 2008-07-09 2010-01-13 SMA Solar Technology AG DC/DC- Wandler
CA2836980C (en) 2011-06-24 2020-11-17 L-3 Communications Magnet-Motor Gmbh Galvanically isolated dc/dc converter and method of controlling a galvanically isolated dc/dc converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102801328A (zh) * 2011-05-26 2012-11-28 日立电脑机器股份有限公司 电源装置

Also Published As

Publication number Publication date
EP2980976A1 (en) 2016-02-03
US10305387B2 (en) 2019-05-28
EP2980976B1 (en) 2022-04-20
CN105406716A (zh) 2016-03-16
US20160036338A1 (en) 2016-02-04

Similar Documents

Publication Publication Date Title
US10637371B2 (en) Interface arrangement between an alternating current power system and a direct current power system with control of converter valve for fault protection
US9966875B2 (en) Five-level topology units and inverter thereof
KR102614468B1 (ko) 전원 공급 시스템 및 에너지 저장 시스템
CN102007677A (zh) 双向dc/dc变换器和电力调节器
EP3416278B1 (en) Power conversion device
US20140347898A1 (en) Modular multi-level power conversion system with dc fault current limiting capability
US9419539B2 (en) Systems and methods for enhanced operation and protection of power converters
EP2983280A1 (en) Power conversion device
EP2940852A1 (en) Converter
CN102520276A (zh) 一种模块化多电平换流阀的集成试验电路及其控制方法
US9882371B2 (en) Direct current voltage switch for switching a direct current in a branch of a direct current voltage network node
CN104753402A (zh) 发电机制动系统及其控制方法
CN105406716B (zh) 用于单有源桥转换器的系统和方法
JP2019531043A (ja) 変換デバイス、関連する制御方法および関連する車両
CN109074980B (zh) 双向换向促进器
WO2018145724A1 (en) Protective circuit arrangement
US10998820B2 (en) Stacked DC-DC converter
US9824813B2 (en) Reactor and power supply device employing the same
EP2985902A2 (en) Modular multi-level power conversion system with dc fault current limiting capability
US20130114314A1 (en) Converter system and power electronic system comprising such converter systems
CN102084585B (zh) 用于电压转换的装置
CA2930066C (en) Device and method for reducing a magnetic unidirectional flux component in the core of a three-phase transformer
KR20170088693A (ko) 모듈형 멀티레벨 컨버터를 구성하는 서브 모듈 및 그을 갖는 모듈형 멀티레벨 컨버터
EP2490335A2 (en) Semiconductor device
JP7169742B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20190726

Address after: Baden, Switzerland

Applicant after: ABB TECHNOLOGY LTD.

Address before: American New York

Applicant before: General Electric Company

GR01 Patent grant
GR01 Patent grant