CN105366029B - 高超声速飞行器主动冷却结构和气液两相流离心螺旋强化换热方法 - Google Patents

高超声速飞行器主动冷却结构和气液两相流离心螺旋强化换热方法 Download PDF

Info

Publication number
CN105366029B
CN105366029B CN201510923253.0A CN201510923253A CN105366029B CN 105366029 B CN105366029 B CN 105366029B CN 201510923253 A CN201510923253 A CN 201510923253A CN 105366029 B CN105366029 B CN 105366029B
Authority
CN
China
Prior art keywords
jet
liquid
helical flow
flow path
shock surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510923253.0A
Other languages
English (en)
Other versions
CN105366029A (zh
Inventor
刘猛
阿嵘
吴豪
杨建龙
李剑
王浚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201510923253.0A priority Critical patent/CN105366029B/zh
Publication of CN105366029A publication Critical patent/CN105366029A/zh
Application granted granted Critical
Publication of CN105366029B publication Critical patent/CN105366029B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/38Constructions adapted to reduce effects of aerodynamic or other external heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/0009Aerodynamic aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本发明是一种高超声速飞行器主动冷却结构和气液两相流离心螺旋强化换热方法,属于航空、航天、动力机械等长时间、大热流密度的局部换热领域。冷却结构包括冲击面、冲击腔、射流孔、射流供液系统和螺旋流道;在冲击面四周形成冲击腔,冲击腔与螺旋流道和射流孔连通。换热方法为:射流供液系统将冷却液由射流孔射流冲击至冲击面,冷却液在冲击面表面吸热沸腾,产生的气液两相冷却介质流进入螺旋流道,沿蒙皮内侧壁面螺旋流动,继续吸收蒙皮热量进而沸腾,在离心力的作用下气液分离,液相趋于贴近蒙皮侧,使壁面产生的气泡加速脱离壁面。本发明可实现长航时高超声速飞行器头锥部高效主动冷却,冷却效率高,且不破坏飞行器气动外形,可靠性高。

Description

高超声速飞行器主动冷却结构和气液两相流离心螺旋强化换 热方法
技术领域
本发明涉及一种高超声速飞行器主动冷却结构和气液两相流离心螺旋强化换热方法,属于航空、航天、动力机械等长时间、大热流密度的局部换热领域。
背景技术
高超声速飞行器是现代飞行器发展的主要趋势,具有航程远、速度快、性能卓越等特点,其中,飞行速度在5至7马赫数,可长时间、持续飞行的临近空间高超声速飞行器尤为重要,在通信保障、情报收集、电子压制、预警等方面极具发展潜力。
然而,长时间高超声速飞行将面临严重的气动加热问题,当飞行高度为24km,飞行速度7马赫时,头锥驻点附近热流密度高达2~3MW/m2,壁面温度高达1400K。在如此严峻的热环境下长时间巡航,所经历的热负荷是被动与半被动热防护结构所不能承载的。为实现长航时高超声速飞行就要求热防护系统可长时间抵御大热流密度,研制新型高超声速飞行器主动冷却热防护系统势在必行。
发明内容
本发明针对长航时高超声速飞行器“热障”问题,提出一种高超声速飞行器主动冷却结构和气液两相流离心螺旋强化换热方法,通过携带一定量的冷却液,实现头锥部高效主动冷却。
本发明提供了一种高超声速飞行器头锥主动冷却结构,包括:冲击面、冲击腔、射流孔、射流供液系统和螺旋流道。
冲击面位于高超声速飞行器头锥驻点区域蒙皮内侧;在冲击面四周形成冲击腔,冲击腔与螺旋流道和射流孔相连通。螺旋流道紧贴头锥蒙皮内表面,以等螺旋节距或变螺旋节距的方式,沿头锥蒙皮内表面自锥顶冲击面外边缘向锥底盘旋。射流孔位于冲击腔靠近机体一侧轴线的区域,射流孔两端连通冲击面与射流供液系统。射流供液系统用于储存冷却液,并以设定压力、设定流量将冷却液提供给射流孔。
所述的冲击面可为平面、带翅片的扩展表面或波纹表面。
所述的螺旋流道的横截面可为圆形、椭圆形、半圆形、半椭圆形、三角形、四边形或多边形,螺旋流道可为恒定截面流道、变截面流道或内置填充物流道。螺旋流道可以是单条或多条,螺旋流道间互不交叉或有交叉。
所述的射流孔可为单个或多个,射流孔的方向垂直于冲击面或与冲击面呈一定角度。
基于所述的主动冷却结构,本发明还提供了一种气液两相流离心螺旋强化换热方法,具体实现方式如下:
首先,射流供液系统以设定压力通过射流孔,将设定流量的冷却液射流冲击至冲击面。
其次,在冲击面表面冷却液吸热汽化,在冲击面上形成的气泡,在冷却液射流冲击力的作用下气泡迅速脱离壁面,使沸腾过程保持在核态沸腾状态。
然后,冷却液以气液两相流的形式,沿螺旋流道贴头锥蒙皮内侧螺旋流动,并继续吸热沸腾,螺旋流动所产生的离心力使冷却介质气液分离,气相冷却介质趋于贴近机体轴线,而液相冷却介质在离心力的作用下趋于贴近蒙皮侧,使得壁面产生的气泡加速脱离壁面。
本发明的优点与积极效果在于:
1)本发明针对高超声速飞行器头锥结构,及驻点区域热流密度相对高的特点,合理布置冲击面的位置,用射流冲击的方式,大幅提高了换热效率,有效降低驻点区域温度。
2)本发明采用螺旋流道的方式导流,所产生的离心力使得冷却流体液相贴蒙皮侧流动,同时加速壁面气泡脱离。螺旋流道内换热特点与头锥部受热环境相契合。
3)本发明的主动冷却结构不改变高超声速飞行器头锥部的气动外形。
4)冷却结构简单,便于加工制造,可靠系数高。
附图说明
图1是本发明一个实施例的头锥主动冷却结构示意图;
图2是本发明一个实施例的头锥主动冷却结构(去除射流供液系统后)的轴向视图;
图中:
1—冲击面,2—射流孔,3—冲击腔,4—螺旋流道,5—蒙皮,6—射流供液系统。
具体实施方式
下面结合附图,对一种高超声速飞行器主动冷却结构和气液两相流离心螺旋强化换热方法做详细的说明。
根据本发明的一个实施例的高超声速飞行器头锥主动冷却结构如图1所示,包括冲击面1、射流孔2、冲击腔3、螺旋流道4和射流供液系统6。冲击面1位于高超声速飞行器头锥驻点区域蒙皮5内侧。在冲击面1四周形成冲击腔3,冲击腔3与螺旋流道4和射流孔2相连通。螺旋流道4紧贴头锥蒙皮5内表面,以等螺旋节距或变螺旋节距的方式,沿头锥蒙皮5内表面自锥顶冲击面外边缘向锥底盘旋。射流孔2位于冲击腔3靠近机体一侧轴线的区域,射流孔2两端连通冲击面1与射流供液系统6。射流供液系统6用于储存冷却液,并以设定压力、设定流量将冷却液提供给射流孔2。
冲击面1可为平面、带翅片的扩展表面或波纹表面。螺旋流道4的横截面可为圆形、椭圆形、半圆形、半椭圆形、三角形、四边形或多边形。螺旋流道4可为恒定截面流道、变截面流道或内置填充物流道。螺旋流道4可以是单条或两条已上,螺旋流道4间互不交叉或有交叉。射流孔2可为单个或多个,射流孔2的方向垂直于冲击面1或与冲击面1呈设定的角度。
本发明的主动冷却结构,具体工作过程为:冷却液由射流供液系统6储存,并以一定压力、一定流量供给射流孔2,压力和流量的值根据蒙皮5外壁面气动热环境设定;射流孔2连通射流供液系统6与冲击腔3,冷却液由射流孔2射流冲击至冲击面1,冷却液在冲击面1表面吸热沸腾,产生的气液两相冷却介质流由冲击腔3进入螺旋流道4,气液两相冷却介质流在螺旋流道4的导流下,沿蒙皮5内侧壁面螺旋流动,继续吸收蒙皮热量进而沸腾,在离心力的作用下气液分离,且液相趋于贴近蒙皮5侧,从而加速壁面气泡脱离,强化沸腾换热热流。
如图1和图2所示的本发明的一个实施例的高超声速飞行器主动冷却结构,可维持头锥部温度在结构耐受条件范围内,下面对基于如图1和图2所示的本发明实施例的主动冷却结构,所实现的气液两相流离心螺旋强化换热方法作进一步的详细说明。
如图1所示,冷却液由射流供液系统6,经射流孔2高速射流至冲击面1。冷却液在冲击面1吸热沸腾,在冲击面1表面形成的气泡,在射流孔2高速射流的冷却液的冲击作用下,产生的气泡很快脱离壁面,延迟了膜态沸腾的产生,避免了壁面“烧干”、超温等现象,冷却液在冲击面1进行冲击与沸腾强化换热,以吸收驻点区域强烈的气动加热。通过调整冷却液的射流压力和流量,使冷却液在冲击面1的沸腾过程保持在核态沸腾状态。
如图2所示,高速射流至冲击腔3的冷却液,吸热沸腾后向冲击腔3周向流动进入三条互成120°的螺旋流道4,继续吸热沸腾。由于在冲击面1冷却介质发生射流沸腾,进入螺旋流道流体为的气液两相冷却介质,
如图1所示,三条螺旋流道互不交叉,经冲击面1吸热沸腾的冷却液以气液两相流的形式在螺旋流道4的导流下,沿蒙皮5内侧螺旋流动,并继续吸热沸腾。由于气液密度差使得在螺旋流动过程中,在螺旋流道4同一横截面上液体受到较气体更大的离心力,而使液体总趋于贴近蒙皮5侧,同时离心力的作用使壁面气泡脱离加速,从而保持大热流密度换热。
本发明利用沸腾相变换热与射流冲击、离心螺旋流动相结合的方式冷却高超声速飞行器头锥部,在驻点附近大气动热热流密度环境下,充分利用冲击力的作用,防止沸腾换热过程中在冲击面1表面形成气膜;在驻点后部锥面,采用螺旋流道4引导冷却流体,在两相流动过程中,液相在离心力的作用下,趋于贴近蒙皮5侧,而气体则趋于贴近机体轴线,使得传热系数保持在较大值,巧妙利用离心力的作用实现强化换热,从而维持头锥部热环境在结构温度允许范围内。
本发明在大热流加热的驻点区域,采用冷却液射流冲击的强化换热方法,冷却液吸热沸腾时,壁面产生的气泡在射流冲击力的作用下迅速脱离壁面,使得沸腾换热始终保持在核态沸腾状态。本发明在头锥锥面上,结合圆锥结构特点,采用螺旋形式流道导流,借助离心力的作用,使气液两相冷却介质液相趋于贴近高温的蒙皮侧,而气相则贴近机体轴线,离心力的作用加速了螺旋流道壁面所产生的气泡脱离,从而解决大热流密度传热问题。

Claims (5)

1.一种高超声速飞行器头锥主动冷却结构,其特征在于,包括:冲击面、冲击腔、射流孔、射流供液系统和螺旋流道;
冲击面位于高超声速飞行器头锥驻点区域蒙皮内侧;冲击面四周形成冲击腔,冲击腔与螺旋流道和射流孔相连通;螺旋流道紧贴头锥蒙皮内表面,以等螺旋节距或变螺旋节距的方式,沿头锥蒙皮内表面自锥顶冲击面外边缘向锥底盘旋;射流孔位于冲击腔靠近机体一侧轴线的区域,射流孔两端连通冲击面与射流供液系统;射流供液系统用于储存冷却液,并以设定压力将设定流量的冷却液提供给射流孔。
2.根据权利要求1所述的一种高超声速飞行器头锥主动冷却结构,其特征在于,所述的冲击面为平面、带翅片的扩展表面或波纹表面。
3.根据权利要求1所述的一种高超声速飞行器头锥主动冷却结构,其特征在于,所述的射流孔为单个或多个,射流孔的方向与冲击面呈设定的角度。
4.根据权利要求1所述的一种高超声速飞行器头锥主动冷却结构,其特征在于,所述的螺旋流道为单条或两条以上,螺旋流道间互不交叉或有交叉;螺旋流道的横截面为圆形、椭圆形、半圆形、半椭圆形或多边形,螺旋流道为恒定截面流道、变截面流道或内置填充物流道。
5.一种基于权利要求1~4任一所述的高超声速飞行器头锥主动冷却结构的气液两相流离心螺旋强化换热方法,其特征在于,实现方法如下:
首先,射流供液系统以设定压力通过射流孔,将设定流量的冷却液射流冲击至冲击面;
其次,在冲击面表面冷却液吸热汽化,在冲击面上形成的气泡,在冷却液射流冲击力的作用下气泡脱离壁面,使沸腾过程保持在核态沸腾状态;
然后,由气液两相流形式组成的冷却介质,沿螺旋流道贴头锥蒙皮内侧螺旋流动,并继续吸热沸腾,螺旋流动所产生的离心力使冷却介质气液分离,气相冷却介质趋于贴近机体轴线,而液相冷却介质在离心力的作用下趋于贴近蒙皮侧,使得壁面产生的气泡加速脱离壁面。
CN201510923253.0A 2015-12-14 2015-12-14 高超声速飞行器主动冷却结构和气液两相流离心螺旋强化换热方法 Active CN105366029B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510923253.0A CN105366029B (zh) 2015-12-14 2015-12-14 高超声速飞行器主动冷却结构和气液两相流离心螺旋强化换热方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510923253.0A CN105366029B (zh) 2015-12-14 2015-12-14 高超声速飞行器主动冷却结构和气液两相流离心螺旋强化换热方法

Publications (2)

Publication Number Publication Date
CN105366029A CN105366029A (zh) 2016-03-02
CN105366029B true CN105366029B (zh) 2017-08-04

Family

ID=55368777

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510923253.0A Active CN105366029B (zh) 2015-12-14 2015-12-14 高超声速飞行器主动冷却结构和气液两相流离心螺旋强化换热方法

Country Status (1)

Country Link
CN (1) CN105366029B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108298097B (zh) * 2017-04-25 2020-09-22 北京空天技术研究所 一种小尺度强化换热结构
CN107719630B (zh) * 2017-09-25 2019-08-16 中国人民解放军国防科技大学 一种层板式燃气发汗鼻锥
CN109099741B (zh) * 2018-06-05 2020-04-24 东南大学 一种强化沸腾的换热结构
CN110318883A (zh) * 2019-07-10 2019-10-11 西北工业大学 一种螺旋形曲面通道的航空发动机帽罩单孔冲击换热结构
WO2022048094A1 (zh) * 2020-09-02 2022-03-10 李华玉 减小并利用吸热过程传热温差的方法
CN112833424A (zh) * 2021-01-08 2021-05-25 西北工业大学 一种新型蜗壳式燃烧室火焰筒壁面结构
US20220340252A1 (en) * 2021-04-27 2022-10-27 The Boeing Company Active cooling of windward surface of craft
CN113619769B (zh) * 2021-07-28 2023-03-14 哈尔滨工业大学 飞行器相变吸热与分解吸热复合可重复使用热防护结构
CN113911315B (zh) * 2021-12-14 2022-03-01 清华大学 一种飞行器头锥冷却结构
CN115853864B (zh) * 2022-11-17 2023-09-15 江苏通顺动力科技有限公司 一种抗冲击强换热型油冷却器
CN115950916B (zh) * 2023-03-14 2023-05-26 中国空气动力研究与发展中心计算空气动力研究所 一种物体表面热流密度检测方法、装置以及设备
CN116477045B (zh) * 2023-04-20 2024-02-06 中国人民解放军国防科技大学 飞行器壁面微纳尺度气膜的生成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271999A (ja) * 1991-02-25 1992-09-28 Ishikawajima Harima Heavy Ind Co Ltd 冷却構造体の製造方法
CN2744599Y (zh) * 2004-07-27 2005-12-07 南京师范大学 超高速飞行器气动加热受热表面热防护装置
CN201433224Y (zh) * 2009-05-21 2010-03-31 杭州浙大精益机电技术工程有限公司 一种气动挡渣气缸的冷却装置
CN102145746A (zh) * 2011-03-22 2011-08-10 北京航空航天大学 一种高超飞行器前缘喷雾+微小直通道冷却结构
CN103206883A (zh) * 2013-04-22 2013-07-17 浙江工业大学 翅片式螺旋管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271999A (ja) * 1991-02-25 1992-09-28 Ishikawajima Harima Heavy Ind Co Ltd 冷却構造体の製造方法
CN2744599Y (zh) * 2004-07-27 2005-12-07 南京师范大学 超高速飞行器气动加热受热表面热防护装置
CN201433224Y (zh) * 2009-05-21 2010-03-31 杭州浙大精益机电技术工程有限公司 一种气动挡渣气缸的冷却装置
CN102145746A (zh) * 2011-03-22 2011-08-10 北京航空航天大学 一种高超飞行器前缘喷雾+微小直通道冷却结构
CN103206883A (zh) * 2013-04-22 2013-07-17 浙江工业大学 翅片式螺旋管

Also Published As

Publication number Publication date
CN105366029A (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
CN105366029B (zh) 高超声速飞行器主动冷却结构和气液两相流离心螺旋强化换热方法
CN107567247B (zh) 一种阵列射流、固液相变相耦合的电子器件散热方法
CN106785822B (zh) 一种冷却超高热流密度热源的系统和方法
CN103192978B (zh) 一种层板式发汗和逆喷组合冷却鼻锥
US20060162365A1 (en) Cooling electronics via two-phase tangential jet impingement in a semi-toroidal channel
CN109334974B (zh) 一种控流型冲击发汗冷却头锥
CN104729824B (zh) 一种用于冷却高马赫数喷管喉道的换热装置及其构造方法
CN106347702B (zh) 一种喷气导流板
CN109751090B (zh) 导向叶片及具有其的涡轮导向器
US11549758B2 (en) Microchannel heat exchanger structure with nozzle and working method thereof
CN103303469A (zh) 控制高马赫数激波与附面层干扰流动分离的装置
CN108551750A (zh) 一种增强射流散热器散热效率装置,散热组件以及制作方法
CN107891970A (zh) 高超声速飞行器气膜冷却用的主动式热防护系统
CN102152849A (zh) 一种高超飞行器前缘冲击+微小直通道+气膜冷却结构
CN102145745A (zh) 一种高超飞行器前缘气膜+微小直通道冷却结构
CN201474638U (zh) 泡沫钻井机械消泡装置
CN104326079A (zh) 自适应主动热防护装置及飞行器
CN100489285C (zh) 古钱式扰流柱层板结构
CN102114909A (zh) 一种高超飞行器前缘冲击+微小交错通道冷却结构
CN112696961B (zh) 一种三级相变换热器
CN102637654B (zh) 基于泡沫金属强化沸腾换热的芯片冷却装置
CN115258130A (zh) 基于逆向喷流与主动冷却的高超声速组合减阻降热结构
CN209639574U (zh) 一种带有喷管的微通道换热器结构
CN204255172U (zh) 无中空旋溅式喷溅装置
CN102145746A (zh) 一种高超飞行器前缘喷雾+微小直通道冷却结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant