CN105385902B - 一种AlN与AlB2颗粒增强铝基复合材料及其制备方法 - Google Patents
一种AlN与AlB2颗粒增强铝基复合材料及其制备方法 Download PDFInfo
- Publication number
- CN105385902B CN105385902B CN201510925733.0A CN201510925733A CN105385902B CN 105385902 B CN105385902 B CN 105385902B CN 201510925733 A CN201510925733 A CN 201510925733A CN 105385902 B CN105385902 B CN 105385902B
- Authority
- CN
- China
- Prior art keywords
- alb
- aln
- aluminum
- preparation
- mass percent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
- B22F3/15—Hot isostatic pressing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0047—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/1003—Use of special medium during sintering, e.g. sintering aid
- B22F3/1007—Atmosphere
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Products (AREA)
Abstract
本发明属复合材料技术领域,是一种AlN与AlB2颗粒增强铝基复合材料及其制备方法。该铝基复合材料,以铝为基体,其特征是:铝基体中含有弥散分布的原位自生纳米级AlN与微米级AlB2。其中,AlN的质量百分比为5.0~50.0,尺寸为20nm~100nm;AlB2的质量百分比为3.0~30.0,尺寸为0.2‑8.0μm;纳米级AlN与微米级AlB2协同强化。其制备方法为:按一定质量百分比配制原料,将铝粉、氮化硼粉和活性炭混合均匀后除气包套,在惰性气氛,100~200MPa压力条件下,采用两级烧结,即先在450~650℃低温烧结8~24h,然后升温至655~800℃中温烧结1~4h,获得纳米级AlN与微米级AlB2双尺度协同增强铝基复合材料。本发明的制备工艺简便环保,原料利用率高,制备的复合材料综合性能优异,具有良好的工业应用前景。
Description
技术领域
本发明属复合材料技术领域,特别涉及一种AlN与AlB2颗粒增强铝基复合材料及其制备方法。
背景技术
AlN密度为3.26g/cm3,莫氏硬度为7~8,热膨胀系数与硅相近,具有良好的抗侵蚀性能,是一种性能优异的陶瓷增强颗粒;AlB2密度为2.95g/cm3,硬度高,可有效改善合金的电导率、耐磨性和耐蚀性,是一种具有发展潜力的复合材料用增强颗粒。纳米级AlN具有较大的比表面积且可原位自生,因此与基体结合良好,可通过Orowan强化机制、钉扎位错等提高材料强度;另一方面,AlN颗粒可钉扎大角晶界,细化晶粒,强化基体;微米级AlB2可与α-Al通过共晶反应细化基体,且其与基体间存在较大的热错配,会使周围基体产生大量的位错和滑移,提高基体承载能力。当复合材料承受载荷时,两种增强颗粒协同强化:首先基体发生塑性变形,基体上弥散分布的纳米AlN颗粒及位错等可有效承载;当载荷继续增大时,AlB2会产生微观变形,但由于周围存在大量纳米级AlN颗粒,因此需要更大的载荷才可诱发变形;当进一步增加载荷时,会在AlB2周围产生微裂纹,但由于基体上分布着大量纳米级AlN颗粒,有效阻碍裂纹扩展,复合材料的性能得到显著提高。此外,微米级AlB2颗粒不仅能作为强化相提高材料的力学性能,还能有效中和对导电性能有害的微量过渡族金属元素,提高复合材料的电导率。AlB2与基体铝界面结合强度高,并且由于铝的延展性好,界面区域的塑变能力强,在外力作用下AlB2不易从基体中脱离出来,可极大程度地提高复合材料的耐磨性。因此,纳米、微米双尺度增强颗粒在优化的粒径和含量比条件下可最大程度地发挥其协同强化铝基体的作用。
公开号为CN100370047C的中国专利公开了一种氮化铝增强金属铝的双纳米复合材料,采用含氮等离子金属反应法制备纳米复合粉,在真空度低于10-2Pa,温度为300~500℃,压力为500~1500MPa条件下对冷压样品进行热压致密化处理后获得纳米氮化铝增强纳米铝基复合材料。但该方法无法有效控制增强颗粒的含量,并且增强相种类和颗粒尺寸单一,制备工艺复杂。公开号为CN1718806A的 中国专利公布了原位TiB2、AlN混杂增强铝基复合材料及其制备方法,以铝锭、KBF4、K2TiF6和N2为原料,制备TiB2与AlN混杂增强铝基复合材料。该方法存在以下不足:由于氮气在铝熔体中的溶解度极低,氮化效率低,因而增强颗粒含量无法有效控制;以KBF4和K2TiF6为原料,制备过程中会放出大量氟化物有害气体,污染环境,并对人体和设备损害严重,而且使一部分铝变成AlF3,原料损耗大。另外,文献(Scripta Materialia,1997,36:7-14)在用外加法制备BN增强铝基复合材料时发现,在BN与铝基体结合处存在界面反应,生成AlN与AlB2。该文献涉及的复合材料增强相为BN,这种伴生反应削弱了BN增强颗粒与基体间的结合强度,并降低了BN增强颗粒的稳定性。
发明内容
本发明目的在于现有技术的不足和缺陷,提供一种综合性能优异的AlN与AlB2颗粒增强铝基复合材料,并提出一种工艺简便、适合工业化生产的制备方法。
本发明是通过以下方式实现的:
一种AlN与AlB2颗粒增强铝基复合材料,以铝为基体,其特征是:铝基体中含有弥散分布的原位自生纳米级AlN与微米级AlB2;其中,AlN的质量百分比为5.0~50.0,尺寸为20nm~100nm;AlB2的质量百分比为3.0~30.0,尺寸为0.2μm~8.0μm;纳米级AlN与微米级AlB2协同增强。
上述铝基复合材料的制备方法,其特征包括以下步骤:
(1)按以下质量百分比准备好所需原料:粒度≤50μm的铝粉79.00~96.00、粒度≤2μm的氮化硼粉3.00~20.00,粒度≤3μm的活性炭0.25~1.50,其中活性炭为活性剂。
(2)将步骤(1)中所述的铝粉、氮化硼粉和活性炭混合均匀后除气包套,在氩气气氛,100~200MPa压力条件下,采用两级烧结,即先在450~600℃低温烧结8~24h,然后升温至650~800℃中温烧结1~12h,可获得纳米级AlN与微米级AlB2双尺度协同增强铝基复合材料。
与现有技术相比,本发明有以下优点:
(1)采用两级烧结机制,即“低温烧结+中温烧结”:低温烧结有助于生成大量弥散分布的纳米级AlN颗粒增强基体;中温烧结有助于生成大量弥散分布的微米级AlB2颗粒和提高复合材料的致密度。
(2)增强颗粒原位自生,纯度高,表面洁净、无污染,且与基体润湿性好,界面结合强度高;增强颗粒分别为纳米级和微米级,有利于改善材料的尺寸稳定性和加工性能,可实现近净形成形。
(3)通过调整BN的配比改变增强相的含量,通过改变热等静压温度、烧结时间与活性炭的含量控制复合材料中增强颗粒尺寸及形貌:AlN:20nm~100nm AlB2:0.2μm~8.0μm。
(4)实现原位自生纳米级AlN与微米级AlB2双尺度协同增强效果。
(5)制备方法绿色环保,材料利用率高。
本发明新采用热等静压技术与两级烧结机制,实现了AlN与AlB2协同增强,在较大范围内控制增强颗粒的尺寸,制备出纳米级AlN与微米级AlB2协同增强铝基复合材料。本方法制备的增强颗粒原位自生,纯度较高且分布弥散;与基体界面的原子结合力强,界面纯净强度高,从而有利于材料力学性能的提高,综合性能优异。
具体实施方式
下面给出本发明的三个最佳实施例:
实施例1
(1)按以下质量百分比准备好所需原料:Al粉(粒度≤50μm)94.65、BN粉(粒度≤2μm)5.00、活性炭0.35。
(2)将上述Al粉、BN粉与活性炭混合均匀后除气包套,在氩气气氛,先在450℃、100MPa条件下低温烧结24h,然后升温至650℃在160MPa压力下中温烧结12h,获得原位自生纳米级AlN与微米级AlB2协同增强铝基复合材料。其具体成分(质量百分比)为:Al-8.2AlN-4.9AlB2,AlN尺寸为20~30nm,AlB2尺寸为0.5~1μm。
实施例2
(1)按以下质量百分比准备好所需原料:Al粉(粒度≤50μm)89.25、BN粉(粒度≤2μm)10.00、活性炭0.75。
(2)将Al粉、BN粉与活性炭混合均匀后除气包套,在氩气气氛,先在550℃、120MPa条件下低温烧结12h,然后升温至750℃在180MPa压力下中温烧结6h,获得原位自生纳米级AlN与微米级AlB2协同增强铝基复合材料。其 具体成分(质量百分比)为:Al-16.4AlN-9.8AlB2,AlN尺寸为40~50nm,AlB2尺寸为4~5μm。
实施例3
(1)按以下质量百分比准备好所需原料:Al粉(粒度≤50μm)79.0、BN粉(粒度≤2μm)20.0、活性炭1.0。
(2)将Al粉、BN粉与活性炭混合均匀后除气包套,在氩气气氛,先在600℃、140MPa条件下低温烧结8h,然后升温至800℃在200MPa压力下中温烧结1h,获得原位自生纳米级AlN与微米级AlB2协同增强铝基复合材料。其具体成分(质量百分比)为:Al-32.8AlN-19.6AlB2,AlN尺寸为90~100nm,AlB2尺寸为7~8μm。
Claims (2)
1.一种AlN与AlB2颗粒增强铝基复合材料,以铝为基体,其特征是:铝基体中含有弥散分布的原位自生纳米级AlN与微米级AlB2;其中,AlN的质量百分比为5.0~50.0,尺寸为20nm~100nm;AlB2的质量百分比为3.0~30.0,尺寸为0.2-8.0μm;纳米级AlN与微米级AlB2协同增强。
2.根据权利要求1所述一种AlN与AlB2颗粒增强铝基复合材料的制备方法,其特征是包括以下步骤:
(1)按以下质量百分比准备好所需原料:粒度≤50μm的铝粉79.00~96.00、粒度≤2μm的氮化硼粉3.00~20.00,粒度≤3μm的活性炭0.25~1.50;
(2)将步骤(1)中所述的铝粉、氮化硼粉和活性炭混合均匀后除气包套,在氩气气氛,100~200MPa压力条件下,两级烧结,即先在450~650℃低温烧结8~24h,然后升温至655~800℃中温烧结1~4h,获得纳米级AlN与微米级AlB2双尺度协同增强铝基复合材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510925733.0A CN105385902B (zh) | 2015-12-10 | 2015-12-10 | 一种AlN与AlB2颗粒增强铝基复合材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510925733.0A CN105385902B (zh) | 2015-12-10 | 2015-12-10 | 一种AlN与AlB2颗粒增强铝基复合材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105385902A CN105385902A (zh) | 2016-03-09 |
CN105385902B true CN105385902B (zh) | 2017-03-08 |
Family
ID=55418671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510925733.0A Active CN105385902B (zh) | 2015-12-10 | 2015-12-10 | 一种AlN与AlB2颗粒增强铝基复合材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105385902B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110578066A (zh) * | 2019-09-19 | 2019-12-17 | 天津大学 | 原位生成AlN和AlB2双相颗粒增强的铝基复合材料的制备方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110592412B (zh) * | 2019-10-18 | 2020-09-25 | 南京理工大学 | 纳米AlN颗粒增强混晶耐热铝基复合材料及制备方法 |
CN111733375B (zh) * | 2020-07-09 | 2022-05-10 | 湖南金天铝业高科技股份有限公司 | 氮化硼和氮化铝增强的铝基复合材料、其制备方法及应用 |
CN113862587B (zh) * | 2021-08-12 | 2022-09-13 | 衢州学院 | 一种原位双相双尺度协同增强TiAl基复合材料及制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4604368A (en) * | 1983-06-24 | 1986-08-05 | Alcan International Limited | Method of producing an aluminium boride |
CN1417362A (zh) * | 2002-12-11 | 2003-05-14 | 山东大学 | 氧化铝-碳化钛粒子增强铝基复合材料的制备方法 |
US6630247B1 (en) * | 1998-08-12 | 2003-10-07 | Dow Global Technologies Inc. | Ceramic-metal composite and method to form said composite |
CN102329993A (zh) * | 2011-09-07 | 2012-01-25 | 山东大学 | 一种高硼高碳铝基中间合金及其制备方法 |
CN104120310A (zh) * | 2014-08-04 | 2014-10-29 | 山东大学 | 一种铝基复合材料及其制备方法 |
-
2015
- 2015-12-10 CN CN201510925733.0A patent/CN105385902B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4604368A (en) * | 1983-06-24 | 1986-08-05 | Alcan International Limited | Method of producing an aluminium boride |
US6630247B1 (en) * | 1998-08-12 | 2003-10-07 | Dow Global Technologies Inc. | Ceramic-metal composite and method to form said composite |
CN1417362A (zh) * | 2002-12-11 | 2003-05-14 | 山东大学 | 氧化铝-碳化钛粒子增强铝基复合材料的制备方法 |
CN102329993A (zh) * | 2011-09-07 | 2012-01-25 | 山东大学 | 一种高硼高碳铝基中间合金及其制备方法 |
CN104120310A (zh) * | 2014-08-04 | 2014-10-29 | 山东大学 | 一种铝基复合材料及其制备方法 |
Non-Patent Citations (1)
Title |
---|
BN/Al金属基复合材料;启明;《金属功能材料》;19971031(第5期);第235页 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110578066A (zh) * | 2019-09-19 | 2019-12-17 | 天津大学 | 原位生成AlN和AlB2双相颗粒增强的铝基复合材料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105385902A (zh) | 2016-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102260814B (zh) | 一种原位纳米TiC陶瓷颗粒增强铝基复合材料及其制备方法 | |
CN106591666B (zh) | 一种石墨烯增强铝基碳化硅复合材料及其制备方法和其应用 | |
CN105328186B (zh) | 一种基于激光3d打印形成的铝基原位复合材料及其制备方法 | |
Yang et al. | Highly conductive wear resistant Cu/Ti 3 SiC 2 (TiC/SiC) co-continuous composites via vacuum infiltration process | |
CN105385902B (zh) | 一种AlN与AlB2颗粒增强铝基复合材料及其制备方法 | |
CN110257684B (zh) | 一种FeCrCoMnNi高熵合金基复合材料的制备工艺 | |
CN102242303B (zh) | 一种原位纳米TiC陶瓷颗粒增强铜基复合材料及其制备方法 | |
CN104988438A (zh) | 一种高强高导碳纳米管增强铜基复合材料及其制备方法 | |
CN103589894B (zh) | 一种制备二维散热用取向增强Cu复合材料的方法 | |
Akhlaghi et al. | Effect of the SiC content on the tribological properties of hybrid Al/Gr/SiC composites processed by in situ powder metallurgy (IPM) method | |
CN1944698A (zh) | 一种超高导热、低热膨胀系数的复合材料及其制备方法 | |
CN102534331B (zh) | 一种高导热金刚石/铝复合材料的制备方法 | |
CN110042280A (zh) | 一种原位内生多相颗粒增强铝基复合材料及其制备方法 | |
CN109554565A (zh) | 一种碳纳米管增强铝基复合材料的界面优化方法 | |
CN105401001B (zh) | 一种粉末冶金法制备钨颗粒增强铝基复合材料的工艺方法 | |
Yin et al. | The effect of modified interfaces on the mechanical property of β-silicon nitride whiskers reinforced Cu matrix composites | |
CN1958817A (zh) | 一种利用放电等离子烧结制备高铌钛铝合金材料的方法 | |
CN110578066A (zh) | 原位生成AlN和AlB2双相颗粒增强的铝基复合材料的制备方法 | |
CN109868392A (zh) | 一种铁基非晶合金增强的铝基复合材料及其制备方法 | |
CN1161483C (zh) | 一种高强度原位铝基复合材料 | |
CN104532042B (zh) | 一种立方氮化硼颗粒增强Cu基电极复合材料及其制备方法 | |
Wang et al. | Effect of TiB2 content on microstructure and mechanical properties of (TiB2p+ B4Cp)/Al composites fabricated by microwave sintering | |
Wang et al. | Pulse electric current sintering of 3D interpenetrating SiC/Al composites | |
Tabie et al. | Microstructure and mechanical properties of particle reinforced high-temperature titanium composites | |
CN115747552B (zh) | 一种纳米铜修饰碳纳米管增强钛基复合材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20160309 Assignee: Shandong Mao Jing New Materials Co., Ltd. Assignor: Shandong University Contract record no.: X2019370000005 Denomination of invention: A kind of AlN and ALB2 particle reinforced aluminum matrix composite and its preparation method Granted publication date: 20170308 License type: Exclusive License Record date: 20191010 |
|
EE01 | Entry into force of recordation of patent licensing contract |