CN105388201A - Three-electrode integrated electrochemical sensor based on microelectrode array - Google Patents
Three-electrode integrated electrochemical sensor based on microelectrode array Download PDFInfo
- Publication number
- CN105388201A CN105388201A CN201510694570.XA CN201510694570A CN105388201A CN 105388201 A CN105388201 A CN 105388201A CN 201510694570 A CN201510694570 A CN 201510694570A CN 105388201 A CN105388201 A CN 105388201A
- Authority
- CN
- China
- Prior art keywords
- electrode
- silver
- platinum
- gold
- microelectrode array
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 111
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 77
- 229910052709 silver Inorganic materials 0.000 claims abstract description 71
- 239000004332 silver Substances 0.000 claims abstract description 71
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 54
- 239000010931 gold Substances 0.000 claims abstract description 43
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 41
- 229910052737 gold Inorganic materials 0.000 claims abstract description 40
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 claims abstract description 19
- 229910021607 Silver chloride Inorganic materials 0.000 claims abstract description 16
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 16
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 16
- 230000008569 process Effects 0.000 claims abstract description 7
- 229920002120 photoresistant polymer Polymers 0.000 claims description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 19
- 239000010453 quartz Substances 0.000 claims description 18
- 238000002360 preparation method Methods 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 238000011161 development Methods 0.000 claims description 10
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 7
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 6
- UCHOFYCGAZVYGZ-UHFFFAOYSA-N gold lead Chemical compound [Au].[Pb] UCHOFYCGAZVYGZ-UHFFFAOYSA-N 0.000 claims description 5
- 238000004528 spin coating Methods 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 4
- 238000001312 dry etching Methods 0.000 claims description 4
- 238000009713 electroplating Methods 0.000 claims description 4
- 230000004913 activation Effects 0.000 claims description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 3
- -1 argon ions Chemical class 0.000 claims description 3
- 238000002484 cyclic voltammetry Methods 0.000 claims description 3
- 239000008367 deionised water Substances 0.000 claims description 3
- 229910021641 deionized water Inorganic materials 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 3
- 230000000717 retained effect Effects 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000003466 welding Methods 0.000 claims description 3
- 229910001451 bismuth ion Inorganic materials 0.000 claims description 2
- 238000012986 modification Methods 0.000 claims description 2
- 230000004048 modification Effects 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims 2
- 150000001621 bismuth Chemical class 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 29
- 229910001385 heavy metal Inorganic materials 0.000 abstract description 23
- 230000035945 sensitivity Effects 0.000 abstract description 8
- 238000003950 stripping voltammetry Methods 0.000 abstract description 6
- 238000000835 electrochemical detection Methods 0.000 abstract description 3
- 238000012544 monitoring process Methods 0.000 abstract description 2
- 238000006243 chemical reaction Methods 0.000 abstract 1
- 238000003912 environmental pollution Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000000559 atomic spectroscopy Methods 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000000840 electrochemical analysis Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 2
- 230000000284 resting effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 229960000583 acetic acid Drugs 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- GTKRFUAGOKINCA-UHFFFAOYSA-M chlorosilver;silver Chemical compound [Ag].[Ag]Cl GTKRFUAGOKINCA-UHFFFAOYSA-M 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000007974 sodium acetate buffer Substances 0.000 description 1
- BHZOKUMUHVTPBX-UHFFFAOYSA-M sodium acetic acid acetate Chemical compound [Na+].CC(O)=O.CC([O-])=O BHZOKUMUHVTPBX-UHFFFAOYSA-M 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/42—Measuring deposition or liberation of materials from an electrolyte; Coulometry, i.e. measuring coulomb-equivalent of material in an electrolyte
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/48—Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
本发明公开了一种基于微电极阵列的三电极集成电化学传感器,该传感器包括铋膜修饰微电极阵列(金工作电极),银/氯化银电极(参比电极),铂电极(对电极)。三电极通过标准MEMS工艺制备,金电极上均匀分布多个等距的圆盘作为微电极阵列。在电化学检测过程中,微电极阵列上发生重金属富集和溶出反应,表面修饰铋膜为了扩大重金属的检测种类和范围。银电极表面电镀氯化银,构成Ag|AgCl参比电极。铂电极作为对电极,与工作电极形成通路。利用差分脉冲溶出伏安法对重金属的浓度进行测定,结果表明该传感器检测灵敏度高,检出限低,信噪比高,并且该传感器操作简便,所需样品量少,可用于重金属的现场快速检测,能够实现对环境污染进行实时高效监测。
The invention discloses a three-electrode integrated electrochemical sensor based on a microelectrode array. The sensor includes a bismuth film modified microelectrode array (gold working electrode), a silver/silver chloride electrode (reference electrode), and a platinum electrode (counter electrode). ). The three electrodes are prepared by a standard MEMS process, and multiple equidistant disks are uniformly distributed on the gold electrode as a microelectrode array. During the electrochemical detection process, heavy metal enrichment and stripping reactions occur on the microelectrode array, and the surface is modified with a bismuth film in order to expand the detection types and scope of heavy metals. The surface of the silver electrode is plated with silver chloride to form the Ag|AgCl reference electrode. The platinum electrode acts as a counter electrode and forms a path with the working electrode. The concentration of heavy metals was determined by differential pulse stripping voltammetry. The results showed that the sensor has high detection sensitivity, low detection limit, and high signal-to-noise ratio. The sensor is easy to operate and requires less sample volume. It can be used for on-site rapid detection of heavy metals. Detection can realize real-time and efficient monitoring of environmental pollution.
Description
技术领域technical field
本发明涉及电化学传感器及重金属检测技术领域,尤其涉及一种基于微电极阵列的三电极集成电化学传感器。The invention relates to the technical field of electrochemical sensors and heavy metal detection, in particular to a three-electrode integrated electrochemical sensor based on a microelectrode array.
背景技术Background technique
食品、饮用水和海洋等安全问题广泛受到人们日益增长的关注。其中,由于重金属在食物链的累积效应,重金属污染对人类健康和生态环境平衡造成的危害尤为严重。因此,重金属的实时快速现场检测显得十分重要。The safety of food, drinking water and oceans is a widespread and growing concern. Among them, due to the cumulative effect of heavy metals in the food chain, heavy metal pollution is particularly harmful to human health and the balance of the ecological environment. Therefore, real-time rapid on-site detection of heavy metals is very important.
目前,重金属检测的方法包括原子光谱法、电感耦合等离子体质谱法、电化学分析等方法。原子光谱法和电感耦合等离子体质谱法灵敏度高、检测下限低、重复性好,但是对实验环境要求高,仪器和试剂价格昂贵,需要专业人员操作,适合于实验室分析。At present, heavy metal detection methods include atomic spectroscopy, inductively coupled plasma mass spectrometry, electrochemical analysis and other methods. Atomic spectroscopy and inductively coupled plasma mass spectrometry have high sensitivity, low detection limit, and good repeatability, but they have high requirements for the experimental environment, expensive instruments and reagents, and require professional operation, so they are suitable for laboratory analysis.
电化学方法操作简便,灵敏度高,重复性好,适合现场快速检测和实时监测。其中差分脉冲溶出伏安法先将重金属离子还原并富集在工作电极表面;然后结合差分脉冲技术扫描工作电极,沉积的金属随之氧化溶出;根据测得的溶出伏安曲线可对重金属离子进行定性和定量分析。该方法能同时检测溶液中存在的多种重金属离子,且具有很高的灵敏度和分辨率。The electrochemical method is easy to operate, has high sensitivity and good repeatability, and is suitable for on-site rapid detection and real-time monitoring. Among them, the differential pulse stripping voltammetry method first reduces and enriches the heavy metal ions on the surface of the working electrode; then combines the differential pulse technology to scan the working electrode, and the deposited metal is oxidized and stripped; according to the measured stripping voltammetry curve, the heavy metal ions can be analyzed. Qualitative and quantitative analysis. The method can simultaneously detect various heavy metal ions in the solution, and has high sensitivity and resolution.
微电极具有传质速率快,双电层电容小,iR降小等优点,但微电极上的总电流强度小,通常为10-9~10-12A,增加检测难度。而微电极阵列除保留单个微电极的特点外,在不改变RC常数及iR降的前提下,电流强度为微电极的加和,大大提高了法拉第电流。综上所述,微电极阵列具有高传质速率、高灵敏度、低检测限、抗外界干扰等优点,被广泛研究和应用。Microelectrode has the advantages of fast mass transfer rate, small electric double layer capacitance, and small iR drop, but the total current intensity on the microelectrode is small, usually 10 -9 ~ 10 -12 A, which increases the difficulty of detection. In addition to retaining the characteristics of a single microelectrode, the microelectrode array does not change the RC constant and iR drop, and the current intensity is the sum of the microelectrodes, which greatly improves the Faraday current. To sum up, the microelectrode array has the advantages of high mass transfer rate, high sensitivity, low detection limit, and anti-interference, and has been widely studied and applied.
电化学检测主要是在三电极体系中完成的。三电极体系由工作电极、对电极和参比电极组成。目前的研究主要是工作电极的微型化,而参比电极和对电极常采用外置的传统电极。传统三电极检测所需测试样品较大,安装固定等一系列操作繁琐,而且工作电极和对电极相对位置的改变会引入干扰,降低了检测的重复性与准确度。Electrochemical detection is mainly done in a three-electrode system. The three-electrode system consists of a working electrode, a counter electrode and a reference electrode. The current research is mainly on the miniaturization of the working electrode, while the reference electrode and the counter electrode often use external traditional electrodes. The traditional three-electrode detection requires a large test sample, and a series of operations such as installation and fixing are cumbersome, and the change of the relative position of the working electrode and the counter electrode will introduce interference, which reduces the repeatability and accuracy of the detection.
发明内容Contents of the invention
为了提高重金属检测的灵敏度、准确度、重复性和检测效率,减少传统三电极体系对重金属检测引入的外界干扰,本发明设计了一种基于微电极阵列的三电极集成电化学传感器,其中工作电极采用微电极阵列,与对电极、参比电极集成在一块芯片上。该传感器既能用于现场快速检测痕量重金属,也能进行细胞分子水平的电化学分析研究。In order to improve the sensitivity, accuracy, repeatability and detection efficiency of heavy metal detection and reduce the external interference introduced by the traditional three-electrode system to heavy metal detection, the present invention designs a three-electrode integrated electrochemical sensor based on a microelectrode array, in which the working electrode Micro-electrode array is used, which is integrated with counter electrode and reference electrode on one chip. The sensor can be used not only for on-site rapid detection of trace heavy metals, but also for electrochemical analysis at the cell molecular level.
本发明是通过以下技术方案来实现的:一种基于微电极阵列的三电极集成电化学传感器,该传感器包括:石英基底、金属层、绝缘层、第一导线、第二导线和第三导线;所述金属层包括铂电极、金电极、银电极、铂引线、银引线、金引线、铂焊盘、银焊盘和金焊盘;其中,金属层附着在石英基底上;所述银电极为圆柱状,银电极的直径为600~1000μm;所述金电极为圆环状,与银电极共中心轴,金电极的内径为1200~1600μm,壁厚为100~200μm,金电极的上表面沿圆周均匀分布若干个大小相同的圆盘作为微电极阵列,微电极的直径为10~100μm,微电极的间距大于其5倍直径;所述铂电极为圆环状,与银电极共中心轴,铂电极的内径为1800~3000μm,壁厚为100~500μm;绝缘层覆盖在石英基底和金属层上,绝缘层的厚度高于金属层,并使得铂电极、银电极、铂焊盘、银焊盘和金焊盘上表面的微电极阵列裸露;金电极、金引线、金焊盘和第三导线依次相连并导通,铂电极、铂引线、铂焊盘和第一导线依次相连并导通,银电极、银引线、银焊盘和第二导线依次相连并导通。The present invention is achieved through the following technical solutions: a three-electrode integrated electrochemical sensor based on a microelectrode array, the sensor includes: a quartz substrate, a metal layer, an insulating layer, a first wire, a second wire and a third wire; The metal layer includes platinum electrodes, gold electrodes, silver electrodes, platinum leads, silver leads, gold leads, platinum pads, silver pads and gold pads; wherein the metal layer is attached to the quartz substrate; the silver electrodes are Cylindrical, the diameter of the silver electrode is 600-1000 μm; the gold electrode is circular, with the same central axis as the silver electrode, the inner diameter of the gold electrode is 1200-1600 μm, the wall thickness is 100-200 μm, the upper surface of the gold electrode is along the A number of disks of the same size are evenly distributed on the circumference as a microelectrode array. The diameter of the microelectrodes is 10-100 μm, and the distance between the microelectrodes is greater than 5 times the diameter; the platinum electrode is circular and has the same central axis as the silver electrode. The inner diameter of the platinum electrode is 1800-3000 μm, and the wall thickness is 100-500 μm; the insulating layer covers the quartz substrate and the metal layer, and the thickness of the insulating layer is higher than the metal layer, and makes platinum electrodes, silver electrodes, platinum pads, silver soldering The microelectrode array on the upper surface of the disk and the gold pad is exposed; the gold electrode, the gold lead, the gold pad and the third wire are connected and conducted in sequence, and the platinum electrode, the platinum lead, the platinum pad and the first wire are connected and conducted in sequence , the silver electrode, the silver lead, the silver pad and the second wire are sequentially connected and conducted.
进一步地,在微电极阵列上电镀铋膜,银电极表面镀氯化银;镀铋微电极阵列作为工作电极,银电极镀氯化银作为Ag|AgCl参比电极,铂电极作为对电极。Further, a bismuth film is electroplated on the microelectrode array, silver chloride is plated on the surface of the silver electrode; the bismuth plated microelectrode array is used as the working electrode, the silver electrode is plated with silver chloride as the Ag|AgCl reference electrode, and the platinum electrode is used as the counter electrode.
一种基于微电极阵列的三电极集成电化学传感器的制备方法,该方法包括以下步骤:A method for preparing a three-electrode integrated electrochemical sensor based on a microelectrode array, the method comprising the following steps:
(1)制备金电极:将石英基底清洗烘干后,磁控溅射Cr粘附层(30~50nm)和Au层(200~400nm),旋涂正性光刻胶,在紫外光下曝光显影,固化后干法刻蚀出金电极;(1) Preparation of gold electrodes: After cleaning and drying the quartz substrate, magnetron sputtering Cr adhesion layer (30-50nm) and Au layer (200-400nm), spin-coating positive photoresist, and exposing under ultraviolet light Development, dry etching of gold electrodes after curing;
(2)制备铂电极:磁控溅射Ti粘附层(30~50nm)和Pt层(200~400nm),旋涂正性光刻胶,曝光显影后,干法刻蚀出铂对电极;(2) Preparation of platinum electrodes: magnetron sputtering Ti adhesion layer (30-50nm) and Pt layer (200-400nm), spin-coating positive photoresist, after exposure and development, dry-etch platinum counter electrode;
(3)制备银电极:先在芯片上涂覆一层0.5μm的正性光刻胶,充分曝光显影后,将银电极图案部位的光刻胶去除干净,在高真空环境中,用等离子体中带正电荷的氩离子轰击银靶(阴极),被抛射出的银原子淀积在石英基底芯片上(阳极),形成100~200nm的银层,最后用剥离(lift-off)工艺将银电极以外的银金属层及光刻胶一同去除干净;(3) Preparation of silver electrodes: first coat a layer of 0.5 μm positive photoresist on the chip, after full exposure and development, remove the photoresist on the silver electrode pattern, and use plasma in a high vacuum environment The positively charged argon ions bombard the silver target (cathode), and the ejected silver atoms are deposited on the quartz substrate chip (anode), forming a 100-200nm silver layer, and finally the silver is removed by lift-off process. The silver metal layer and photoresist other than the electrodes are removed together;
(4)制备绝缘层:采用等离子体增强化学气相沉积法(PECVD)在石英基底芯片正面沉积一层绝缘层Si3N4,随后旋涂光刻胶,经紫外光曝光显影,蚀刻微电极阵列、铂电极、银电极、金焊盘、铂焊盘、银焊盘表面的绝缘层,其他区域绝缘层保留下来;(4) Preparation of insulating layer: Deposit a layer of insulating layer Si 3 N 4 on the front of the quartz substrate chip by plasma enhanced chemical vapor deposition (PECVD), then spin-coat photoresist, expose and develop with ultraviolet light, and etch the microelectrode array , Platinum electrodes, silver electrodes, gold pads, platinum pads, and insulating layers on the surface of silver pads, and the insulating layers in other areas are retained;
(5)制作参比电极:将银电极作为阳极,铂电极作为阴极,浸入0.1mMHCl溶液中,用大小为0.4mA/cm2的恒电流进行电镀,时间为300~600s,从而在银电极表面镀AgCl;(5) Make a reference electrode: use the silver electrode as the anode and the platinum electrode as the cathode, immerse in 0.1mM HCl solution, and electroplate with a constant current of 0.4mA/ cm2 for 300-600s, so that the surface of the silver electrode AgCl plating;
(6)工作电极修饰铋膜:将铂电极作为对电极,第一导线作为对电极的信号引出线,将银电极和电镀氯化银作为参比电极,第二导线作为参比电极的信号引出线,将微电极阵列作为工作电极,第三导线作为工作电极的信号引出线,由此组成三电极体系,分别与电化学工作站的对电极口、参比电极接口和工作电极接口相连;将电极部分全部浸入测试盒的溶液中,进行电化学修饰和测量:在1MH2SO4溶液中,进行循环伏安法扫描,扫面电压范围为-0.2V~+1.5V,扫描速率0.05V/s,重复多次扫描,进行电极清洁和活化;更换成Bi(NO3)3溶液(1mol/LKNO3和1%HNO3作为底液),Bi3+浓度为0.005~0.03mol/L,进行恒电位法扫描,电位范围为-0.45~-0.3V,电镀时间为100~300s,铋离子在工作电极表面发生还原,在微电极阵列11上形成铋膜,厚度小于100nm。用去离子水清洗,并用氮气吹干,由此得到一种基于微电极阵列的三电极集成电化学传感器。(6) Bismuth film modified by the working electrode: the platinum electrode is used as the counter electrode, the first wire is used as the signal lead-out line of the counter electrode, the silver electrode and electroplated silver chloride are used as the reference electrode, and the second wire is used as the signal lead-out of the reference electrode line, the microelectrode array is used as the working electrode, and the third wire is used as the signal lead-out line of the working electrode, thus forming a three-electrode system, which is respectively connected to the counter electrode port, reference electrode interface and working electrode interface of the electrochemical workstation; the electrode All parts are immersed in the solution of the test box for electrochemical modification and measurement: in 1MH 2 SO 4 solution, perform cyclic voltammetry scanning, the scanning voltage range is -0.2V~+1.5V, and the scanning rate is 0.05V/s , repeat multiple scans to clean and activate the electrode; change to Bi(NO 3 ) 3 solution (1mol/L KNO 3 and 1% HNO 3 as the bottom solution), the Bi 3+ concentration is 0.005-0.03mol/L, and constant Potentiometric scanning, the potential range is -0.45~-0.3V, the electroplating time is 100~300s, bismuth ions are reduced on the surface of the working electrode, and a bismuth film is formed on the microelectrode array 11 with a thickness less than 100nm. Rinse with deionized water and dry with nitrogen to obtain a three-electrode integrated electrochemical sensor based on microelectrode array.
本发明的有益效果是:The beneficial effects of the present invention are:
1.本发明以石英玻璃为基底,电极材料采用金、银、铂,采用传统的标准MEMS工艺,尺寸微小,材料常见,易于批量化生产;1. The present invention uses quartz glass as the substrate, gold, silver, and platinum as electrode materials, and adopts traditional standard MEMS technology. The size is small, the materials are common, and it is easy to produce in batches;
2.本发明将三电极体系集成在一块芯片上,操作方便,接口简单,可置于便携式电化学仪器中,用于现场快速检测;2. The present invention integrates the three-electrode system on one chip, which is easy to operate and has a simple interface, and can be placed in a portable electrochemical instrument for rapid on-site detection;
3.本发明采用微电极阵列,灵敏度高、检出限低、抗干扰强;微电极的间距大于其5倍直径,可减少由电极距离过小而产生的屏蔽效应;微电极预镀铋膜,可增加重金属离子的检测种类和范围,提高检测的准确度和重复性;3. The present invention adopts a microelectrode array, which has high sensitivity, low detection limit, and strong anti-interference; the spacing of the microelectrodes is greater than 5 times the diameter, which can reduce the shielding effect caused by the too small distance between the electrodes; the microelectrodes are pre-coated with bismuth film , can increase the detection types and range of heavy metal ions, and improve the accuracy and repeatability of detection;
4.本发明的银电极、金电极和铂电极共中心轴,使得每个微电极距离参比电极和对电极的距离相等,使得由溶液阻抗造成的工作电极与参比电极间的电位差都相同,减少由外置参比电极和对电极引入的干扰。4. silver electrode of the present invention, gold electrode and platinum electrode concentric axis, make the distance of each microelectrode distance reference electrode and counter electrode equate, make the potential difference between working electrode and reference electrode caused by solution impedance all Same, reduce the interference introduced by external reference electrode and counter electrode.
附图说明Description of drawings
图1为基于微电极阵列的三电极集成电化学传感器的结构装配示意图,(a)为整体图,(b)为电化学检测示意图,(c)为传感器结构分解示意图;Figure 1 is a schematic diagram of the structural assembly of a three-electrode integrated electrochemical sensor based on a microelectrode array, (a) is the overall diagram, (b) is a schematic diagram of electrochemical detection, and (c) is a schematic diagram of the sensor structure decomposition;
图中,石英基底1、铂电极2、金电极3、银电极4、铂引线5、银引线6、金引线7、铂焊盘8、银焊盘9、金焊盘10、微电极阵列11、金属层12、铋膜13、氯化银14、绝缘层15、第一导线16、第二导线17、第三导线18;In the figure, quartz substrate 1, platinum electrode 2, gold electrode 3, silver electrode 4, platinum lead 5, silver lead 6, gold lead 7, platinum pad 8, silver pad 9, gold pad 10, microelectrode array 11 , metal layer 12, bismuth film 13, silver chloride 14, insulating layer 15, first wire 16, second wire 17, third wire 18;
图2为三电极集成电化学传感器的制备方法流程图;(a)石英片基底,(b)沉积粘附层和金,(c)旋涂光刻胶,(d)曝光显影,(e)干法刻蚀金电极,(f)干法刻蚀铂电极,(g)旋涂光刻胶,(h)曝光显影,(i)蒸发溅射银层,(j)lift-off工艺制作银电极,(k)PECVD沉积绝缘层,(l)刻蚀绝缘层;Figure 2 is a flow chart of the preparation method of the three-electrode integrated electrochemical sensor; (a) quartz substrate, (b) deposition of adhesion layer and gold, (c) spin-coated photoresist, (d) exposure and development, (e) Dry etching of gold electrodes, (f) dry etching of platinum electrodes, (g) spin-coating photoresist, (h) exposure and development, (i) evaporation and sputtering of silver layer, (j) lift-off process to make silver Electrode, (k) PECVD deposition insulating layer, (l) etching insulating layer;
图3为本发明的重金属检测DPSV曲线;Fig. 3 is the heavy metal detection DPSV curve of the present invention;
图4(a)为本发明的重金属检测的溶出峰电流与Cd浓度的标准校准曲线;(b)为溶出峰电流与Pb浓度的标准校准曲线。Fig. 4 (a) is the standard calibration curve of the stripping peak current and the Cd concentration of the heavy metal detection of the present invention; (b) is the standard calibration curve of the stripping peak current and the Pb concentration.
具体实施方式detailed description
下面结合附图和具体实例对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific examples.
一、在图1(a)中,微电极阵列表面预镀铋膜,构成工作电极,银电极表面电镀氯化银,构成参比电极,铂电极作为对电极;三种电极通过MEMS工艺制作在一块石英基底上,通过相关的附属导线可与外界重金属电化学检测仪相连。图1(c)展示了传感器内部结构及关联,其中金电极3、金引线7、金焊盘10和第三导线18依次相连并导通,铂电极2、铂引线5、铂焊盘8和第一导线16依次相连并导通,银电极4、银引线6、银焊盘9和第二导线17依次相连并导通。1. In Figure 1(a), the surface of the microelectrode array is pre-coated with bismuth film to form the working electrode, the surface of the silver electrode is electroplated with silver chloride to form the reference electrode, and the platinum electrode is used as the counter electrode; the three electrodes are fabricated in the MEMS process. On a quartz substrate, it can be connected with an external heavy metal electrochemical detector through relevant auxiliary wires. Figure 1(c) shows the internal structure and association of the sensor, wherein the gold electrode 3, the gold lead 7, the gold pad 10 and the third wire 18 are sequentially connected and conducted, and the platinum electrode 2, the platinum lead 5, the platinum pad 8 and the The first wires 16 are sequentially connected and conducted, and the silver electrodes 4 , silver leads 6 , silver pads 9 and the second wires 17 are sequentially connected and conducted.
二、本发明基于微电极阵列的三电极集成电化学传感器的制备方法,包括以下步骤(见图2):Two, the present invention is based on the preparation method of the three-electrode integrated electrochemical sensor of microelectrode array, comprises the following steps (see Fig. 2):
1.制备金电极:将石英基底(图2a)清洗烘干后,磁控溅射Cr粘附层(30~50nm)和Au层(200~400nm)(图2b)。旋涂正性光刻胶(图2c),在紫外光下曝光显影(图2d),固化后干法刻蚀出金电极(图2e)。1. Preparation of gold electrodes: After cleaning and drying the quartz substrate (Fig. 2a), magnetron sputtering Cr adhesion layer (30-50nm) and Au layer (200-400nm) (Fig. 2b). Positive photoresist was spin-coated (Fig. 2c), exposed and developed under ultraviolet light (Fig. 2d), and after curing, gold electrodes were dry-etched (Fig. 2e).
2.制备铂电极:磁控溅射Ti粘附层(30~50nm)和Pt层(200~400nm)。旋涂正性光刻胶,曝光显影后,干法刻蚀出铂对电极(图2f)。2. Preparation of platinum electrodes: magnetron sputtering Ti adhesion layer (30-50nm) and Pt layer (200-400nm). The positive photoresist was spin-coated, and after exposure and development, the platinum counter electrode was dry-etched (Figure 2f).
3.制备银电极:先在芯片上涂覆一层0.5μm的正性光刻胶(图2g),充分曝光显影后,将银电极图案部位的光刻胶去除干净(图2h)。在高真空环境中,用等离子体中带正电荷的氩离子轰击银靶(阴极),被抛射出的银原子淀积在石英基底芯片上(阳极),形成100~200nm的银层(图2i),最后用lift-off工艺将银电极以外的银金属层及光刻胶一同去除干净(图2j)。3. Preparation of silver electrodes: First, coat a layer of 0.5 μm positive photoresist on the chip (Fig. 2g). After sufficient exposure and development, remove the photoresist on the silver electrode pattern (Fig. 2h). In a high vacuum environment, positively charged argon ions in the plasma are used to bombard the silver target (cathode), and the ejected silver atoms are deposited on the quartz substrate chip (anode), forming a 100-200nm silver layer (Figure 2i ), and finally use the lift-off process to remove the silver metal layer and photoresist except the silver electrode (Figure 2j).
4.制备绝缘层采用等离子体增强化学气相沉积法(PECVD)在石英基底芯片正面沉积一层绝缘层Si3N4(图2k),随后旋涂光刻胶,经紫外光曝光显影,蚀刻金微电极阵列、铂电极、银电极、金焊盘、铂焊盘、银焊盘表面的绝缘层,其他区域绝缘层保留下来,如图2l所示。4. Preparation of insulating layer A layer of insulating layer Si 3 N 4 was deposited on the front of the quartz substrate chip by plasma enhanced chemical vapor deposition (PECVD) (Fig. 2k), then spin-coated photoresist, exposed and developed by ultraviolet light, and etched gold The insulating layer on the surface of the microelectrode array, platinum electrode, silver electrode, gold pad, platinum pad, and silver pad, and the insulating layer in other areas are retained, as shown in Figure 2l.
5.焊接导线:用焊接金丝将第一导线和铂焊盘联结,将第二导线和金焊盘相联结,将第三导线和银焊盘相联结。5. Welding wires: use welding gold wire to connect the first wire to the platinum pad, connect the second wire to the gold pad, and connect the third wire to the silver pad.
三、参比电极制备方法3. Reference electrode preparation method
先用3MHNO3浸润银表层,然后将银电极作为阳极,铂电极作为阴极,在0.1MHCl中用大小为0.4mA/cm2的恒电流进行阳极极化,时间为300~600s。First soak the silver surface with 3MHNO 3 , then use the silver electrode as the anode and the platinum electrode as the cathode, and conduct anodic polarization with a constant current of 0.4mA/cm 2 in 0.1M HCl for 300-600s.
四、预镀铋膜4. Pre-plated bismuth film
将金微电极阵列作为工作电极,铂电极作为对电极,Ag|AgCl作为参比电极,构成三电极体系,并与分析仪器对应的电极接口相连。The gold microelectrode array is used as the working electrode, the platinum electrode is used as the counter electrode, and the Ag|AgCl is used as the reference electrode to form a three-electrode system, which is connected to the corresponding electrode interface of the analytical instrument.
a电极活化a Electrode activation
在1MH2SO4的溶液中,进行循环伏安扫描,参数见表1。重复多次扫描,直至出现稳定波形。In 1M H 2 SO 4 solution, a cyclic voltammetry scan was performed, and the parameters are shown in Table 1. Repeat multiple sweeps until a stable waveform appears.
表1金微电极活化Table 1 Gold microelectrode activation
b预镀铋膜b pre-coated bismuth film
更换为Bi(NO3)3溶液(1mol/LKNO3和1%HNO3作为底液),其中Bi3+浓度为0.005~0.03mol/L,进行恒电位法扫描,电位在-0.45~-0.3V之间,电镀时间为100~300s,参数见表2。Replace with Bi(NO 3 ) 3 solution (1mol/L KNO 3 and 1% HNO 3 as bottom solution), in which the concentration of Bi 3+ is 0.005~0.03mol/L, scan by constant potential method, and the potential is -0.45~-0.3 Between V, the electroplating time is 100-300s, and the parameters are shown in Table 2.
表2预镀铋膜Table 2 Pre-coated bismuth film
五、重金属检测5. Heavy metal detection
以上制备的铋膜微电极阵列作为工作电极,银氯化银电极作为参比电极,铂电极作为对电极,共同构成了三电极集成电化学传感器,将传感器的第一引线、第二引线和第三引线分别与电化学分析仪的工作电极接口、参比电极接口和对电极接口相连,经配置缓冲液,设定溶出伏安法参数,完成对铅、镉或镍的重金属检测,其中The bismuth film microelectrode array prepared above is used as the working electrode, the silver-silver chloride electrode is used as the reference electrode, and the platinum electrode is used as the counter electrode, which together constitute a three-electrode integrated electrochemical sensor. The three leads are respectively connected to the working electrode interface, reference electrode interface and counter electrode interface of the electrochemical analyzer. After configuring the buffer solution and setting the stripping voltammetry parameters, the heavy metal detection of lead, cadmium or nickel is completed.
1.PH缓冲溶液配置:1. PH buffer solution configuration:
Ka=[H+][Ac-]/[HAc];pH=pKa+lg([Ac-]/[HAc]);pKa=4.76(25℃)Ka=[H + ][Ac - ]/[HAc]; pH=pKa+lg([Ac - ]/[HAc]); pKa=4.76 (25°C)
取2.72g醋酸钠晶体,2.62mL冰醋酸(0.0458mol)溶于200mL去离子水中,配得PH=4.4的醋酸-醋酸钠缓冲溶液。Take 2.72g of sodium acetate crystals, and dissolve 2.62mL of glacial acetic acid (0.0458mol) in 200mL of deionized water to prepare an acetic acid-sodium acetate buffer solution with a pH of 4.4.
2.溶出伏安法参数设定如表32. The parameters of stripping voltammetry are set as shown in Table 3
表3差分脉冲溶出伏安法检测重金属Table 3 Differential pulse stripping voltammetry detection of heavy metals
3.测量结果如图4所示,实验结果表明该三电极传感器可用于重金属快速检测分析,并且有较好的线性度和灵敏度,检出限低。3. The measurement results are shown in Figure 4. The experimental results show that the three-electrode sensor can be used for rapid detection and analysis of heavy metals, and has good linearity and sensitivity, and low detection limit.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510694570.XA CN105388201A (en) | 2015-10-21 | 2015-10-21 | Three-electrode integrated electrochemical sensor based on microelectrode array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510694570.XA CN105388201A (en) | 2015-10-21 | 2015-10-21 | Three-electrode integrated electrochemical sensor based on microelectrode array |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105388201A true CN105388201A (en) | 2016-03-09 |
Family
ID=55420724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510694570.XA Pending CN105388201A (en) | 2015-10-21 | 2015-10-21 | Three-electrode integrated electrochemical sensor based on microelectrode array |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105388201A (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105891192A (en) * | 2016-06-24 | 2016-08-24 | 大连理工大学 | Electrochemical and electrochemical luminescence detection method based on integrated three-electrode system microchip |
CN106979969A (en) * | 2017-02-25 | 2017-07-25 | 深圳市赛亿科技开发有限公司 | The Intelligent bowl of concentration of heavy metal ion in a kind of detection food liquid |
CN107192665A (en) * | 2017-06-05 | 2017-09-22 | 中国石油大学(华东) | The test system and method for the heterogeneous texture local corrosion of multi-electrode coupling |
CN107991227A (en) * | 2018-01-08 | 2018-05-04 | 东北大学 | A kind of embedded type sensor device suitable for the detection of corrosion-inhibiting coating electrochemistry noise |
CN107991370A (en) * | 2017-10-27 | 2018-05-04 | 宁波大学 | Water sample heavy metal analysis apparatus and method and its micro-nano sensor |
CN108511600A (en) * | 2018-02-28 | 2018-09-07 | 云南中烟工业有限责任公司 | A kind of sound causes the preparation method of atomization chip |
CN108680627A (en) * | 2018-06-27 | 2018-10-19 | 宁波大学 | Micro-nano sensor and preparation method thereof for detecting Organic substance in water content |
CN108802127A (en) * | 2018-05-03 | 2018-11-13 | 佛山科学技术学院 | A kind of removable electrochemical sensor |
CN109632909A (en) * | 2018-12-14 | 2019-04-16 | 惠州市金百泽电路科技有限公司 | A kind of production method of ceramic base sensing electrode surface fine-line |
CN110558993A (en) * | 2019-09-19 | 2019-12-13 | 中国科学技术大学 | Prussian blue microneedle electrode for blood glucose monitoring, preparation method of prussian blue microneedle electrode, blood glucose monitoring patch and preparation method of blood glucose monitoring patch |
CN107843633B (en) * | 2017-11-03 | 2020-05-19 | 大连大学 | A kind of flexible electrode that can be used for copper ion determination and determination method thereof |
CN111323365A (en) * | 2020-04-09 | 2020-06-23 | 北京国网弘泰科技有限公司 | Three-electrode corrosion sensor and manufacturing method thereof |
CN111398542A (en) * | 2020-04-03 | 2020-07-10 | 长沙军民先进技术研究有限公司 | Wireless acquisition node and method based on water body environment monitoring |
CN111413255A (en) * | 2020-03-31 | 2020-07-14 | 浙江大学 | Micro-electrode system and method for testing oxygen mass transfer coefficient of proton exchange membrane |
CN112595763A (en) * | 2020-12-09 | 2021-04-02 | 华中科技大学 | Chemically modified electrode array sensor for detecting heavy metal ions in water body |
CN112666235A (en) * | 2021-01-19 | 2021-04-16 | 郑州轻工业大学 | PtNi bimetal-based two-electrode integrated enzyme-free glucose sensor and preparation method thereof |
CN113109408A (en) * | 2021-04-08 | 2021-07-13 | 海南师范大学 | Portable palm electrochemical sensor for detecting enzyme concentration based on chip electrode and preparation method and detection method thereof |
CN113640356A (en) * | 2021-09-09 | 2021-11-12 | 杭州超钜科技有限公司 | Chloride ion detection sensor |
CN113970584A (en) * | 2021-10-26 | 2022-01-25 | 河海大学常州校区 | Heavy metal ion detection method and system |
CN114113250A (en) * | 2021-12-24 | 2022-03-01 | 中国科学院空天信息创新研究院 | Multi-parameter sensor integrated chip and preparation method thereof |
CN114930165A (en) * | 2019-12-06 | 2022-08-19 | 创新水护理有限责任公司 | Amperometric sensor for measuring free chlorine with a reference electrode having a gold electrode surface consisting of a series of electrically connected, spaced apart surface portions |
CN116337971A (en) * | 2023-03-21 | 2023-06-27 | 深圳市雷诺华科技实业有限公司 | Reference electrode-free micro-matrix biosensor |
US11846597B2 (en) | 2018-01-03 | 2023-12-19 | Corning Incorporated | Methods for making electrodes and providing electrical connections in sensors |
CN117705910A (en) * | 2023-11-21 | 2024-03-15 | 南方科技大学 | A marine ecological multi-parameter in-situ detection chip |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2155019Y (en) * | 1993-04-12 | 1994-02-02 | 中国科学院上海冶金研究所 | Diamond-Platinum Thin Film Electrode |
CN201060198Y (en) * | 2007-06-07 | 2008-05-14 | 复旦大学 | An Integrated Disposable Electrochemical Sensor for Measuring Blood Lead Concentration |
CN102135518A (en) * | 2011-01-07 | 2011-07-27 | 上海交通大学 | Detection electrode of trace lead in drinking water and preparation method thereof |
CN102323314A (en) * | 2011-05-27 | 2012-01-18 | 中国科学院上海微系统与信息技术研究所 | Production and detection method of plated bismuth gold micro-array electrode for detecting heavy metals |
KR20120126977A (en) * | 2011-05-13 | 2012-11-21 | 고려대학교 산학협력단 | CNT-based three electrode system, fabrication of the same and electrochemical biosensor using the same |
CN103149265A (en) * | 2012-12-31 | 2013-06-12 | 北京师范大学 | Quick copper-testing method based on linear sweep voltammetry and three-electrode sensor |
CN103913501A (en) * | 2012-12-31 | 2014-07-09 | 北京师范大学 | Copper rapid determination method based on differential pulse voltammetry and three-electrode sensor |
CN103913502A (en) * | 2012-12-31 | 2014-07-09 | 北京师范大学 | Copper rapid determination method based on square-wave stripping voltammetry and three-electrode sensor |
CN104777199A (en) * | 2015-03-27 | 2015-07-15 | 浙江大学 | Nanometer material-based miniaturized electrochemical insulin sensor and preparation method thereof |
-
2015
- 2015-10-21 CN CN201510694570.XA patent/CN105388201A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2155019Y (en) * | 1993-04-12 | 1994-02-02 | 中国科学院上海冶金研究所 | Diamond-Platinum Thin Film Electrode |
CN201060198Y (en) * | 2007-06-07 | 2008-05-14 | 复旦大学 | An Integrated Disposable Electrochemical Sensor for Measuring Blood Lead Concentration |
CN102135518A (en) * | 2011-01-07 | 2011-07-27 | 上海交通大学 | Detection electrode of trace lead in drinking water and preparation method thereof |
KR20120126977A (en) * | 2011-05-13 | 2012-11-21 | 고려대학교 산학협력단 | CNT-based three electrode system, fabrication of the same and electrochemical biosensor using the same |
CN102323314A (en) * | 2011-05-27 | 2012-01-18 | 中国科学院上海微系统与信息技术研究所 | Production and detection method of plated bismuth gold micro-array electrode for detecting heavy metals |
CN103149265A (en) * | 2012-12-31 | 2013-06-12 | 北京师范大学 | Quick copper-testing method based on linear sweep voltammetry and three-electrode sensor |
CN103913501A (en) * | 2012-12-31 | 2014-07-09 | 北京师范大学 | Copper rapid determination method based on differential pulse voltammetry and three-electrode sensor |
CN103913502A (en) * | 2012-12-31 | 2014-07-09 | 北京师范大学 | Copper rapid determination method based on square-wave stripping voltammetry and three-electrode sensor |
CN104777199A (en) * | 2015-03-27 | 2015-07-15 | 浙江大学 | Nanometer material-based miniaturized electrochemical insulin sensor and preparation method thereof |
Non-Patent Citations (5)
Title |
---|
CHRISTOS KOKKINOS ET.AL: "Disposable lithographically fabricated bismuth microelectrode arrays for stripping voltammetric detection of trace metals", 《ELECTROCHEMISTRY COMMUNICATIONS》 * |
CHRISTOS KOKKINOS ET.AL: "Disposable microfabricated bismuth microelectrode arrays for trace metal analysis by stripping voltammetry", 《PROCEDIA ENGINEERING》 * |
CHRISTOS KOKKINOS ET.AL: "Microfabricated disposable lab-on-a-chip sensors with integrated bismuth microelectrode arrays for voltammetric determination of trace metals", 《ANALYTICA CHIMICA ACTA》 * |
VLASTIMIL REHACEK ET.AL: "Bismuth-coated diamond-like carbon microelectrodes for heavy metals determination", 《SENSORS AND ACTUATORS B: CHEMICAL》 * |
刘德盟 等: "基于溶出伏安法的铋微阵列电极检测饮料中的铅和镉", 《分析化学》 * |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105891192A (en) * | 2016-06-24 | 2016-08-24 | 大连理工大学 | Electrochemical and electrochemical luminescence detection method based on integrated three-electrode system microchip |
CN106979969A (en) * | 2017-02-25 | 2017-07-25 | 深圳市赛亿科技开发有限公司 | The Intelligent bowl of concentration of heavy metal ion in a kind of detection food liquid |
CN107192665A (en) * | 2017-06-05 | 2017-09-22 | 中国石油大学(华东) | The test system and method for the heterogeneous texture local corrosion of multi-electrode coupling |
CN107991370A (en) * | 2017-10-27 | 2018-05-04 | 宁波大学 | Water sample heavy metal analysis apparatus and method and its micro-nano sensor |
CN107843633B (en) * | 2017-11-03 | 2020-05-19 | 大连大学 | A kind of flexible electrode that can be used for copper ion determination and determination method thereof |
US11846597B2 (en) | 2018-01-03 | 2023-12-19 | Corning Incorporated | Methods for making electrodes and providing electrical connections in sensors |
US12222308B2 (en) | 2018-01-03 | 2025-02-11 | Corning Incorporated | Methods for making electrodes and providing electrical connections in sensors |
CN107991227A (en) * | 2018-01-08 | 2018-05-04 | 东北大学 | A kind of embedded type sensor device suitable for the detection of corrosion-inhibiting coating electrochemistry noise |
CN107991227B (en) * | 2018-01-08 | 2023-11-03 | 东北大学 | Implanted sensor device suitable for electrochemical noise detection of anti-corrosion coating |
CN108511600A (en) * | 2018-02-28 | 2018-09-07 | 云南中烟工业有限责任公司 | A kind of sound causes the preparation method of atomization chip |
CN108802127B (en) * | 2018-05-03 | 2020-07-07 | 佛山科学技术学院 | A detachable electrochemical sensor |
CN108802127A (en) * | 2018-05-03 | 2018-11-13 | 佛山科学技术学院 | A kind of removable electrochemical sensor |
CN108680627A (en) * | 2018-06-27 | 2018-10-19 | 宁波大学 | Micro-nano sensor and preparation method thereof for detecting Organic substance in water content |
CN108680627B (en) * | 2018-06-27 | 2023-09-12 | 宁波大学 | Micro-nano sensor for detecting organic matter content in water and manufacturing method thereof |
CN109632909A (en) * | 2018-12-14 | 2019-04-16 | 惠州市金百泽电路科技有限公司 | A kind of production method of ceramic base sensing electrode surface fine-line |
CN110558993A (en) * | 2019-09-19 | 2019-12-13 | 中国科学技术大学 | Prussian blue microneedle electrode for blood glucose monitoring, preparation method of prussian blue microneedle electrode, blood glucose monitoring patch and preparation method of blood glucose monitoring patch |
CN114930165A (en) * | 2019-12-06 | 2022-08-19 | 创新水护理有限责任公司 | Amperometric sensor for measuring free chlorine with a reference electrode having a gold electrode surface consisting of a series of electrically connected, spaced apart surface portions |
CN111413255A (en) * | 2020-03-31 | 2020-07-14 | 浙江大学 | Micro-electrode system and method for testing oxygen mass transfer coefficient of proton exchange membrane |
CN111413255B (en) * | 2020-03-31 | 2020-12-18 | 浙江大学 | Microelectrode system and method for testing oxygen mass transfer coefficient of proton exchange membrane |
CN111398542A (en) * | 2020-04-03 | 2020-07-10 | 长沙军民先进技术研究有限公司 | Wireless acquisition node and method based on water body environment monitoring |
CN111323365A (en) * | 2020-04-09 | 2020-06-23 | 北京国网弘泰科技有限公司 | Three-electrode corrosion sensor and manufacturing method thereof |
CN112595763A (en) * | 2020-12-09 | 2021-04-02 | 华中科技大学 | Chemically modified electrode array sensor for detecting heavy metal ions in water body |
CN112666235B (en) * | 2021-01-19 | 2023-03-10 | 郑州轻工业大学 | PtNi bimetal-based two-electrode integrated enzyme-free glucose sensor and preparation method thereof |
CN112666235A (en) * | 2021-01-19 | 2021-04-16 | 郑州轻工业大学 | PtNi bimetal-based two-electrode integrated enzyme-free glucose sensor and preparation method thereof |
CN113109408A (en) * | 2021-04-08 | 2021-07-13 | 海南师范大学 | Portable palm electrochemical sensor for detecting enzyme concentration based on chip electrode and preparation method and detection method thereof |
CN113640356A (en) * | 2021-09-09 | 2021-11-12 | 杭州超钜科技有限公司 | Chloride ion detection sensor |
CN113970584A (en) * | 2021-10-26 | 2022-01-25 | 河海大学常州校区 | Heavy metal ion detection method and system |
CN114113250A (en) * | 2021-12-24 | 2022-03-01 | 中国科学院空天信息创新研究院 | Multi-parameter sensor integrated chip and preparation method thereof |
CN114113250B (en) * | 2021-12-24 | 2024-01-09 | 中国科学院空天信息创新研究院 | Multi-parameter sensor integrated chip and preparation method thereof |
CN116337971A (en) * | 2023-03-21 | 2023-06-27 | 深圳市雷诺华科技实业有限公司 | Reference electrode-free micro-matrix biosensor |
CN116337971B (en) * | 2023-03-21 | 2023-11-10 | 深圳市雷诺华科技实业有限公司 | Reference electrode-free micro-matrix biosensor |
CN117705910A (en) * | 2023-11-21 | 2024-03-15 | 南方科技大学 | A marine ecological multi-parameter in-situ detection chip |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105388201A (en) | Three-electrode integrated electrochemical sensor based on microelectrode array | |
CN101609063B (en) | A microelectrode array chip sensor for electrochemical immunoassay | |
CN103031246B (en) | Microelectrode array chip for multi-parameter detection of nerve cells and preparation method thereof | |
CN101595381B (en) | Electrode plate for electrochemical measurement, electrochemical measuring apparatus having the electrode plate, and method for determining target substance by using the electrode plate | |
CN201060198Y (en) | An Integrated Disposable Electrochemical Sensor for Measuring Blood Lead Concentration | |
CN106248756B (en) | Preparation, application and test method of tebuconazole molecularly imprinted membrane electrode and its electrochemical sensor based on nano-gold sensitization | |
CN105445356B (en) | A kind of portable Ractopamine molecular engram Screen-printed electrochemical biosensor | |
CN102621199B (en) | Grapheme-modified Pt electrode and method for detecting trace amount heavy metal | |
CN107202823B (en) | A kind of ink jet printing prepares the method and its application of microelectrode array sensor | |
CN103592356A (en) | Method for quickly detecting lead and cadmium by adopting scanning anodic stripping voltammetry | |
CN104965011B (en) | Detect photoelectricity integrated electronic position sensor of extracellular biochemical parameter and preparation method thereof | |
CN104280365A (en) | Dual-detection biosensing chip and preparation method thereof and DNA detection method | |
CN105699452B (en) | A kind of preparation and application of the double function probe for integrating solid-phase micro-extraction fibre and Electrochemical Detection working electrode | |
CN104237201A (en) | Electrochemical cell based on in-situ EC-SERS (electrochemical-surface enhanced raman scattering) spectrum chip and detection method of electrochemical cell | |
CN109211989A (en) | A kind of electrochemical aptamer sensor and its preparation and detection method for detecting Atrazine | |
CN109298048A (en) | A copper-based sensor chip and its preparation method and detection method | |
CN101358941A (en) | A tailorable double-sided nanoribbon electrode array integrated sensor and its preparation method | |
CN110006969A (en) | A multi-parameter water environment integrated microsensor based on electrochemical detection technology and its preparation method | |
CN110927236A (en) | Method for detecting lead ion content of industrial wastewater based on electrochemical sensor | |
CN104777199A (en) | Nanometer material-based miniaturized electrochemical insulin sensor and preparation method thereof | |
CN103913494B (en) | A kind of electrochemical electrode | |
CN109444229B (en) | An electrochemical method for detecting trace mercury ions | |
Nkele et al. | Voltammetric sensors for diverse analysis | |
CN103364477A (en) | Method for detecting trace quantity of metal ions based on potential adjustment stripping voltammetry | |
CN115266860B (en) | A simple functionalized acupuncture needle electrode for measuring Cl- and its preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160309 |