CN105396618A - 一种具有高稳定性的N调控Pt/UiO-67复合材料及其制备方法和应用 - Google Patents

一种具有高稳定性的N调控Pt/UiO-67复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN105396618A
CN105396618A CN201510738674.6A CN201510738674A CN105396618A CN 105396618 A CN105396618 A CN 105396618A CN 201510738674 A CN201510738674 A CN 201510738674A CN 105396618 A CN105396618 A CN 105396618A
Authority
CN
China
Prior art keywords
uio
composite
regulates
controls
high stability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510738674.6A
Other languages
English (en)
Other versions
CN105396618B (zh
Inventor
王建国
柏家奇
庄桂林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiashan National Innovation Energy Research Institute
Jiashan Talent Technology Transformation Service Center
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201510738674.6A priority Critical patent/CN105396618B/zh
Publication of CN105396618A publication Critical patent/CN105396618A/zh
Application granted granted Critical
Publication of CN105396618B publication Critical patent/CN105396618B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8643Removing mixtures of carbon monoxide or hydrocarbons and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/48Zirconium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种具有高稳定性的N调控Pt/UiO-67复合材料其制备方法和应用,其载体为N-UiO-67,它拥有Zr6O32次级结构单元,其分子式为[Zr6O4(OH)4(O2C–C12NH6–CO2)6],负载的贵金属为Pt,制备方法如下:将氯化锆和6-(4-羟基苯基)烟碱酸将混合与DMF中,水热,过滤,洗涤,干燥得到一种新的MOFs?N-UiO-67。称取N-UiO-67和K2PtCl4分别超声溶解于DMF溶液中,同时,将K2PtCl4的DMF溶液滴加到N-UiO-67溶液中,混合超声后转移至圆底烧瓶搅拌,滴加NaBH4溶液还原,搅拌、过滤、洗涤、干燥,得到粉末的N调控Pt/UiO-67复合。本发明涉及的N调控Pt/UiO-67复合颗粒均匀分布,大小2-3nm左右,起燃温度较低,具有高稳定性的一氧化碳氧化性能,可以回收利用。

Description

一种具有高稳定性的N调控Pt/UiO-67复合材料及其制备方法和应用
技术领域
本发明属于催化剂制备技术领域,具体涉及一种具有高稳定性的N调控Pt/UiO-67复合材料及其制备方法和应用。
背景技术
MOFs材料是金属有机骨架化合物(Metal-OrganicFrameworks)的简称。MOFs材料兼具无机材料刚性和有机材料柔韧性的特征,MOFs多孔材料在气体的储存、催化剂、分离及光电磁材料等方面具有重要的应用价值,使其在现代材料研究方面呈现巨大的发展潜力及诱人的发展前景。
Zr的MOF具有较高的比表面积、化学稳定性和热稳定性,同时具有微孔和介孔两种孔结构的多孔材料,可以作为稳定的高催化活性的催化剂载体。
贵金属Pt、Pt、Au是石油化工工业、汽车尾气净化和有机合成反应的高转化率和高稳定性的催化剂,但是贵金属纳米颗粒易发生团聚,且存在价格昂贵、难分离等缺点,抑制了其进一步的发展。Zr的MOF负载Pt、Pt将据有十分重要的研究价值。
XuQ报导ZIF-8负载Au纳米颗粒催化CO氧化反应,是首次报导MOF负载贵金属的参与气相反应,随后XuQ课题组又报导了一系列的MOF负载贵金属催化CO氧化反应。
Chang-JunLiu等报导了一系列MOF框架(如Cu(BTB)3,COP-4)负载贵金属在CO催化氧化中的催化效果,实验表明,Pt/MOF是一种高效的CO氧化催化剂。
自从Pt/MOF-5被报道以来,MOF-74,ZIF-8,MIL-101,MOF-177已经被作为载体研究,Zr基的MOFs因为其良好的热稳定性和化学稳定性,提升了他们在工业化应用的潜力,采用一种稳定的Zr基的MOFs负载小颗粒Pt并将其运用于CO氧化将有十分重要的意义。
发明内容
针对现有技术中存在的上述问题,本发明的目的在于提供一种具有高稳定性的N调控Pt/UiO-67复合材料及其制备方法和应用,N-UiO-67是我们合成的一种新的MOFs,具有较好的热稳定性和化学稳定性,Pt颗粒在2.5nm左右,并且分布均匀,在低的催化剂量下,具有较好的CO催化氧化效果,催化剂100%转化率可以维持在100h以上。
所述的一种具有高稳定性的N调控Pt/UiO-67复合材料,其特征在于载体为N-UiO-67,它拥有Zr6O32次级结构单元,其分子式为[Zr6O4(OH)4(O2C–C12NH6–CO2)6],负载的贵金属为Pt。
所述的一种具有高稳定性的N调控Pt/UiO-67复合材料,其特征在于负载的Pt的颗粒大小为2-3nm。
所述的具有高稳定性的N调控Pt/UiO-67复合材料的制备方法,其特征在于具体步骤如下:
1)将氯化锆和6-(4-羟基苯基)烟碱酸混合于DMF中,水热,过滤,洗涤,真空干燥得到MOFsN-UiO-67;
2)将K2PtCl4溶液和步骤1)得到的N-UiO-67的DMF溶液超声分散,混合超声后转移至圆底烧瓶磁力搅拌,滴加NaBH4溶液还原,搅拌、过滤、洗涤、真空干燥,得到粉末的N调控Pt/UiO-67复合材料。
所述的一种具有高稳定性的N调控Pt/UiO-67复合材料的制备方法,其特征在于步骤1)中水热温度为110-130℃,反应时间为1430-1450min,优选水热温度为120℃,反应时间为1440min。
所述的一种具有高稳定性的N调控Pt/UiO-67复合材料的制备方法,其特征在于步骤2)中NaBH4与K2PtCl4的物质的量为8-12:1,优选为10:1。
所述的一种具有高稳定性的N调控Pt/UiO-67复合材料的制备方法,其特征在于步骤2)洗涤溶剂为任意比的N,N二甲基甲酰胺和乙醚混合物。
所述的一种具有高稳定性的N调控Pt/UiO-67复合材料的制备方法,其特征在于步骤1)和步骤2)中真空干燥箱温度均为75-85℃,干燥时间为2.5-3.5h。
所述的一种具有高稳定性的N调控Pt/UiO-67复合材料,该材料在一氧化碳氧化中作为催化剂。
本发明的N调控Pt/UiO-67复合材料作为一氧化碳氧化反应催化剂,具体包括如下步骤:在N调控Pt/UiO-67复合材料下,先将催化剂N调控Pt/UiO-67复合材料装于内径为4mm的石英管内,以100ml/min的速度连继向该石英管内通入体积比为1:20:79的CO、O2和Ar混合气体进行反应,石英管内的温度以0.5℃·min-1从室温程序升温至使CO完全转换的温度,其CO氧化达到100%转化率下,反应后的气体通过色谱在线检测,
其中,X0为反应前CO在混合气体中的百分含量,x为反应后CO在混合气中的百分含量,α为校正因子,从检测结构看出,CO氧化在100%转化率在100h以上,Pt/UiO-67复合材料能连继使用100h以上。
通过采用上述技术,与现有技术相比,本发明的优势如下:
本发明的优势如下:本发明充分利用N-UiO-67具有较好的热稳定性和化学稳定性的特点,负载在N-UiO-67内的Pt颗粒在2.5nm左右,并且分布均匀,在低的催化剂量下,利用本发明的N调控Pt/UiO-67复合材料作为催化剂,其CO催化氧化效果好于同类其他催化剂,催化剂100%转化率可以维持在100h以上。
附图说明
图1为1%N调控Pt/UiO-67复合50nm下的透射电镜图;
图2为1%N调控Pt/UiO-67复合10nm下的透射电镜图;
图3为1%N调控Pt/UiO-67复合5nm下的透射电镜图;
图4为1%N调控Pt/UiO-67复合Pt颗粒大小分布图;
图5为N调控Pt/UiO-67复合和N-UiO-67的热重图;
图6为N调控Pt/UiO-67复合的CO转化率图;
图7为N调控Pt/UiO-67复合与Pt/UiO-67的CO转化率图;
图8为N调控Pt/UiO-67复合的XRD图;
图9为5%N调控Pt/UiO-67复合的寿命图。
具体实施方式
下面以具体实施例对本发明的技术方案做进一步说明,但本发明的保护范围不限于此:
本发明的N调控Pt/UiO-67复合材料简称为Pt/N-UiO-67,附图中均使用简称。
实施例11.0%N调控Pt/UiO-67复合材料的制备
将23.3mg氯化锆和24.3mg6-(4-羟基苯基)烟碱酸混合加入25ml聚四氟乙烯内胆中,加入3mlDMF,120℃下水热24h,过滤,洗涤,干燥得到一种新的MOFsN-UiO-67。
称取0.1gN-UiO-67超声溶解于8mlDMF溶液中,同时,称取0.0022g的K2PtCl4DMF溶液滴加到上述溶液中,在室温的条件下,超声1h后转移至25ml圆底烧瓶搅拌8h,使Pt离子充分吸附且能均匀分散在载体表面。现配的NaBH4溶液缓慢滴加至上述混合溶液,将Pt2+还原为Pt原子,在这一过程可以看到溶液颜色从黄色突变为黑色,老化半小时,使Pt2+彻底还原后,在砂心漏斗中过滤,滤饼用DMF洗涤三次后,再用乙醚洗涤三次,用以取代MOF孔道中的DMF分子,将滤饼在真空、80℃的条件下干燥8h后,得到粉末的1.0%N调控Pt/UiO-67复合。
CO氧化反应在自行组装的固定床装置中进行。称取0.05g催化剂装于直径为4mm的石英管内,反应气以体积比为CO:O2:Ar=1:20:79,流量为100ml/min通入石英管内,流量通过转子流量计控制。实验考察在其它条件一定,不同温度下CO的转换率。通过控温仪,实验温度以0.5℃·min-1从室温程序升温至使CO完全转换的温度。尾气通过气相色谱仪在线分析,其色谱柱为3m的TDX-01填充柱,以氩气做为载体,柱箱温度为80℃,进样温度为150℃,热导池温度为110℃,桥电流为80mA。CO转换率通过公式(1)进行计算。
其中,x0为反应前CO在混合气体中的百分含量,x为反应后CO在混合气中的百分含量,α为校正因子。
实施例23.0%N调控Pt/UiO-67复合材料的制备
将23.3mg氯化锆和24.3mg6-(4-羟基苯基)烟碱酸混合加入25ml聚四氟乙烯内胆中,加入3mlDMF,120℃下水热24h,过滤,洗涤,干燥得到一种新的MOFsN-UiO-67。
称取0.1gN-UiO-67超声溶解于8mlDMF溶液中,同时,称取0.0067g的K2PtCl4DMF溶液滴加到上述溶液中,在室温的条件下,超声1h后转移至25ml圆底烧瓶搅拌8h,使Pt离子充分吸附且能均匀分散在载体表面。现配的NaBH4溶液缓慢滴加至上述混合溶液,将Pt2+还原为Pt原子,在这一过程可以看到溶液颜色从黄色突变为黑色,老化半小时,使Pt2+彻底还原后,在砂心漏斗中过滤,滤饼用DMF洗涤三次后,再用乙醚洗涤三次,用以取代MOF孔道中的DMF分子,将滤饼在真空、80℃的条件下干燥8h后,得到粉末的3.0%N调控Pt/UiO-67复合。
CO催化反应测试条件与实施例1中相同。
实施例35.0%N调控Pt/UiO-67复合的制备
将23.3mg氯化锆和24.3mg6-(4-羟基苯基)烟碱酸混合加入25ml聚四氟乙烯内胆中,加入3mlDMF,120℃下水热24h,过滤,洗涤,干燥得到一种新的MOFsN-UiO-67。
称取0.1gN-UiO-67超声溶解于8mlDMF溶液中,同时,量取0.01144g的K2PtCl4DMF溶液滴加到上述溶液中,在室温的条件下,超声1h后转移至25ml圆底烧瓶搅拌8h,使Pt离子充分吸附且能均匀分散在载体表面。现配的NaBH4溶液缓慢滴加至上述混合溶液,将Pt2+还原为Pt原子,在这一过程可以看到溶液颜色从黄色突变为黑色,老化半小时,使Pt2+彻底还原后,在砂心漏斗中过滤,滤饼用DMF洗涤三次后,再用乙醚洗涤三次,用以取代MOF孔道中的DMF分子,将滤饼在真空、80℃的条件下干燥8h后,得到粉末的1.0%N调控Pt/UiO-67复合。
CO催化反应测试条件与实施例1中相同
对比实施例5.0%Pt/UiO-67的制备
将23.3mg氯化锆和24.3mg对苯二甲酸混合加入25ml聚四氟乙烯内胆中,加入3mlDMF,120℃下水热24h,过滤,洗涤,干燥得到UiO-67。
称取0.1gUiO-67超声溶解于8mlDMF溶液中,同时,量取0.01144g的K2PtCl4DMF溶液滴加到上述溶液中,在室温的条件下,超声1h后转移至25ml圆底烧瓶搅拌4h,使Pt离子充分吸附且能均匀分散在载体表面。现配的NaBH4溶液缓慢滴加至上述混合溶液,将Pt2+还原为Pt原子,在这一过程可以看到溶液颜色从黄色突变为黑色,老化半小时,使Pt2+彻底还原后,在砂心漏斗中过滤,滤饼用DMF洗涤三次后,再用乙醚洗涤三次,用以取代MOF孔道中的DMF分子,将滤饼在真空、80℃的条件下干燥8h后,得到粉末的1.0%Pt/UiO-67。
CO催化反应测试条件与实施例1中相同。
本发明实施例1中的该1%N调控Pt/UiO-67在50nm、10nm及5nm下的透射电镜图分别如图1-3所示,从图1-3可以看出1%N调控Pt/UiO-67中Pt在UiO-66-NH2载体中分布均匀;1%N调控Pt/UiO-67中的Pt颗粒大小分布图如图4所示,图4为1%N调控Pt/UiO-67中的Pt颗粒大小分布图,从图中可以看到,负载的Pt颗粒大小为2-3nm,,小于其他MOFs负载催化剂;
图5为N调控Pt/UiO-67复合材料和N-UiO-67的热重图,可以看出不同负载量N调控Pt/UiO-67复合材料热稳定性,5%Pt/N-UiO-67效果最好;
图6为N调控Pt/UiO-67复合材料的CO转化率图,从图中可以得出,使用本发明的N调控Pt/UiO-67复合材料相对N-UiO-67而言,其效果明显优于N-UiO-67,且5%的负载量具有最好的效果;
图7为5%N调控Pt/UiO-67复合材料与5%Pt/UiO-67的CO转化率图,从图中可以看出,5%Pt/UiO-67起燃温度是100℃,5%N调控Pt/UiO-67起燃温度是90℃,5%Pt/UiO-67100%温度是135℃,5%N调控Pt/UiO-67复合材料100%温度是115℃,本发明的5%N调控Pt/UiO-67复合无论在起燃温度还是完全转化温度均优于5%Pt/UiO-67,说明了N修饰对催化效果起到了决定性的作用;
图8为N调控Pt/UiO-67复合材料的XRD(X射线衍射)图;从图中可以看出,负载之后,框架保持完好;
图9为5%N调控Pt/UiO-67复合材料的寿命图,该实施例中,采用温度为120℃作为CO100%转化温度,以120℃作为实施例条件,从图中可以看出,在120℃保持100%转化率达到4500min以上。
以上所述仅为本发明的部分实施例,并非用来限制本发明。但凡依本发明内容所做的均等变化与修饰,都为本发明的保护范围之内。

Claims (8)

1.一种具有高稳定性的N调控Pt/UiO-67复合材料,其特征在于载体为N-UiO-67,它拥有Zr6O32次级结构单元,其分子式为[Zr6O4(OH)4(O2C–C12NH6–CO2)6],负载的贵金属为Pt。
2.根据权利要求1所述的一种具有高稳定性的N调控Pt/UiO-67复合材料,其特征在于负载的Pt的颗粒大小为2-3nm。
3.一种根据权利要求1所述的具有高稳定性的N调控Pt/UiO-67复合材料的制备方法,其特征在于具体步骤如下:
1)将氯化锆和6-(4-羟基苯基)烟碱酸混合于DMF中,水热,过滤,洗涤,真空干燥得到MOFsN-UiO-67;
2)将K2PtCl4溶液和步骤1)得到的N-UiO-67的DMF溶液超声分散,混合超声后转移至圆底烧瓶磁力搅拌,滴加NaBH4溶液还原,搅拌、过滤、洗涤、真空干燥,得到粉末的N调控Pt/UiO-67复合材料。
4.根据权利要求3所述的一种具有高稳定性的N调控Pt/UiO-67复合材料的制备方法,其特征在于步骤1)中水热温度为110-130℃,反应时间为1430-1450min,优选水热温度为120℃,反应时间为1440min。
5.根据权利要求3所述的一种具有高稳定性的N调控Pt/UiO-67复合材料的制备方法,其特征在于步骤2)中NaBH4与K2PtCl4的物质的量为8-12:1,优选为10:1。
6.根据权利要求3所述的一种具有高稳定性的N调控Pt/UiO-67
复合材料的制备方法,其特征在于步骤2)洗涤溶剂为任意比的N,N二甲基甲酰胺和乙醚混合物。
7.根据权利要求3所述的一种具有高稳定性的N调控Pt/UiO-67复合材料的制备方法,其特征在于步骤1)和步骤2)中真空干燥箱温度均为75-85℃,干燥时间为2.5-3.5h。
8.一种具有高稳定性的Pt/UiO-67复合材料在一氧化碳氧化反应中作为催化剂的应用。
CN201510738674.6A 2015-11-03 2015-11-03 一种具有高稳定性的N调控Pt/UiO‑67复合材料及其制备方法和应用 Active CN105396618B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510738674.6A CN105396618B (zh) 2015-11-03 2015-11-03 一种具有高稳定性的N调控Pt/UiO‑67复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510738674.6A CN105396618B (zh) 2015-11-03 2015-11-03 一种具有高稳定性的N调控Pt/UiO‑67复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN105396618A true CN105396618A (zh) 2016-03-16
CN105396618B CN105396618B (zh) 2018-01-05

Family

ID=55462568

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510738674.6A Active CN105396618B (zh) 2015-11-03 2015-11-03 一种具有高稳定性的N调控Pt/UiO‑67复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN105396618B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109647381A (zh) * 2017-10-12 2019-04-19 中国科学院福建物质结构研究所 一种可控制备铂颗粒高度分散介孔碳基复合材料作为高效产氢电催化剂的方法
WO2021034426A1 (en) * 2019-08-20 2021-02-25 Exxonmobil Research And Engineering Company Metal-organic framework catalysts and their use in catalytic cracking
CN113769786A (zh) * 2021-07-27 2021-12-10 中国建筑材料科学研究总院有限公司 脱硝催化剂及其制备方法以及烟气脱硝方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312150A (ja) * 2005-05-09 2006-11-16 Matsushita Electric Ind Co Ltd 酸化触媒、一酸化炭素の除去方法、燃料電池用燃料精製装置および燃料電池発電装置
CN101879446A (zh) * 2010-02-02 2010-11-10 福州大学 Pt基一氧化碳氧化催化剂的制备方法
CN104607243A (zh) * 2014-12-30 2015-05-13 李亚丰 一种杂多酸或者杂多酸盐和微孔配位聚合物的复合材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312150A (ja) * 2005-05-09 2006-11-16 Matsushita Electric Ind Co Ltd 酸化触媒、一酸化炭素の除去方法、燃料電池用燃料精製装置および燃料電池発電装置
CN101879446A (zh) * 2010-02-02 2010-11-10 福州大学 Pt基一氧化碳氧化催化剂的制备方法
CN104607243A (zh) * 2014-12-30 2015-05-13 李亚丰 一种杂多酸或者杂多酸盐和微孔配位聚合物的复合材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHUN-CHAO HOU ET AL.: ""Incorporation of a [Ru(dcbpy)(bpy)2]2+ photosensitizer and a Pt(dcbpy)Cl2 catalyst into metal–organic frameworks for photocatalytic hydrogen evolution from aqueous solution", 《J. MATER. CHEM. A》 *
FU-GUI XI ET AL.: "Different acidity and additive effects of zirconium metal–organic frameworks as catalysts for cyanosilylation", 《RSC ADV.》 *
王彬 等: "功能化UiO-67 金属有机骨架材料的合成及其CO2选择性吸附", 《第十三届固态化学与无机合成学术会议论文摘要集》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109647381A (zh) * 2017-10-12 2019-04-19 中国科学院福建物质结构研究所 一种可控制备铂颗粒高度分散介孔碳基复合材料作为高效产氢电催化剂的方法
WO2021034426A1 (en) * 2019-08-20 2021-02-25 Exxonmobil Research And Engineering Company Metal-organic framework catalysts and their use in catalytic cracking
US11739274B2 (en) 2019-08-20 2023-08-29 Exxon Mobil Technology and Engineering Company Metal-organic framework catalysts and their use thereof in catalytic cracking
CN113769786A (zh) * 2021-07-27 2021-12-10 中国建筑材料科学研究总院有限公司 脱硝催化剂及其制备方法以及烟气脱硝方法

Also Published As

Publication number Publication date
CN105396618B (zh) 2018-01-05

Similar Documents

Publication Publication Date Title
CN105289735A (zh) 一种具有高稳定性的Pd/UiO-66-NH2材料及其制备方法和应用
Liu et al. Zeolitic imidazolate framework-8 (ZIF-8)-coated In2O3 nanofibers as an efficient sensing material for ppb-level NO2 detection
Bi et al. Efficient degradation of toluene over ultra-low Pd supported on UiO-66 and its functional materials: Reaction mechanism, water-resistance, and influence of SO2
Zhu et al. Metal‐organic framework‐derived honeycomb‐like open porous nanostructures as precious‐metal‐free catalysts for highly efficient oxygen electroreduction
Wang et al. MOFs-based coating derived Me-ZIF-67@ CuOx materials as low-temperature NO-CO catalysts
Chen et al. One-pot synthesis of the MIL-100 (Fe) MOF/MOX homojunctions with tunable hierarchical pores for the photocatalytic removal of BTXS
Qin et al. Confined Transformation of Organometal‐Encapsulated MOFs into Spinel CoFe2O4/C Nanocubes for Low‐Temperature Catalytic Oxidation
US20140322622A1 (en) Method for Preparing a Supported Ruthenium Catalyst
CN105413749B (zh) 一种ZIF‑8材料负载CoB的催化剂制备方法
CN105396618A (zh) 一种具有高稳定性的N调控Pt/UiO-67复合材料及其制备方法和应用
Du et al. A high-performance and stable Cu/Beta for adsorption-catalytic oxidation in-situ destruction of low concentration toluene
Wang et al. Electrochemical synthesis and catalytic properties of encapsulated metal clusters within zeolitic imidazolate frameworks
Su et al. One-pot solvothermal synthesis of In-doped amino-functionalized UiO-66 Zr-MOFs with enhanced ligand-to-metal charge transfer for efficient visible-light-driven CO2 reduction
Zhang et al. Insights into the reaction mechanism of toluene oxidation by isotope dynamic experiment and the kinetics over MCeZr/TiO2 (M= Cu, Mn, Ni, Co and Fe) catalysts
Pan et al. Dicationic liquid containing alkenyl modified CuBTC improves the performance of the composites: Increasing the CO2 adsorption effect
Li et al. Understanding the mechanisms of catalytic enhancement of La-Sr-Co-Fe-O perovskite-type oxides for efficient toluene combustion
Bai et al. Membrane adsorber with hierarchically porous HKUST-1 immobilized in membrane pores by flowing synthesis
Qi et al. Preparation of Pd-ZIF-8 single-atom catalyst with supercritical CO2 deposition method
Xu et al. Pt–Co bimetals supported on UiO-66 as efficient and stable catalysts for the catalytic oxidation of various volatile organic compounds
Wang et al. Construction of mesoporous Ru@ ZSM-5 catalyst for dichloromethane degradation: Synergy between acidic sites and redox centres
Wang et al. Manganese dioxide supported on hollow graphitized carbon spheres for the catalytic oxidation of toluene: Improved adsorption and electron transfer
Gao et al. Copper-doping induced hierarchically porous metal-organic framework for enhanced adsorption of cefradine antibiotic
Zhang et al. In-situ confined growth of defective MIL-100 (Fe) in macroporous polyacrylate spherical substrate at room temperature for high-efficient toluene removal
Li et al. Pt-modified 3D MnCoOx nanocages as effective catalysts for toluene oxidation
Zhu et al. Hg0 removal performance at low temperature by mesoporous MOF-derived Cr2O3 nanoparticle with enriched metal sites and oxygen vacancy: Mechanism study on the role of oxygen species

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200330

Address after: 314100 Room 101, building 5, No. 555, Chuangye Road, Dayun Town, Jiashan County, Jiaxing City, Zhejiang Province

Patentee after: Jiashan national innovation Energy Research Institute

Address before: 314100 Room 601, building 9, No. 568, Jinyang East Road, Luoxing street, Jiashan County, Jiaxing City, Zhejiang Province

Patentee before: Jiashan talent technology transformation service center

Effective date of registration: 20200330

Address after: 314100 Room 601, building 9, No. 568, Jinyang East Road, Luoxing street, Jiashan County, Jiaxing City, Zhejiang Province

Patentee after: Jiashan talent technology transformation service center

Address before: 310014, Zhejiang City, No. 18 Chao Wang Road, Zhejiang University of Technology

Patentee before: ZHEJIANG UNIVERSITY OF TECHNOLOGY