CN105376805A - 一种基于预测业务带宽可调的异构无线网络负载均衡方法 - Google Patents

一种基于预测业务带宽可调的异构无线网络负载均衡方法 Download PDF

Info

Publication number
CN105376805A
CN105376805A CN201510823440.1A CN201510823440A CN105376805A CN 105376805 A CN105376805 A CN 105376805A CN 201510823440 A CN201510823440 A CN 201510823440A CN 105376805 A CN105376805 A CN 105376805A
Authority
CN
China
Prior art keywords
network
prediction
bandwidth
value
heterogeneous wireless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510823440.1A
Other languages
English (en)
Other versions
CN105376805B (zh
Inventor
申红磊
周小平
祝叶飞
李磊
邵万平
汪毕文
谢新月
王功燃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Normal University
University of Shanghai for Science and Technology
Original Assignee
Shanghai Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Normal University filed Critical Shanghai Normal University
Priority to CN201510823440.1A priority Critical patent/CN105376805B/zh
Publication of CN105376805A publication Critical patent/CN105376805A/zh
Application granted granted Critical
Publication of CN105376805B publication Critical patent/CN105376805B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及一种基于预测业务带宽可调的异构无线网络负载均衡方法,包括以下步骤:1)建立季节性移动平均差分模型;2)计算预测步长,获得呼叫到达率的预测时刻,通过季节性移动平均差分模型对当前一段时间异构无线网络的呼叫到达率进行预测,得到预测时刻的呼叫到达率;3)采用SAW算法或根据预测时刻的呼叫到达率采用改进SAW算法选择业务切换到的目标网络;4)在业务切换到的目标网络后,根据预测时刻的呼叫到达率建立幂指函数转移曲线,采用幂指函数非线性地调整业务接入带宽。与现有技术相比,本发明具有主动负载均衡、预测算法科学准确、带宽调整算法有预见性、负载控制迅速有效、负载波动变小、呼叫阻塞率低等优点。

Description

一种基于预测业务带宽可调的异构无线网络负载均衡方法
技术领域
本发明涉及网络负载均衡方法,尤其是涉及一种基于预测业务带宽可调的异构无线网络负载均衡方法
背景技术
中国发明专利公开说明书CN103889001A公开了一种基于未来负载预测的自适应负载均衡方法,该方法利用马尔科夫链来预测下一时刻网络的负载,由此自适应调整触发负载均衡方法的门限以及进行接入控制的方法模型;该方法通过网络之前的负载状况由经过本发明定义的转移概率,计算出未来时刻处于轻载或重载的概率,由算出的概率根据本发明定义的负载效益函数,计算出该网络未来的负载效益值。当网络中有用户请求切换接入或新发起接入请求时,优先选择负载效益值小的网络作为目标网络接入,从而使得整个异构网络的负载均衡,有效地减少了切换的掉话率和接入阻塞率。同时,如预测到未来负载轻载概率大,就动态提高触发负载均衡方法门限,避免网络执行不必要的负载均衡。
这种负载均衡策略包括一些常见的负载均衡策略大都在负载出现不均时被动调整负载均衡,在高负载时容易出现负载失调现象,出现呼叫阻塞率增高,当负载较轻时网络资源利用率低。
现在有的业务带宽调整策略多用分级调整方法调整业务带宽,不能根据网络负载实时变动动态调整业务带宽,且在网络负载极高和负载极低时对由于分级不够细致,致使负载调控不够有效,且负载波动情况并没有得到抑制。
异构无线网络是负载是惯性系统,现在业务接入会对将来网络负载均衡造成影响。现有切换算法没有考虑负载滞后造成的影响。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种主动负载均衡、预测算法科学准确、带宽调整算法有预见性、使用幂指函数的基于预测业务带宽可调的异构无线网络负载均衡方法。
本发明的目的可以通过以下技术方案来实现:
一种基于预测业务带宽可调的异构无线网络负载均衡方法,包括以下步骤:
1)建立季节性移动平均差分模型;
2)计算预测步长,获得呼叫到达率的预测时刻,通过季节性移动平均差分模型对当前一段时间异构无线网络的呼叫到达率进行预测,得到预测时刻的呼叫到达率;
3)采用SAW算法或根据预测时刻的呼叫到达率采用改进SAW算法选择业务切换到的目标网络;
4)在业务切换到的目标网络后,根据预测时刻的呼叫到达率建立幂指函数转移曲线,采用幂指函数非线性地调整业务接入带宽。
所述的步骤1)具体包括以下步骤:
11)建立初步的季节性移动平均差分模型,并获取一定周期内异构无线网络的历史呼叫到达率数据;
12)采用初步的季节性移动平均差分模型对历史呼叫到达率数据进行预测,并将初步预测值与真实的历史呼叫到达率数据比较,当初步预测值与历史数据的误差超过阈值时,则对初步的季节性移动平均差分模型参数进行修改,直到误差在阈值范围内。
所述的步骤2)具体包括以下步骤:
21)采用经验取参法计算预测步长t,则有:
t=θT
其中,T为最长观察步长,ΔT为等分T后的单位步长,θ为步长调整参数,分别为在时间T内预测呼叫到达率的均值和方差,分别为在第n等分单位步长内的均值和方差;
22)根据预测步长t获取预测时刻则有:
t ^ = t 0 + t ′
t′=λt
其中,为在预测步长t内预测呼叫到达率的均值,λ为滑块,t0为当前时刻;
23)通过季节性移动平均差分模型预测得到预测时刻的呼叫到达率。
所述的步骤3)中,改进SAW算法具体包括以下步骤:
31)获取预测时刻的呼叫到达率的归一化值
32)根据归一化值和网络代价函数fn构建改进网络代价函数
q s n = γ n f n
f n = Σ s C s n Q s n
Q s n = Σ i W s , j n Q s , j n
γ n = η t ^
其中,为是异构无线网络中待选网络n提供业务s时的网络消除因数,为示从待选网络n获得应用s的代价函数值,为是业务s的参数i的权重规范化值,为待选网络n中业务s的参数i的属性值规范化网络参数;
33)获取异构无线网络中所有待选网络的网络代价函数,选择网络代价函数中的最小值对应的待选网络作为业务切换到的目标网络。
所述的步骤4)具体包括以下步骤:
41)设置目标网络k中业务s带宽的最小值目标网络k中业务s带宽的平衡值目标网络k中业务s带宽的最大值
42)计算时间段内季节性移动平均差分模型预测呼叫到达率的归一化均值和方差
η t ^ ‾ = car t ^ ‾ car ( max )
其中,car(max)为满负载时刻的呼叫到达率值;
43)当时采用带宽增加方案,调整后的带宽值为:
adj + = mid s k + &lsqb; max s k - mid s k &rsqb; &CenterDot; ( 1 - &eta; t ^ &OverBar; ) 1.5 + 0.2 &CenterDot; ( 14 - &sigma; t ^ ) adj + < max s k max s k adj + &GreaterEqual; max s k
其中,adj+为业务按照幂指函数转移后的业务带宽调整值;
时采用带宽减少方案,调整后的带宽值为
adj - = mid s k - &lsqb; mid s k - min n k &rsqb; &CenterDot; &eta; &OverBar; ( 6 + 0.01 &sigma; t ^ ) adj - > mid s k mid s k adj - &le; mid s k
其中,adj-为业务按照幂指函数转移后的业务带宽调整值。
所述的目标网络包括UMTS网络和WLAN网络。
与现有技术相比,本发明具有以下优点:
一、主动负载均衡:负载均衡在切换阶段执行,从造成负载失衡的源头开始主动平衡网络负载,改变对设置负载门限启动切换算法,被动进行业务转移的方法,使业务QoS下降。
二、预测算法科学准确:使用季节SARIMA(P,D,Q)×(p,d,q)理论作为负载均衡技术的预测方法,此预测方法理论方法是一套系统科学的预测方法,理论基础雄厚,对于周期性的时间序列数据信息提取从分,预测准确。
三、带宽调整算法有预见性:带宽调整依据下一时刻值,使得带宽调整值具有预见性,克服依据现在时刻带宽调整方法因业务时间随机延时对未来网络负载造成影响的缺点;
四、使用幂指函数,预测CAR值作为底数,非线性转移CAR,使得负载越高,业务带宽减少越多,使得网络接纳更多用户,降低呼叫阻塞率;负载越低,业务带宽增加越多,业务QoS明显提高,网络资源利用率快速提升。幂指函数的非线性带宽调整,使得整体负载调控更加快速有效;
五、使用幂指函数,预测CAR方差作为指数,负载变化剧烈时,转移曲线变陡峭,有效抑制网络负载波动,负载曲线更加平滑。
附图说明
图1为本发明负载超前转移算法流程
图2为UMTS/WLAN异构无线网络模型。
图3为模型整体预测效果
图4为SARIMA(1,1,0)×(3,1,2)模型预测33个序列误差
图5为幂指函数带宽调整转移曲线。
图6为SAW算法时序仿真,其中,图(6a)为UMTS网络SAW算法时序仿真图(6b)为WLAN网络SAW算法时序仿真
图7为TBSAW算法时序仿真,其中,图(7a)为UMTS网络TBSAW算法时序仿真图(7b)为WLAN网络TBSAW算法时序仿真
图8为SAW、TBSAW算法呼叫阻塞率仿真
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例:
为了简化异构无线网模型,本发明举例使用的异构无线网模型由两个代表性的网络组成:一个UMTS(UniversalMobileTelecommunicationSystem)网络和一个WLAN(WirelessLocalAreaNetwork)网络,其中UMTS网络的覆盖半径为R1,WLAN网络的覆盖范围为R2,R1>R2,WLAN的网络覆盖范围是UMTS网络覆盖范围的子集,如图2所示。
为了方便起见,称图1模型为UMTS/WLAN异构网络。如果没有特殊说明,本实施例下面提到的异构无线网络指的是图2的UMTS/WLAN异构网模型。
移动网络中呼叫到达率数据(CAR)实际数据并非按高斯分布随机产生,实际中的CAR是按照人类的作息规律周期产生。本文使用CAR数据来源是模拟上海游族大厦中午12:00~12:33分钟话务使用情况,每分钟采集一次,每天33个数据,连续采集10天形成的时间序列。如表1所示。
US(UMTSCARSoucedate)代表在UMTS网络覆盖范围而WLAN网络未覆盖范围内的CAR数据,一个周期33个时间序列,共330个数据,单位是分。
表2给出网络的业务参数。
表2中三种业务中带宽是积极因素,时延和价格是消极因素,参数归一化得UMTS和WLAN网络参数归一化表3
表4给出了网络权重归一化值。
移动网络中呼叫到达率数据(CAR)实际数据并非按高斯分布随机产生,实际中的CAR是按照人类的作息规律周期产生。本文使用CAR数据来源是模拟上海游族大厦中午12:00~12:33分钟话务使用情况,每分钟采集一次,每天33个数据,连续采集10天形成的时间序列。如表1所示。
表1US数据10天样本值
表2网络业务参数
表3网络参数归一化
表4网络权重归一化
垂直切换算法多用多属性决策理论,最典型的代表就是简单加权算法(SAW),将SAW算法简明阐述。
n _ o p t = { n | m i n 1 &le; n &le; N Q s n } - - - ( 1 )
式(1)中的是网络n的代价函数。可以体现移动终端从网络n获得应用的QoS,表示终端从网络n获得应用s的代价函数值,计算方法如式(2)所示。
Q s n = &Sigma; i W s , j n Q s , j n (满足 &Sigma; i W s , i n = 1 )(2)
其中是网络n中业务s的参数i的属性值规范化网络参数;是业务s的参数i的权重规范化值。
本实施例具体包括如下步骤:
步骤一,根据CAR十个周期数据使用Eviews软件建立SARIMA(1,1,0)×(3,1,2)模型,如下式所示:
(1+1.079B-0.094B3)(1+0.457B33)(1-B)
(1-B33)US(t)=(1-0.978B2t
模型预测值与原10个周期序列效果图如图3所示。
步骤二、根据建立的模型使用动态预测,对接下33期进行预测,如图4所示。对比实际值,预测值误差在5%以内,模型高度吻合,预测效果非常好。
对WS数据建立模型与预测和US数据一样,不在赘述。
步骤三、使用经验估值法确定采用的预测时刻值,包含以下步骤:
(1)采用经验取参法计算预测步长t,则有:
t=θT
其中,T是经过长期观察,知到所有网络最长观察步长,适当n等分T,得到第n时刻离散化的步长时间段Δn,每个时间段内负载曲线的μ,及σ可有时间序列的预测曲线得知对应的设对应时间T内的均值和方差用来表示。Δn内的均值与方差分别用表示。
(2)根据预测步长t获取预测时刻则有:
t ^ = t 0 + t &prime;
t′=λt
其中,为步长t内第n等分方差预测值,为t时刻内CAR方差值,λ为滑块,t0为当前时刻;
(3)获取预测时刻对应预测值的归一化值
&eta; t ^ = C A R ( t ^ ) CAR ( max )
其中,为预测时刻的预测呼叫到达率,CAR(max)为满负载时的呼叫到达率值;
(4)将归一化值作为目标网络的超前引导因子γn,并根据超前引导因子γn改进简单加权算法,代价函数值为:
Q s n = &gamma; n &Sigma; i W s , i n Q s , j n
&gamma; n = &eta; t ^
其中,为示从待选网络n获得应用s的代价函数值,为待选网络n中业务s的参数i的权重规范化值,为待选网络n中业务s的参数i的属性值规范化网络参数。
步骤四、根据切换算法,当业务切换到目标网络后使用幂指函数计算业务接入带宽,形成TBSAW算法。包含以下步骤:
1)使用简单加权算法(SAW)计算网络的代价函数,代价函数最小的网络即为目标网络:
n _ o p t = { n | m i n 1 &le; n &le; N Q s n } - - - ( 1 )
式(1)中的是网络n的代价函数。可以体现移动终端从网络n获得应用的QoS,表示终端从网络n获得应用s的代价函数值,计算方法如式(2)所示。
Q s n = &Sigma; i W s , j n Q s , j n (满足 &Sigma; i W s , i n = 1 )(2)
其中是网络n中业务s的参数i的属性值规范化网络参数;是业务s的参数i的权重规范化值。
2)分别设置UMTS和WLAN网络中业务的最大值,平衡值和最大值,如表6所示。
表6UMTS和WLAN网络业务带宽调整范围
3)计算CAR预测值3分钟以内的归一化均值和方差
4)CAR幂指函数非线性转移
CAR幂指函非线性转移曲线如图5所示。
时执行带宽增加策略,执行TBSAW算法调整后的带宽值为
a d j = mid s n + &lsqb; max s n - mid s n &rsqb; &CenterDot; ( 1 - &eta; i ^ &OverBar; ) 1.5 + 0.2 &CenterDot; ( 14 - &sigma; t ^ )
adj为业务按照幂指函数转移后的业务带宽调整值,当时业务带宽按照上式计算结果确定,当时业务带宽按接入网络;
5)当时执行带宽减少策略,执行TBSAW算法调整后的带宽值为
a d j = mid s n - &lsqb; mid s n - min n s &rsqb; &CenterDot; &eta; &OverBar; ( 6 + 0.01 &sigma; t ^ )
adj为业务按照幂指函数转移后的业务带宽调整值,当时业务带宽按照上式计算结果确定,当时业务带宽按接入网络;
仿真结果分析:
网络的CAR按照预设的时序值不变,设网络中的呼叫以0.5的概率是VoIP,0.5的概率是Video,每一个呼叫持续时间为在1-5分钟之间随机分布,SAW算法仿真结果如图6所示。
图6中子图(a)中实线为原UMTS网络CAR数据,左侧为其坐标,点划线为在UMTS网络中使用SAW切换算法网络负载曲线,右侧为其归一化坐标。子图(b)中实线为原WLAN网络CAR数据,左侧为其坐标,点划线为在WLAN网络中使用SAW切换算法网络负载曲线,右侧为其归一化坐标。
图6可以看出负载线明显滞后于CAR曲线,为了量化负载滞后CAR值,表5使用相关系数来描负载与CAR关系。
表5SAW算法呼叫到达率和负载相关系数
表5中Load(t+k)(k=1,2,3,4,5),表示将负载Load超前k期,US表示UMTS网络原始CAR数据。从表4可以看出,当k≤2时随着k的增加,US和Load(t+k)相关系数增加,当k=2时相关系数最大,当k>2时随着k的增加,相关系数逐渐减小。
k=2时,相关系数最大达到0.872,CAR与负载高度相关,说明负载曲线滞后2分钟与CAR曲线相关性最强,本文仿真系统SAW算法负载滞后CAR数据约2分钟。
2)TBSAW算法时序仿真
改进的负载超前转移算法按流程图1仿真,仿真结果如图7所示。
SAW对比TBSAW仿真时序可以看出
第一、负载线峰度减小,这是因为TBSAW算法中BUDA在负载越高的时候通过幂指函数,使新接入网络业务分配带宽降低,有力的控制了负载的升高,起到了削峰的作用;
第二、负载线的波谷也提升了,这是因为网络负载较低的时刻BUDA算法通过非线性幂指函数把给每个新接入业务更多的带宽,从而使波谷缓和,提高了网络资源利用率;
第三、网络负载特性曲线变得更加缓和,这是因为BUDA在负载高时降低新业务带宽,网络负载低时提高新业务负载,另外通过网络负载方差值,调整幂指函数指数,使得网络变得更加平滑。
3)呼叫阻塞率分析
图8为TBSAW算法对比SAW算法呼叫阻塞率分析,TBSAW算法阻塞率曲线不仅降低,而且很多时刻值为0,这是因为BUDA算法中,通过预测的网络负载方差,调整幂指函数控制曲线,使得网络负载的控制更加快速,有力。

Claims (6)

1.一种基于预测业务带宽可调的异构无线网络负载均衡方法,其特征在于,包括以下步骤:
1)建立季节性移动平均差分模型;
2)计算预测步长,获得呼叫到达率的预测时刻,通过季节性移动平均差分模型对当前一段时间异构无线网络的呼叫到达率进行预测,得到预测时刻的呼叫到达率;
3)采用SAW算法或根据预测时刻的呼叫到达率采用改进SAW算法选择业务切换到的目标网络;
4)在业务切换到的目标网络后,根据预测时刻的呼叫到达率建立幂指函数转移曲线,采用幂指函数非线性地调整业务接入带宽。
2.根据权利要求1所述的一种基于预测业务带宽可调的异构无线网络负载均衡方法,其特征在于,所述的步骤1)具体包括以下步骤:
11)建立初步的季节性移动平均差分模型,并获取一定周期内异构无线网络的历史呼叫到达率数据;
12)采用初步的季节性移动平均差分模型对历史呼叫到达率数据进行预测,并将初步预测值与真实的历史呼叫到达率数据比较,当初步预测值与历史数据的误差超过阈值时,则对初步的季节性移动平均差分模型参数进行修改,直到误差在阈值范围内。
3.根据权利要求1所述的一种基于预测业务带宽可调的异构无线网络负载均衡方法,其特征在于,所述的步骤2)具体包括以下步骤:
21)采用经验取参法计算预测步长t,则有:
t=θT
其中,T为最长观察步长,ΔT为等分T后的单位步长,θ为步长调整参数,分别为在时间T内预测呼叫到达率的均值和方差,分别为在第n等分单位步长内的均值和方差;
22)根据预测步长t获取预测时刻则有:
t ^ = t 0 + t &prime;
t′=λt
其中,为在预测步长t内预测呼叫到达率的均值,λ为滑块,t0为当前时刻;
23)通过季节性移动平均差分模型预测得到预测时刻的呼叫到达率。
4.根据权利要求1所述的一种基于预测业务带宽可调的异构无线网络负载均衡方法,其特征在于,所述的步骤3)中,改进SAW算法具体包括以下步骤:
31)获取预测时刻的呼叫到达率的归一化值
32)根据归一化值和网络代价函数fn构建改进网络代价函数
q s n = &gamma; n f n
f n = &Sigma; s C s n Q s n
Q s n = &Sigma; i W s , j n Q s , j n
&gamma; n = &eta; t ^
其中,为是异构无线网络中待选网络n提供业务s时的网络消除因数,为示从待选网络n获得应用s的代价函数值,为是业务s的参数i的权重规范化值,为待选网络n中业务s的参数i的属性值规范化网络参数;
33)获取异构无线网络中所有待选网络的网络代价函数,选择网络代价函数中的最小值对应的待选网络作为业务切换到的目标网络。
5.根据权利要求1所述的一种基于预测业务带宽可调的异构无线网络负载均衡方法,其特征在于,所述的步骤4)具体包括以下步骤:
41)设置目标网络k中业务s带宽的最小值目标网络k中业务s带宽的平衡值目标网络k中业务s带宽的最大值
42)计算时间段内季节性移动平均差分模型预测呼叫到达率的归一化均值和方差
&eta; t ^ &OverBar; = car t ^ &OverBar; car ( max )
其中,car(max)为满负载时刻的呼叫到达率值;
43)当时采用带宽增加方案,调整后的带宽值为:
adj + = mid s k - &lsqb; max s k - mid n k &rsqb; &CenterDot; ( 1 - &eta; t ^ &OverBar; ) 1.5 + 0.2 &CenterDot; ( 14 - &sigma; t ^ ) adj + < max s k max s k adj + &GreaterEqual; max s k
其中,adj+为业务按照幂指函数转移后的业务带宽调整值;
时采用带宽减少方案,调整后的带宽值为
adj - = mid s k - &lsqb; mid s k - min n k &rsqb; &CenterDot; &eta; &OverBar; ( 6 + 0.01 &sigma; t ^ ) adj - > mid s k mid s k adj - &le; mid s k
其中,adj-为业务按照幂指函数转移后的业务带宽调整值。
6.根据权利要求5所述的一种基于预测业务带宽可调的异构无线网络负载均衡方法,其特征在于,所述的目标网络包括UMTS网络和WLAN网络。
CN201510823440.1A 2015-11-24 2015-11-24 一种基于预测业务带宽可调的异构无线网络负载均衡方法 Expired - Fee Related CN105376805B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510823440.1A CN105376805B (zh) 2015-11-24 2015-11-24 一种基于预测业务带宽可调的异构无线网络负载均衡方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510823440.1A CN105376805B (zh) 2015-11-24 2015-11-24 一种基于预测业务带宽可调的异构无线网络负载均衡方法

Publications (2)

Publication Number Publication Date
CN105376805A true CN105376805A (zh) 2016-03-02
CN105376805B CN105376805B (zh) 2018-06-08

Family

ID=55378508

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510823440.1A Expired - Fee Related CN105376805B (zh) 2015-11-24 2015-11-24 一种基于预测业务带宽可调的异构无线网络负载均衡方法

Country Status (1)

Country Link
CN (1) CN105376805B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105813123A (zh) * 2016-03-25 2016-07-27 广东顺德中山大学卡内基梅隆大学国际联合研究院 基于预测呼叫阻塞率预筛选网络的异构网络接入选择方法
CN105933152A (zh) * 2016-04-21 2016-09-07 北京航空航天大学 一种基于二进制指数回退偏差校正的网络用户到达率预测方法
CN107872344A (zh) * 2016-09-28 2018-04-03 华为技术有限公司 网络数据采集方法以及相关装置
CN109067607A (zh) * 2018-11-07 2018-12-21 网宿科技股份有限公司 一种调整额定带宽的方法和装置
CN112187870A (zh) * 2020-09-04 2021-01-05 网宿科技股份有限公司 一种带宽平滑方法及装置
CN112804694A (zh) * 2019-11-14 2021-05-14 中国移动通信集团重庆有限公司 通信网络频宽的配置方法、系统、计算设备和存储介质
CN113055833A (zh) * 2019-12-11 2021-06-29 中国移动通信有限公司研究院 一种业务优化方法、基站和应用层设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102711177A (zh) * 2012-04-26 2012-10-03 北京邮电大学 基于业务预测的负载均衡方法
CN103889001A (zh) * 2014-03-13 2014-06-25 南京邮电大学 一种基于未来负载预测的自适应负载均衡方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102711177A (zh) * 2012-04-26 2012-10-03 北京邮电大学 基于业务预测的负载均衡方法
CN103889001A (zh) * 2014-03-13 2014-06-25 南京邮电大学 一种基于未来负载预测的自适应负载均衡方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
SUNG-RAE CHO: "Coverage and Load Balancing in Heterogeneous Cellular Networks with Minimum Cell Separation", 《IEEE TRANSACTIONS ON MOBILE COMPUTING》 *
WEI LI-YAO: "Using Seasonal Time Series Analysis to Predict China’s Demand of Electricity", 《2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL AND INFORMATION SCIENCES》 *
潘甦: "基于未来负载预测的无线异构网络自适应负载均衡算法", 《系统工程与电子技术》 *
顾伟: "基于时间序列预测的动态负载均衡算法", 《工业控制计算机》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105813123A (zh) * 2016-03-25 2016-07-27 广东顺德中山大学卡内基梅隆大学国际联合研究院 基于预测呼叫阻塞率预筛选网络的异构网络接入选择方法
CN105813123B (zh) * 2016-03-25 2019-10-25 广东顺德中山大学卡内基梅隆大学国际联合研究院 基于预测呼叫阻塞率预筛选网络的异构网络接入选择方法
CN105933152A (zh) * 2016-04-21 2016-09-07 北京航空航天大学 一种基于二进制指数回退偏差校正的网络用户到达率预测方法
CN107872344A (zh) * 2016-09-28 2018-04-03 华为技术有限公司 网络数据采集方法以及相关装置
CN109067607A (zh) * 2018-11-07 2018-12-21 网宿科技股份有限公司 一种调整额定带宽的方法和装置
CN112804694A (zh) * 2019-11-14 2021-05-14 中国移动通信集团重庆有限公司 通信网络频宽的配置方法、系统、计算设备和存储介质
CN112804694B (zh) * 2019-11-14 2022-12-16 中国移动通信集团重庆有限公司 通信网络频宽的配置方法、系统、计算设备和存储介质
CN113055833A (zh) * 2019-12-11 2021-06-29 中国移动通信有限公司研究院 一种业务优化方法、基站和应用层设备
CN113055833B (zh) * 2019-12-11 2022-08-12 中国移动通信有限公司研究院 一种业务优化方法、基站和应用层设备
CN112187870A (zh) * 2020-09-04 2021-01-05 网宿科技股份有限公司 一种带宽平滑方法及装置

Also Published As

Publication number Publication date
CN105376805B (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
CN105376805A (zh) 一种基于预测业务带宽可调的异构无线网络负载均衡方法
WO2021169577A1 (zh) 一种基于加权联邦学习的无线业务流量预测方法
CN110809306B (zh) 一种基于深度强化学习的终端接入选择方法
CN103889001B (zh) 一种基于未来负载预测的自适应负载均衡方法
CN103987056A (zh) 基于大数据统计模型的无线网络话务量预测方法
CN101873638B (zh) 基于模糊神经网络的异构无线网络接入选择方法
CN107708152B (zh) 异构蜂窝网络的任务卸载方法
CN102883352B (zh) 基于话务建模与话务预测的gsm小区参数优化方法
CN102088748B (zh) 基于自回归模型预测的用户切换触发时间选择方法
CN110138475A (zh) 一种基于lstm神经网络的自适应门限信道占用状态预测方法
CN110809275B (zh) 基于无线城域网的微云节点放置方法
CN104598765A (zh) 一种基于弹性自适应神经网络的建筑物能耗预测方法
CN105636066B (zh) 小区分簇的方法和基站
CN105491611A (zh) 无线网络切换方法和系统
Lv et al. A container scheduling strategy based on machine learning in microservice architecture
CN105813123B (zh) 基于预测呼叫阻塞率预筛选网络的异构网络接入选择方法
Peesapati et al. Q-learning based radio resource adaptation for improved energy performance of 5G base stations
CN109586287B (zh) 基于改进自适应模型预测控制的电压协调控制方法及装置
CN107347208A (zh) 基于人工智能技术的基站对终端高效定时调整方法及系统
CN113504949B (zh) Mar客户端在边缘计算中的任务卸载与参数优化方法及系统
CN117395705A (zh) 一种基于自适应提升的5g网络带宽预测方法和装置
CN102711178B (zh) 基于用户需求和网络负载均衡的群体联合接纳控制方法
CN113382066A (zh) 基于联邦边缘平台的车辆用户选择方法及系统
CN108566255A (zh) 基于多任务学习的时间相关mimo系统信道预测方法
CN106376065A (zh) 一种基于pomdp动态调整基站关断窗口长度的机制

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180608

Termination date: 20201124

CF01 Termination of patent right due to non-payment of annual fee