CN102711177A - 基于业务预测的负载均衡方法 - Google Patents
基于业务预测的负载均衡方法 Download PDFInfo
- Publication number
- CN102711177A CN102711177A CN2012101277120A CN201210127712A CN102711177A CN 102711177 A CN102711177 A CN 102711177A CN 2012101277120 A CN2012101277120 A CN 2012101277120A CN 201210127712 A CN201210127712 A CN 201210127712A CN 102711177 A CN102711177 A CN 102711177A
- Authority
- CN
- China
- Prior art keywords
- traffic
- load
- forecast model
- balancing method
- forecast
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Telephonic Communication Services (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种基于业务预测的负载均衡方法,涉及无线通信技术领域,包括以下步骤:以预先设定的时间段为单位,对不同时间段的业务量采用不同的业务预测模型进行预测;S2:根据所述不同的业务预测模型预测得到的下一负载均衡处理周期的业务量,提前配置业务请求调度结果,以达到负载均衡。本发明的基于业务预测的负载均衡方法针对每个时段分别进行业务预测建模,将处于不同时间段得业务量进行分段建模的好处是,由于每一段时间的变化趋势基本相同,不用通过大量的迭代计算,减少了设计的复杂度,加快了预测模型的收敛速度,易于实现。
Description
技术领域
本发明涉及无线通信技术领域,特别涉及一种基于业务预测的负载均衡方法。
背景技术
负载均衡算法的目的是实现业务在系统中均匀分布,减少局部负载过高导致的拥塞状况,提高系统容量。但由于目前大部分负载均衡算法都是针对网络当时的负载情况,即在知道了网络负载出现拥塞之后才进行操作,这种情况叫做滞后效应。负载均衡的滞后效应会降低负载均衡算法的效率,并且会使局部某一段时间会出现拥塞。因此,基于业务预测的负载均衡算法应运而生。其核心思想为,通过业务预测提前知道系统下一时刻的业务量,在系统发生拥塞之前提前对资源进行配置操作,避免传统负载均衡算法的滞后效应,提高负载均衡算法性能。
目前已有的针对业务预测的负载算法研究的思路为:
1、获取通讯系统负载的历史数据,分析历史数据,获得对应的负载变化趋势,用所对应的负载变化趋势作为预测的通讯系统负载在当前时间的变化趋势。
2、判断所述通讯系统的用于判断过载的测量参数是否会超过预先设定的过载阈值,如果会超过,所述通讯系统进行预过载处理。如果不超过,通讯正常运行。
在无线移动通信网络中,经常会出现由于短时间内大量用户移动或者业务到达,导致在某个时段出现局部的热点地区,该区域的无线接入业务量过大,使得网络通信性能迅速下降。与此同时,其它周边地区的无线接入业务量却偏低,大部分通信资源处于空闲状态。由于业务分布在时间和区域上具有不均衡性,因而导致通信资源的局部紧缺,使得用户无线接入业务(尤其是多媒体业务)性能大幅度降低。因此我们可以在负载均衡的基础上,引入业务预测技术,将系统资源进行提前配置,避免了以往负载均衡系统普遍存在的滞后效应,使系统在发生拥塞前就已提前做好资源分配,提升了系统容量。目前虽然有针对基于业务预测的负载均衡研究,但均有以下问题:
首先,已有的业务预测大多是根据历史数据进行大量的学习以及迭代计算,这样做的结果往往是增加了系统的复杂度,降低了收敛速度,使业务预测模型难于时时的输出准确的预测结果。
其次,由于业务量的变化存在着时间波动性与突发性,而现有的技术大多数只是针对历史业务量进行学习,这将会导致预测模型会随着突发的业务量的变化而使预测结果精确度大幅度下降。
最后,由于业务预测的输入有语音业务(单位为Er1)与数据业务(单位为Mbps),如何将语音业务与数据业务进行统一,得出下一时刻系统资源总需求对负载均衡模块来说是一个至关重要的问题,而已有的技术并没有将得出的业务进行归一化。
发明内容
(一)要解决的技术问题
本发明要解决的技术问题是:如何提高业务预测的准确性,且计算复杂度较低。
(二)技术方案
为解决上述技术问题,本发明提供了一种基于业务预测的负载均衡方法,包括以下步骤:
S1:以预先设定的时间段为单位,对不同时间段的业务量采用不同的业务预测模型进行预测;
S2:根据所述不同的业务预测模型预测得到的下一负载均衡处理周期的业务量,提前配置业务请求调度结果,以达到负载均衡。
其中,所述步骤S1中所述业务预测模型为相同时间段内的历史日期所采用的业务预测模型。
其中,所述步骤S1中在对不同时间段的业务量采用不同的业务预测模型进行预测之前还包括将业务数据进行最小二乘法拟合。
其中,所述步骤S1中在对不同时间段的业务量采用不同的业务预测模型进行预测之前还包括根据环境参数、实际业务量及时修正各个业务预测模型。
其中,所述步骤S1中在每次预测完成后,将所述业务预测模型存储。
其中,所述步骤S2具体包括:
S2.1:收集下一个负载均衡处理周期的总业务量,判断是否有小区容量不满足该小区下一负载均衡处理周期的业务量对资源的需求,若是执行步骤S2.2,否则结束;
S2.2:结合预测得到的下一负载均衡处理周期各个小区的资源需求与小区容量,查找下一负载均衡处理周期负载最轻的小区;
S2.3:确定由步骤S2.1判断出的在下一负载均衡处理周期会发生拥塞的小区需将多少业务量切换到所述负载最轻的小区中,并将该业务量切换到所述负载最轻的小区中。
其中,所述步骤S2.1中还包括对不同业务预测模型预测得到的不同类型的业务量按预先制定的优先级排序,步骤S2.3中按优先级由高到低的顺序将业务量进行切换。
其中,所述步骤S2之后还包括步骤:从网络中提取包括实际业务量、拥塞率的网络参数,用于评价此次业务预测模型的准确度,并将上述参数反馈给所述业务预测模型,及时修正所述业务预测模型参数。
其中,所述预先设定的时间段为1小时。
(三)有益效果
本发明的基于业务预测的负载均衡方法针对预先设定的每个时间段分别进行业务预测建模,将处于不同时间段的业务量进行分段建模的优势是,由于每一段时间的变化趋势基本相同,不用通过大量的迭代计算,减少了设计的复杂度,加快了预测模型的收敛速度,易于实现。
附图说明
图1是本发明实施例的一种基于业务预测的负载均衡方法流程图;
图2是业务预测模型预测时的具体流程图;
图3是图1中步骤S2的具体流程图;
图4是实现图1中方法的系统结构示意图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
如图1所示,本实施例的基于业务预测的负载均衡方法包括:
步骤S101,以预先设定的时间段为单位,对不同时间段的业务量采用不同的业务预测模型进行预测。本实施例中,对一天24小时的横向划分,划分成24个时间段。每个时间段采用不同的业务预测模型对该时间段内的业务量进行预测,即有24个业务预测模型。在预测之前,搜集一个小区所有基站上报的数据,提取出以负载均衡处理周期为时间间隔及与其所对应的语音与数据的业务量(负载均衡处理周期包括一个或多个上述横向划分的时间段),即搜集上一负载均衡处理周期T={t1,t2,…,tM}以及对应的业务量数据Xl={xl1,xl2,…,xlM},ti为上述横向划分的时间段,i=1,2,...,M,M为样本数量,l表示X为第l种业务类型。纵向上找出与预测当日业务量变化趋势相近的历史日期Tconsult_day,横向上找出历史所处的时长为一个负载均衡处理周期的一段时间t1,t2,…,tk,k为输入的样本数据X所处的时间段的数量,历史日期分为以下3种情况:
1、预测日期为工作日,非节假日,如周五,则需要调用上一周周五的日期。若上一周周五为假日,则调用上上周周五的日期,依次类推。
2、预测日期为假日,如元旦,则需调用上一年元旦的日期。
3、若为双休日且不为假日,则调用上一周的对应的日期。
例:要预测4月17日(周二)上午8点至12点的语音业务的业务量。则通过纵向时间匹配,选择4月10日(周二),通过横向匹配,选择4月10日8点至12点采集样本,此时l为语音业务,Tconsult_day为4月10日,T={8:00-9:00、9:00-10:00、10:00-11:00、11:00-12:00},Xl={8:00-9:00累计业务量、9:00-10:00累计业务量、10:00-11:00累计业务量、11:00-12:00累计业务量}。在选好历史日期后,查找预先存储的该日期Tconsult_day与T所处的相应的时间段的业务预测模型,查找到对应的业务预测模型F=∑aifi,其中,系数ai取0或1。取1表示业务量数据X处于此时间段,0则反之。fi表示时间段i时的业务预测初始函数。i取1到24。
查找到业务预测模型之后便可开始进行预测,预测流程如图2所示。
优选地,在开始预测之前,为了削弱业务量的突变对业务预测模型在学习业务量变化时造成的影响,将输入的业务量数据xl={xl1,xl2,…,xlM}进行最小二乘法拟合,得到平滑输入的业务量数据并将输入到业务预测模型进行预测。
优选地,本实施例将环境参数对业务预测模型的影响考虑进来,由网络参数(如:实际的业务量、阻塞率等)同历史业务量一起及时修正业务预测模型,得到修改正后的业务预测模型保证下一负载均衡处理周期业务预测的准确度。θ1,θ2,…,θn表示如实际的业务量,阻塞率等网络参数。
根据最小二乘法输入的处于此时间段的,经过平滑的历史数据与修正模块输入的环境参数来制定业务预测模型,(即根据输入的经过去除奇点的历史数据与环境参数来得出下一负载均衡处理周期的业务预测值)得出下一负载均衡处理周期业务预测量的值
为了供下一次业务预测调用使用,优选地,同时在一天的业务预测执行结束后,会把这一天所使用的24个业务预测模型保存。
步骤S102,根据所述不同的业务预测模型预测得到的下一负载均衡处理周期的业务量,提前配置业务请求调度结果,以达到负载均衡。具体流程如图3所示。
收集下一个负载均衡处理周期总业务量Y=Y1+Y2+…+YL,判断是否有小区容量C不满足该小区下一时刻的业务量Y对资源的需求(Y>C),若是,则结合预测得到的下一负载均衡处理周期各个小区的资源需求与小区容量C,查找下一负载均衡处理周期负载最轻的小区,并确定下一负载均衡处理周期会发生拥塞的小区需将多少业务量切换到负载最轻的小区中,并将该业务量切换到负载最轻的小区中,直到发生拥塞的小区满足Y<C。否则结束。
优选地,在进行负载均衡之前还包括将预测l种业务的业务量进行优先级由高到底的排序{Y1,Y2,…,YL},在负载切换时,按优先级由高到低的顺序将拥塞小区的业务量提前配置给负载最轻的小区。
为了提高预测的准确性,负载均衡后根据当前网络情况,提取网络性能指标评估参数,如:阻塞率与实际的业务量等,即提供反馈参数θ1,θ2,…,θn,以对业务预测模型进行修正,θ为从现网提取的实际数据。如θ1表示现网实际的阻塞率,θ2为实际业务量等。准确度通常与反馈参数成正比。
图4是实现上述方法的一个优选地系统结构示意图,包括:
单元401:业务预测数据采集模块,搜集一个小区所有基站上报的数据,提取出以负载均衡模块处理周期为时间间隔及与其所对应的语音与数据的业务量。
单元402:时间匹配模块,首先,时间匹配模块纵向寻找与当日业务量变化规律最相近的历史日期,这分为以下3种情况:
1、预测日期为工作日,非节假日,如周五,则需要调用上一周周五的日期。若上一周周五为假日,则调用上上周周五的日期,依次类推。
2、预测日期为假日,如元旦,则需调用上一年元旦的日期。
3、若为双休日且不为假日,则调用上一周的对应的日期。
在选好历史日期后,便将此日期输入给403预测模型存储模块以便预测模型存储模块将此日期所建立的业务预测模型组调用出来。
然后,时间匹配模块还需将处于不同时间段的业务流根据其所属时段内分别送入基于对应的业务预测模块进行预测。
单元403:预测模型存储模块。在进行业务预测之前,根据时间匹配模块所输入的历史匹配日期,预测模型存储模块调用所对应的24个业务预测模块,供业务预测使用。在每次业务预测执行完后,预测模型存储模块会存储业务预测模型,供下次对称日期业务预测调用。预测存储模块存储了过去一年所有节日日期的业务预测模块与过去2个月内所有日期的业务预测模块。当进行完新的一天的业务预测后,便将此天得业务预测模块存入预测模型存储模块中,同时删除往前推2个月前第一天的业务预测模型。
单元404:业务预测模块:由于在现网中,一天不同时段业务量变化差异很大,因此将处于不同时段的业务变换情况分别预测,以保证预测的准确性,提高预测模型的收敛速度。将一天分为24个时段,针对24个时段分别设置了24个业务预测模块。将凌晨0:00-1:00设为时段1,以此类推,时段23:00-24:00设为时段24。业务预测模块执行内容如下:
业务流进行时间匹配后,寻找对应所属时间段的业务预测模型,业务预测模型针对输入的业务流首先进行最小二乘法拟合,平滑输入数据,去掉突发业务变化情况。业务预测建模根据最小二乘法拟合输入的经过平滑后的数据,对已有的数据进行建模,同时考虑环境参数,如网络的阻塞率、实际业务量情况等及时修正业务预测模型。在此次业务预测结束后,业务预测模块会存储当前的业务预测模型给预测模型存储模块,以便下次调用时使用。
单元405:业务优先级排序模块,完成对业务预测单元输入的业务量进行排序,输出给负责均衡模块使用。
单元406:负载均衡模块。根据业务优先级排序模块所提供的下一负载均衡处理周期业务量以及业务优先级排序,提前配置业务请求调度结果。
单元407:网络评估模块,负载均衡执行后,用于对配置结果进行网络评估,提取网络中实际的业务量、拥塞率等参数,用于评价此次业务预测模型的准确度,并将上述参量反馈给业务预测模型,及时修正业务预测模型参数,提高其预测的准确性。
单元408:参数反馈模块将网络评估模块所提供的实际业务量、拥塞率等参数进行分析处理,并将其根据各个业务流的特征做适当处理后反馈给业务预测模型,用于修正其模型参数,提高预测准确度。
本发明针对每个时段分别进行业务预测建模,将处于不同时间段得业务量进行分段建模的好处是,由于每一段时间的变化趋势基本相同,不用通过大量的迭代计算,减少了设计的复杂度,加快了预测模型的收敛速度,易于实现。另外,通过最小二乘法模块对输入数据进行平滑,削弱了业务的突发性,保证历史业务的突发变化不会对预测模型造成太大的影响。同时,引入了环境参数,将环境参数加入预测模型的好处是,可以通过一些环境指标的变化来判断预测的准确性,而不是仅仅是依赖业务量。通过以上的设计会使业务预测的精确度有所提高。
以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。
Claims (9)
1.一种基于业务预测的负载均衡方法,其特征在于,包括以下步骤:
S1:以预先设定的时间段为单位,对不同时间段的业务量采用不同的业务预测模型进行预测;
S2:根据所述不同的业务预测模型预测得到的下一负载均衡处理周期的业务量,提前配置业务请求调度结果,以达到负载均衡。
2.如权利要求1所述的基于业务预测的负载均衡方法,其特征在于,所述步骤S1中所述业务预测模型为相同时间段内的历史日期所采用的业务预测模型。
3.如权利要求1所述的基于业务预测的负载均衡方法,其特征在于,所述步骤S1中在对不同时间段的业务量采用不同的业务预测模型进行预测之前还包括将业务数据进行最小二乘法拟合。
4.如权利要求1所述的基于业务预测的负载均衡方法,其特征在于,所述步骤S1中在对不同时间段的业务量采用不同的业务预测模型进行预测之前还包括根据环境参数、实际业务量及时修正各个业务预测模型。
5.如权利要求1所述的基于业务预测的负载均衡方法,其特征在于,所述步骤S1中在每次预测完成后,将所述业务预测模型存储。
6.如权利要求1所述的基于业务预测的负载均衡方法,其特征在于,所述步骤S2具体包括:
S2.1:收集下一个负载均衡处理周期的总业务量,判断是否有小区容量不满足该小区下一负载均衡处理周期的业务量对资源的需求,若是执行步骤S2.2,否则结束;
S2.2:结合预测得到的下一负载均衡处理周期各个小区的资源需求与小区容量,查找下一负载均衡处理周期负载最轻的小区;
S2.3:确定由步骤S2.1判断出的在下一负载均衡处理周期会发生拥塞的小区需将多少业务量切换到所述负载最轻的小区中,并将该业务量切换到所述负载最轻的小区中。
7.如权利要求6所述的基于业务预测的负载均衡方法,其特征在于,所述步骤S2.1中还包括对不同业务预测模型预测得到的不同类型的业务量按预先制定的优先级排序,步骤S2.3中按优先级由高到低的顺序将业务量进行切换。
8.如权利要求1所述的基于业务预测的负载均衡方法,其特征在于,所述步骤S2之后还包括步骤:从网络中提取包括实际业务量、拥塞率的网络参数,用于评价此次业务预测模型的准确度,并将上述参数反馈给所述业务预测模型,及时修正所述业务预测模型参数。
9.如权利要求1~8中任一项所述的基于业务预测的负载均衡方法,其特征在于,所述预先设定的时间段为1小时。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101277120A CN102711177A (zh) | 2012-04-26 | 2012-04-26 | 基于业务预测的负载均衡方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101277120A CN102711177A (zh) | 2012-04-26 | 2012-04-26 | 基于业务预测的负载均衡方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102711177A true CN102711177A (zh) | 2012-10-03 |
Family
ID=46903695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012101277120A Pending CN102711177A (zh) | 2012-04-26 | 2012-04-26 | 基于业务预测的负载均衡方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102711177A (zh) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103024762A (zh) * | 2012-12-26 | 2013-04-03 | 北京邮电大学 | 基于业务特征的通信业务预测方法 |
CN103813387A (zh) * | 2013-12-24 | 2014-05-21 | 广西大学 | 一种lte系统小区间负载均衡的方法和网络系统 |
CN103974330A (zh) * | 2013-01-31 | 2014-08-06 | 中国移动通信集团公司 | 一种均衡小区业务量的方法及装置 |
CN104581779A (zh) * | 2014-12-11 | 2015-04-29 | 华为技术有限公司 | 一种业务处理方法以及装置 |
CN105376804A (zh) * | 2015-11-24 | 2016-03-02 | 上海师范大学 | 一种异构无线网络负载超前转移的负载均衡方法 |
CN105376805A (zh) * | 2015-11-24 | 2016-03-02 | 上海师范大学 | 一种基于预测业务带宽可调的异构无线网络负载均衡方法 |
CN105472660A (zh) * | 2014-09-11 | 2016-04-06 | 中国移动通信集团公司 | 一种负载均衡方法、网络设备及系统 |
CN106164864A (zh) * | 2014-03-31 | 2016-11-23 | 微软技术许可有限责任公司 | 服务的预测负载伸缩 |
CN106375355A (zh) * | 2015-07-20 | 2017-02-01 | 中兴通讯股份有限公司 | 负载均衡处理方法及装置 |
CN106547481A (zh) * | 2016-09-29 | 2017-03-29 | 浙江宇视科技有限公司 | 一种数据预分配方法和设备 |
CN107078970A (zh) * | 2014-10-30 | 2017-08-18 | 三菱电机株式会社 | 数据二极管装置 |
CN107092973A (zh) * | 2016-11-25 | 2017-08-25 | 口碑控股有限公司 | 一种业务量的预测方法及装置 |
WO2017167041A1 (zh) * | 2016-04-01 | 2017-10-05 | 阿里巴巴集团控股有限公司 | 业务预测数据校正的方法和装置 |
CN107509220A (zh) * | 2017-07-04 | 2017-12-22 | 东华大学 | 一种基于历史强化学习的车联网负载均衡接入方法 |
CN107517481A (zh) * | 2017-09-21 | 2017-12-26 | 上海斐讯数据通信技术有限公司 | 一种基站负载均衡的管理方法及系统 |
WO2018014786A1 (zh) * | 2016-07-21 | 2018-01-25 | 阿里巴巴集团控股有限公司 | 评价模型的建模方法及装置 |
CN109218062A (zh) * | 2017-07-07 | 2019-01-15 | 百度在线网络技术(北京)有限公司 | 基于置信区间的互联网业务报警方法和装置 |
CN109902023A (zh) * | 2019-03-18 | 2019-06-18 | 平安普惠企业管理有限公司 | 一种测试代码移交控制方法及装置 |
CN110019110A (zh) * | 2017-07-28 | 2019-07-16 | 腾讯科技(深圳)有限公司 | 一种业务系统的容量管理方法、装置、设备及业务系统 |
CN110166369A (zh) * | 2019-05-09 | 2019-08-23 | 华北电力大学 | 一种电力光网络主动式负载均衡方法 |
CN110609747A (zh) * | 2019-08-29 | 2019-12-24 | 联想(北京)有限公司 | 信息处理方法及电子设备 |
CN110618867A (zh) * | 2018-06-19 | 2019-12-27 | 北京京东尚科信息技术有限公司 | 一种预测资源使用量的方法和装置 |
CN111475772A (zh) * | 2020-03-27 | 2020-07-31 | 微梦创科网络科技(中国)有限公司 | 一种容量评估方法及装置 |
CN112418509A (zh) * | 2020-11-18 | 2021-02-26 | 青岛海尔科技有限公司 | 任务数据预测方法、装置、存储介质及电子装置 |
CN113973339A (zh) * | 2020-07-10 | 2022-01-25 | 中国移动通信集团重庆有限公司 | 4g小区和5g小区的负荷协同方法、设备及计算机存储介质 |
CN114189867A (zh) * | 2021-11-26 | 2022-03-15 | 中国联合网络通信集团有限公司 | 基于基站的资源处理方法、装置及设备 |
WO2022237833A1 (zh) * | 2021-05-12 | 2022-11-17 | 维沃移动通信有限公司 | 信息处理方法、装置、终端和网络侧设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101155085A (zh) * | 2006-09-29 | 2008-04-02 | 中兴通讯股份有限公司 | 实时流量预测方法及装置和实时流量监测预警方法及装置 |
CN101695050A (zh) * | 2009-10-19 | 2010-04-14 | 浪潮电子信息产业股份有限公司 | 一种基于网络流量自适应预测的动态负载均衡方法 |
CN102056183A (zh) * | 2010-12-10 | 2011-05-11 | 北京交通大学 | 一种基于认知网络的网络流量预测方法和装置 |
CN102111284A (zh) * | 2009-12-28 | 2011-06-29 | 北京亿阳信通软件研究院有限公司 | 电信业务量预测方法和装置 |
-
2012
- 2012-04-26 CN CN2012101277120A patent/CN102711177A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101155085A (zh) * | 2006-09-29 | 2008-04-02 | 中兴通讯股份有限公司 | 实时流量预测方法及装置和实时流量监测预警方法及装置 |
CN101695050A (zh) * | 2009-10-19 | 2010-04-14 | 浪潮电子信息产业股份有限公司 | 一种基于网络流量自适应预测的动态负载均衡方法 |
CN102111284A (zh) * | 2009-12-28 | 2011-06-29 | 北京亿阳信通软件研究院有限公司 | 电信业务量预测方法和装置 |
CN102056183A (zh) * | 2010-12-10 | 2011-05-11 | 北京交通大学 | 一种基于认知网络的网络流量预测方法和装置 |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103024762B (zh) * | 2012-12-26 | 2015-04-15 | 北京邮电大学 | 基于业务特征的通信业务预测方法 |
CN103024762A (zh) * | 2012-12-26 | 2013-04-03 | 北京邮电大学 | 基于业务特征的通信业务预测方法 |
CN103974330A (zh) * | 2013-01-31 | 2014-08-06 | 中国移动通信集团公司 | 一种均衡小区业务量的方法及装置 |
CN103974330B (zh) * | 2013-01-31 | 2017-11-21 | 中国移动通信集团公司 | 一种均衡小区业务量的方法及装置 |
CN103813387A (zh) * | 2013-12-24 | 2014-05-21 | 广西大学 | 一种lte系统小区间负载均衡的方法和网络系统 |
CN106164864A (zh) * | 2014-03-31 | 2016-11-23 | 微软技术许可有限责任公司 | 服务的预测负载伸缩 |
CN105472660B (zh) * | 2014-09-11 | 2019-10-15 | 中国移动通信集团公司 | 一种负载均衡方法、网络设备及系统 |
CN105472660A (zh) * | 2014-09-11 | 2016-04-06 | 中国移动通信集团公司 | 一种负载均衡方法、网络设备及系统 |
CN107078970B (zh) * | 2014-10-30 | 2020-04-17 | 三菱电机株式会社 | 数据二极管装置 |
CN107078970A (zh) * | 2014-10-30 | 2017-08-18 | 三菱电机株式会社 | 数据二极管装置 |
CN104581779A (zh) * | 2014-12-11 | 2015-04-29 | 华为技术有限公司 | 一种业务处理方法以及装置 |
CN104581779B (zh) * | 2014-12-11 | 2018-11-30 | 华为技术有限公司 | 一种业务处理方法以及装置 |
CN106375355B (zh) * | 2015-07-20 | 2020-02-28 | 中兴通讯股份有限公司 | 负载均衡处理方法及装置 |
CN106375355A (zh) * | 2015-07-20 | 2017-02-01 | 中兴通讯股份有限公司 | 负载均衡处理方法及装置 |
CN105376805A (zh) * | 2015-11-24 | 2016-03-02 | 上海师范大学 | 一种基于预测业务带宽可调的异构无线网络负载均衡方法 |
CN105376805B (zh) * | 2015-11-24 | 2018-06-08 | 上海师范大学 | 一种基于预测业务带宽可调的异构无线网络负载均衡方法 |
CN105376804B (zh) * | 2015-11-24 | 2018-07-20 | 上海师范大学 | 一种异构无线网络负载超前转移的负载均衡方法 |
CN105376804A (zh) * | 2015-11-24 | 2016-03-02 | 上海师范大学 | 一种异构无线网络负载超前转移的负载均衡方法 |
WO2017167041A1 (zh) * | 2016-04-01 | 2017-10-05 | 阿里巴巴集团控股有限公司 | 业务预测数据校正的方法和装置 |
TWI673669B (zh) * | 2016-07-21 | 2019-10-01 | 香港商阿里巴巴集團服務有限公司 | 評價模型的建模方法及裝置 |
WO2018014786A1 (zh) * | 2016-07-21 | 2018-01-25 | 阿里巴巴集团控股有限公司 | 评价模型的建模方法及装置 |
CN106547481A (zh) * | 2016-09-29 | 2017-03-29 | 浙江宇视科技有限公司 | 一种数据预分配方法和设备 |
CN106547481B (zh) * | 2016-09-29 | 2020-04-10 | 浙江宇视科技有限公司 | 一种数据预分配方法和设备 |
US11443251B2 (en) | 2016-11-25 | 2022-09-13 | Koubei Holding Limited | Method and device for predicting traffic |
CN107092973A (zh) * | 2016-11-25 | 2017-08-25 | 口碑控股有限公司 | 一种业务量的预测方法及装置 |
CN107509220A (zh) * | 2017-07-04 | 2017-12-22 | 东华大学 | 一种基于历史强化学习的车联网负载均衡接入方法 |
CN109218062A (zh) * | 2017-07-07 | 2019-01-15 | 百度在线网络技术(北京)有限公司 | 基于置信区间的互联网业务报警方法和装置 |
CN110019110B (zh) * | 2017-07-28 | 2022-11-18 | 腾讯科技(深圳)有限公司 | 一种业务系统的容量管理方法、装置、设备及业务系统 |
CN110019110A (zh) * | 2017-07-28 | 2019-07-16 | 腾讯科技(深圳)有限公司 | 一种业务系统的容量管理方法、装置、设备及业务系统 |
CN107517481A (zh) * | 2017-09-21 | 2017-12-26 | 上海斐讯数据通信技术有限公司 | 一种基站负载均衡的管理方法及系统 |
CN107517481B (zh) * | 2017-09-21 | 2021-06-04 | 台州市吉吉知识产权运营有限公司 | 一种基站负载均衡的管理方法及系统 |
CN110618867A (zh) * | 2018-06-19 | 2019-12-27 | 北京京东尚科信息技术有限公司 | 一种预测资源使用量的方法和装置 |
CN109902023A (zh) * | 2019-03-18 | 2019-06-18 | 平安普惠企业管理有限公司 | 一种测试代码移交控制方法及装置 |
CN109902023B (zh) * | 2019-03-18 | 2022-06-03 | 平安普惠企业管理有限公司 | 一种测试代码移交控制方法及装置 |
CN110166369A (zh) * | 2019-05-09 | 2019-08-23 | 华北电力大学 | 一种电力光网络主动式负载均衡方法 |
CN110609747A (zh) * | 2019-08-29 | 2019-12-24 | 联想(北京)有限公司 | 信息处理方法及电子设备 |
CN111475772A (zh) * | 2020-03-27 | 2020-07-31 | 微梦创科网络科技(中国)有限公司 | 一种容量评估方法及装置 |
CN111475772B (zh) * | 2020-03-27 | 2023-12-15 | 微梦创科网络科技(中国)有限公司 | 一种容量评估方法及装置 |
CN113973339A (zh) * | 2020-07-10 | 2022-01-25 | 中国移动通信集团重庆有限公司 | 4g小区和5g小区的负荷协同方法、设备及计算机存储介质 |
CN113973339B (zh) * | 2020-07-10 | 2023-04-18 | 中国移动通信集团重庆有限公司 | 4g小区和5g小区的负荷协同方法、设备及计算机存储介质 |
CN112418509A (zh) * | 2020-11-18 | 2021-02-26 | 青岛海尔科技有限公司 | 任务数据预测方法、装置、存储介质及电子装置 |
WO2022237833A1 (zh) * | 2021-05-12 | 2022-11-17 | 维沃移动通信有限公司 | 信息处理方法、装置、终端和网络侧设备 |
CN114189867A (zh) * | 2021-11-26 | 2022-03-15 | 中国联合网络通信集团有限公司 | 基于基站的资源处理方法、装置及设备 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102711177A (zh) | 基于业务预测的负载均衡方法 | |
Li et al. | Socially optimal queuing control in cognitive radio networks subject to service interruptions: To queue or not to queue? | |
Atencia et al. | A single-server retrial queue with general retrial times and Bernoulli schedule | |
WO2017092377A1 (zh) | 一种移动通信系统内动态资源分配方法和装置 | |
CN105392154A (zh) | 一种资源占用量的预测方法与预测系统 | |
WO2016086406A1 (zh) | 一种网络资源部署方法和设备 | |
CN101448321A (zh) | 异构无线网络频谱资源共享的方法及装置 | |
CN101741751A (zh) | 流量整形调度方法、流量整形调度装置及路由设备 | |
CN103297623A (zh) | 话务预测方法及装置 | |
CN114007225A (zh) | Bwp的分配方法、装置、电子设备及计算机可读存储介质 | |
CN106027288A (zh) | 一种配电线路信息监测业务通信流量预测方法 | |
CN106095529A (zh) | 一种c‑ran架构下的载波迁移方法 | |
CN101431467B (zh) | 共享资源网络的实时任务接纳控制方法 | |
CN102740341A (zh) | 网络业务量的预测方法及设备 | |
US12120184B2 (en) | Methods, internet of things systems and mediums for controlling data transmission for smart gas | |
CN103369690A (zh) | 一种无线资源的分配方法及装置 | |
CN117061367A (zh) | Cdn节点带宽引导方法、装置、电子设备和存储介质 | |
CN102111888A (zh) | 一种信道配置方法、装置及系统 | |
CN102186203A (zh) | 数据业务信道数目的确定方法、装置和系统 | |
CN107800650A (zh) | 一种调整运营管道资源占用的方法及装置 | |
TW202034277A (zh) | 運輸方法及裝置 | |
CN102209369A (zh) | 基于无线网络接口选择的增强智能手机用户体验的方法 | |
Wang et al. | Performance evaluation and social optimization of an energy-saving virtual machine allocation scheme within a cloud environment | |
CN103249050A (zh) | 基于业务需求的多尺度频谱接入方法 | |
CN1996794A (zh) | 宽带码分多址系统中介质访问控制层的上行调度方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20121003 |