CN105294706A - Iron phthalocyanine nanowire with new crystal structure and preparation method of iron phthalocyanine nanowire - Google Patents
Iron phthalocyanine nanowire with new crystal structure and preparation method of iron phthalocyanine nanowire Download PDFInfo
- Publication number
- CN105294706A CN105294706A CN201510735830.3A CN201510735830A CN105294706A CN 105294706 A CN105294706 A CN 105294706A CN 201510735830 A CN201510735830 A CN 201510735830A CN 105294706 A CN105294706 A CN 105294706A
- Authority
- CN
- China
- Prior art keywords
- iron phthalocyanine
- heating
- carrier gas
- temperature
- nanowire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- KMHSUNDEGHRBNV-UHFFFAOYSA-N 2,4-dichloropyrimidine-5-carbonitrile Chemical compound ClC1=NC=C(C#N)C(Cl)=N1 KMHSUNDEGHRBNV-UHFFFAOYSA-N 0.000 title claims abstract description 91
- 239000002070 nanowire Substances 0.000 title claims abstract description 41
- 239000013078 crystal Substances 0.000 title description 18
- 238000002360 preparation method Methods 0.000 title description 8
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 7
- 238000001228 spectrum Methods 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims description 39
- 239000012159 carrier gas Substances 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 26
- 239000002994 raw material Substances 0.000 claims description 16
- 238000001157 Fourier transform infrared spectrum Methods 0.000 claims description 7
- 239000011810 insulating material Substances 0.000 claims description 6
- 239000007789 gas Substances 0.000 description 11
- 239000010453 quartz Substances 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 5
- 238000000859 sublimation Methods 0.000 description 4
- 230000008022 sublimation Effects 0.000 description 4
- 239000012535 impurity Substances 0.000 description 3
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical group N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- -1 phthalocyanine compound Chemical class 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- JZQOJFLIJNRDHK-CMDGGOBGSA-N alpha-irone Chemical compound CC1CC=C(C)C(\C=C\C(C)=O)C1(C)C JZQOJFLIJNRDHK-CMDGGOBGSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 150000003278 haem Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000002428 photodynamic therapy Methods 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/22—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
一种酞菁铁纳米线,该酞菁铁纳米线的X-射线衍射谱(测试条件:CuKα1,,0.02°/step/2s)在下列的2θ±0.10°处具有特征峰:6.92°、8.70°、9.88°、15.67°、24.11°、26.06°;且对应于上述2θ,半峰宽分别为0.562、0.515、0.324、0.502、0.336、0.306;分别对应于上述2θ,相对衍射强度分别为100%、6.5%、4.7%、18.2%、4.4%、8.7%。
A kind of iron phthalocyanine nanowire, the X-ray diffraction spectrum of this iron phthalocyanine nanowire (test condition: Cu Kα1 , , 0.02°/step/2s) have characteristic peaks at the following 2θ±0.10°: 6.92°, 8.70°, 9.88°, 15.67°, 24.11°, 26.06°; and corresponding to the above 2θ, the half peak widths are 0.562 .
Description
技术领域technical field
本发明的实施例涉及一种新晶体结构酞菁铁纳米线及其制备方法。The embodiment of the present invention relates to a new crystal structure iron phthalocyanine nanowire and a preparation method thereof.
背景技术Background technique
酞菁环是一个具有18个π电子的大共轭环,结构与天然卟啉、叶绿素以及血红素很相似。酞菁环中间的氢原子被金属元素替代后形成酞菁化合物;铁作为地球上含量较多的金属元素可取代酞菁环的两个氢原子形成酞菁铁。酞菁铁是一种优良的功能材料,由于其独特的催化活性、光敏性、光电导性、光稳定性和非线性等性质,已经被应用于催化剂、燃料电池、光导材料以及光盘等领域。The phthalocyanine ring is a large conjugated ring with 18 π electrons, and its structure is very similar to natural porphyrin, chlorophyll and heme. The hydrogen atom in the middle of the phthalocyanine ring is replaced by a metal element to form a phthalocyanine compound; iron, as the most abundant metal element on the earth, can replace the two hydrogen atoms of the phthalocyanine ring to form iron phthalocyanine. Iron phthalocyanine is an excellent functional material. Due to its unique properties such as catalytic activity, photosensitivity, photoconductivity, photostability and nonlinearity, it has been used in the fields of catalysts, fuel cells, photoconductive materials and optical discs.
一般情况下,制备条件和方法的不同会得到不同晶体结构和不同尺寸的酞菁铁晶体,而不同结构和尺寸的晶体在性质和功能上会有本质的区别。通常,制备酞菁铁的方法有浓硫酸溶液重结晶法、物理气相沉积法、电化学沉积法、氧化铝模板法、溶液梯度降温法酞菁铁的微波法和在密封体系中固态热裂解法等。这些制备方法通常可以得到晶型为α、β型的酞菁铁晶体,这些晶体在形貌上主要为针状、棒状等。In general, different preparation conditions and methods will result in iron phthalocyanine crystals with different crystal structures and sizes, and crystals with different structures and sizes will have essential differences in properties and functions. Usually, the methods for preparing iron phthalocyanine include concentrated sulfuric acid solution recrystallization method, physical vapor deposition method, electrochemical deposition method, alumina template method, solution gradient cooling method, microwave method of iron phthalocyanine and solid state thermal cracking method in a sealed system. Wait. These preparation methods can usually obtain iron phthalocyanine crystals with crystal forms of α and β, and these crystals are mainly needle-shaped, rod-shaped, etc. in shape.
由于这些形貌的酞菁铁晶体由于尺寸粗大,溶剂溶解性低等缺点,且不能有效地在纳米量级控制其尺寸和结构等而限制了酞菁铁的运用。以此,基于有机气相沉积法在有机半导体纳米材料方面的研究,用有机气相沉积法通过对温度,载流气体的流速等条件的调控可大量制备但不同于已有酞菁铁结构,直径在纳米量级,纳米线束长度达毫米量级的高纯度酞菁铁纳米线。进而,可将新型酞菁铁应用在非线性光学,电化学,光动力疗法、光电导材料等不同领域。Due to the shortcomings of iron phthalocyanine crystals with these shapes, such as coarse size and low solvent solubility, and the inability to effectively control their size and structure at the nanometer level, the application of iron phthalocyanine is limited. In this way, based on the research of organic semiconductor nanomaterials by organic vapor deposition method, it can be prepared in large quantities through the regulation of temperature, flow rate of carrier gas and other conditions by organic vapor deposition method, but it is different from the existing iron phthalocyanine structure. High-purity iron phthalocyanine nanowires with nano-scale and nano-wire bundles with millimeter-scale lengths. Furthermore, the new iron phthalocyanine can be applied in different fields such as nonlinear optics, electrochemistry, photodynamic therapy, and photoconductive materials.
发明内容Contents of the invention
本发明的实施例涉及一种酞菁铁纳米线,所述酞菁铁纳米线的X-射线衍射谱(测试条件:CuKα1,0.02°/step/2s)在下列的2θ±0.10°处具有特征峰:6.92°、8.70°、9.88°、15.67°、24.11°、26.06°;且对应于上述2θ,半峰宽分别为0.562、0.515、0.324、0.502、0.336、0.306;分别对应于上述2θ,相对衍射强度分别为100%、6.5%、4.7%、18.2%、4.4%、8.7%。The embodiment of the present invention relates to a kind of iron phthalocyanine nanowire, the X-ray diffraction spectrum of described iron phthalocyanine nanowire (test condition: Cu Kα1 , 0.02°/step/2s) has characteristic peaks at the following 2θ±0.10°: 6.92°, 8.70°, 9.88°, 15.67°, 24.11°, 26.06°; and corresponding to the above 2θ, the half-peak widths are 0.562, 0.515, 0.324, 0.502, 0.336, 0.306; corresponding to the above 2θ respectively, the relative diffraction intensities are 100%, 6.5%, 4.7%, 18.2%, 4.4%, 8.7%.
可选的,所述酞菁铁纳米线具有下列的傅氏转换红外线光谱(FTIR)特征峰:725cm-1、752cm-1、775cm-1、1080cm-1、1118cm-1、1165cm-1、1288cm-1、1330cm-1、1419cm-1、1493cm-1、1512cm-1、1612cm-1。Optionally, the iron phthalocyanine nanowires have the following Fourier transform infrared spectrum (FTIR) characteristic peaks: 725cm -1 , 752cm -1 , 775cm -1 , 1080cm -1 , 1118cm -1 , 1165cm -1 , 1288cm -1 , 1330cm -1 , 1419cm -1 , 1493cm -1 , 1512cm -1 , 1612cm -1 .
可选的,所述酞菁铁纳米线的平均直径为约70nm。Optionally, the average diameter of the iron phthalocyanine nanowires is about 70 nm.
本发明的实施例还提供一种制备酞菁铁纳米线的方法,包括下列步骤:Embodiments of the present invention also provide a method for preparing iron phthalocyanine nanowires, comprising the following steps:
a)将酞菁铁原料置于管式炉中的加热区域;a) the iron phthalocyanine raw material is placed in the heating zone in the tube furnace;
b)在载气氛围下,加热酞菁铁原料至最高500℃,得到升华的气态酞菁铁;b) under a carrier gas atmosphere, heating the iron phthalocyanine raw material to a maximum of 500°C to obtain sublimated gaseous iron phthalocyanine;
c)通过该载气,引导该升华的气态酞菁铁离开该加热区域,至温度较该加热区域低的生长区域;c) using the carrier gas to guide the sublimed gaseous iron phthalocyanine to leave the heating area to a growth area with a lower temperature than the heating area;
d)在该生长区域,得到酞菁铁纳米线。d) In the growth region, iron phthalocyanine nanowires are obtained.
可选的,在所述步骤b)中,加热酞菁铁原料至最高490℃,优选最高460℃。Optionally, in said step b), the iron phthalocyanine raw material is heated up to 490°C, preferably up to 460°C.
可选的,所述生长区域的温度在150℃以下,优选在100℃以下,更优选在50℃以下,最优选为室温。Optionally, the temperature of the growth region is below 150°C, preferably below 100°C, more preferably below 50°C, and most preferably at room temperature.
可选的,在所述步骤b)中,以阶梯升温的方式加热,先预热至400℃,然后再阶梯式升温至最高温度,所述阶梯式升温的升温间隔为1℃-30℃、且升温速率为1℃-5℃/min。Optionally, in the step b), heating is carried out in a stepwise manner, preheating to 400°C first, and then stepwise raising the temperature to the highest temperature, and the stepwise heating interval is 1°C-30°C, And the heating rate is 1°C-5°C/min.
可选的,所述载气在入口处的流速为0.2L/min-0.6L/min,所述载气在通过所述酞菁铁原料时的流速为0.2L/min-0.6L/min。Optionally, the flow rate of the carrier gas at the inlet is 0.2L/min-0.6L/min, and the flow rate of the carrier gas when passing through the iron phthalocyanine raw material is 0.2L/min-0.6L/min.
可选的,在所述加热区域和所述生长区域之间设置60-90mm的间隙;其中在间隙中设置隔温材料,且隔温材料中设置通气孔。Optionally, a gap of 60-90 mm is set between the heating area and the growth area; wherein a heat insulating material is set in the gap, and a ventilation hole is set in the heat insulating material.
可选的,所述载气在所述通气孔内的流速为1L/min-9L/min。Optionally, the flow rate of the carrier gas in the vent hole is 1L/min-9L/min.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the accompanying drawings of the embodiments will be briefly introduced below. Obviously, the accompanying drawings in the following description only relate to some embodiments of the present invention, rather than limiting the present invention .
图1为本发明一实施例提供的酞菁铁纳米线XRD图谱;Fig. 1 is the iron phthalocyanine nanowire XRD pattern that one embodiment of the present invention provides;
图2为α-酞菁铁和β-酞菁铁XRD图谱Figure 2 is the XRD patterns of α-iron phthalocyanine and β-iron phthalocyanine
图3为本发明一实施方式提供的酞菁铁原料和酞菁铁纳米线的FTIR图谱;Fig. 3 is the FTIR spectrum of iron phthalocyanine raw material and iron phthalocyanine nanowire provided by one embodiment of the present invention;
图4为本发明一实施例提供的酞菁铁纳米线SEM图谱。Fig. 4 is an SEM spectrum of iron phthalocyanine nanowires provided by an embodiment of the present invention.
具体实施方式detailed description
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention more clear, the following will clearly and completely describe the technical solutions of the embodiments of the present invention in conjunction with the drawings of the embodiments of the present invention. Apparently, the described embodiments are some, not all, embodiments of the present invention. Based on the described embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
除非另作定义,本公开所使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“第一”“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。Unless otherwise defined, the technical terms or scientific terms used in the present disclosure shall have the usual meanings understood by those skilled in the art to which the present invention belongs. "First", "second" and similar words used in the patent application specification and claims of the present invention do not indicate any sequence, quantity or importance, but are only used to distinguish different components. Likewise, words like "a" or "one" do not denote a limitation in quantity, but indicate that there is at least one. Words such as "connected" or "connected" are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect.
在本发明的一个实施方案中,酞菁铁纳米线的X-射线衍射谱(测试条件:CuKα1,0.02°/step/2s)在下列的2θ±0.10°处具有特征峰:6.92°、8.70°、9.88°、15.67°、24.11°、26.06;且对应于上述2θ,半峰宽分别为0.562、0.515、0.324、0.502、0.336/0.306;分别对应于上述2θ,相对衍射强度分别为100%、6.5%、4.7%、18.2%、4.4%、8.7%。In one embodiment of the present invention, the X-ray diffraction spectrum (test condition: Cu Kα1 , 0.02°/step/2s) has characteristic peaks at the following 2θ±0.10°: 6.92°, 8.70°, 9.88°, 15.67°, 24.11°, 26.06; and corresponding to the above 2θ, the half-peak widths are 0.562, 0.515 .
在本发明的一个实施方案中,酞菁铁纳米线具有下列的傅氏转换红外线光谱(FTIR)特征峰:725cm-1、752cm-1、775cm-1、1080cm-1、1118cm-1、1165cm-1、1288cm-1、1330cm-1、1419cm-1、1493cm-1、1512cm-1、1612cm-1。In one embodiment of the present invention, the iron phthalocyanine nanowires have the following Fourier transform infrared spectrum (FTIR) characteristic peaks: 725cm -1 , 752cm -1 , 775cm -1 , 1080cm -1 , 1118cm -1 , 1165cm -1 1 , 1288cm -1 , 1330cm -1 , 1419cm -1 , 1493cm -1 , 1512cm -1 , 1612cm -1 .
图1显示了本发明一实施例提供的酞菁铁纳米线的X-射线衍射谱图。本发明一实施例得到的酞菁铁纳米线的SEM如图4所示。Figure 1 shows the X-ray diffraction spectrum of iron phthalocyanine nanowires provided by an embodiment of the present invention. The SEM of the iron phthalocyanine nanowire obtained in an embodiment of the present invention is shown in FIG. 4 .
本发明的实施例还提供了一种制备酞菁铁纳米线的气相沉积法,包括下列步骤:Embodiments of the present invention also provide a vapor deposition method for preparing iron phthalocyanine nanowires, comprising the following steps:
a)将酞菁铁原料置于管式炉中的加热区域;a) the iron phthalocyanine raw material is placed in the heating zone in the tube furnace;
b)在载气氛围下,加热酞菁铁原料至最高500℃,得到升华的气态酞菁铁;b) under a carrier gas atmosphere, heating the iron phthalocyanine raw material to a maximum of 500°C to obtain sublimated gaseous iron phthalocyanine;
c)通过该载气,引导该升华的气态酞菁铁离开该加热区域,至温度较该加热区域低的生长区域;c) using the carrier gas to guide the sublimed gaseous iron phthalocyanine to leave the heating area to a growth area with a lower temperature than the heating area;
d)在该生长区域,得到酞菁铁纳米线。d) In the growth region, iron phthalocyanine nanowires are obtained.
在制备过程中,在上述步骤a),首先将酞菁铁引入到管式炉中的加热区域。可选的,酞菁铁置于位于管式炉中的密封管中。该密封管可以是石英管,也可以是不影响酞菁铁结晶性的任何其它材料制成的管,包括,但不限于,不锈钢、硅、氧化铝、陶瓷、玻璃等材质形成的管中。这些材料也可以以基底的形式置于密封管,例如石英管中。In the preparation process, in the above step a), firstly, iron phthalocyanine is introduced into the heating area in the tube furnace. Optionally, the iron phthalocyanine is placed in a sealed tube located in a tube furnace. The sealed tube can be a quartz tube, or a tube made of any other material that does not affect the crystallinity of iron phthalocyanine, including, but not limited to, tubes made of stainless steel, silicon, alumina, ceramics, glass and other materials. These materials can also be placed in sealed tubes, such as quartz tubes, in the form of substrates.
加入酞菁铁后,往加热区域通入载气。该载气例如可以为氮气(N2)、氩气(Ar)或氦气(He)。在该载气的存在下,加热酞菁铁至预定目标温度。温度的选择只要能使得酞菁铁原料升华为气体、但是又不至于生成其它晶型的酞菁铁。为有效防止加热温度过高而导致生成其它晶型的酞菁铁,例如,上述步骤b)中,加热酞菁铁原料至最高500℃,优选最高490℃,进一步优选最高470℃,进一步优选最高460℃。After adding iron phthalocyanine, pass the carrier gas into the heating area. The carrier gas may be, for example, nitrogen (N 2 ), argon (Ar) or helium (He). In the presence of the carrier gas, the iron phthalocyanine is heated to a predetermined target temperature. The choice of temperature only needs to enable the raw material of iron phthalocyanine to sublimate to gas without producing other crystal forms of iron phthalocyanine. In order to effectively prevent the formation of other crystal forms of iron phthalocyanine due to excessive heating temperature, for example, in the above step b), the iron phthalocyanine raw material is heated to a maximum of 500°C, preferably a maximum of 490°C, more preferably a maximum of 470°C, and further preferably a maximum of 470°C. 460°C.
在所述步骤b)中,例如可以以阶梯升温的方式加热。例如,先预热至400℃,然后再阶梯式升温至目标温度,保持在该温度一定时间。所述阶梯式升温的升温间隔例如可以设置为1℃-30℃,优选以1℃、2℃、5℃、8℃、10℃、15℃、20℃、25℃或30℃的升温间隔升温,升温速率例如可以设置为1℃-5℃/min。升温间隔的含义为,例如如果升温间隔为1℃,则升高1℃后保温一定时间,然后继续升温。采用阶段式升温的效果是,酞菁铁可以更加平稳地升华,获得更加平稳的酞菁铁气体,从而更加有利于新晶体结构酞菁铁纳米线的形成。In the step b), for example, heating may be carried out in a stepwise manner. For example, preheat to 400°C first, then raise the temperature stepwise to the target temperature, and keep at this temperature for a certain period of time. The temperature increase interval of the stepwise temperature increase can be set to, for example, 1°C-30°C, preferably at a temperature increase interval of 1°C, 2°C, 5°C, 8°C, 10°C, 15°C, 20°C, 25°C or 30°C , the heating rate can be set to, for example, 1°C-5°C/min. The meaning of the temperature rise interval is, for example, if the temperature rise interval is 1° C., after raising the temperature by 1° C., the temperature is kept for a certain period of time, and then the temperature is continued to rise. The effect of adopting staged heating is that the iron phthalocyanine can be sublimated more smoothly, and a more stable iron phthalocyanine gas can be obtained, which is more conducive to the formation of iron phthalocyanine nanowires with a new crystal structure.
在上述步骤c)中,所述生长区域的温度在150℃以下,优选在100℃以下,更优选在50℃以下,最优选为室温。生长区域的温度比加热区域的温度低,从而升华的酞菁铁气体在生长区域能够凝固为酞菁铁晶体。生长区域的温度不宜过高。过高则酞菁铁气体会结晶生成其他晶体结构,例如β晶型。In the above step c), the temperature of the growth region is below 150°C, preferably below 100°C, more preferably below 50°C, and most preferably at room temperature. The temperature of the growth region is lower than that of the heating region, so that the sublimated iron phthalocyanine gas can solidify into iron phthalocyanine crystals in the growth region. The temperature in the growing area should not be too high. If it is too high, iron phthalocyanine gas will crystallize to form other crystal structures, such as β crystal form.
在步骤c)中,升华得到的酞菁铁气体通过载气被快速运输到酞菁铁纳米线生长区域。运输过程中,快速运转酞菁铁升华气体,避免酞菁铁纳米线在生长区域之外生长其它晶型酞菁铁。可选的,生长区域邻接加热区域。或者生长区域也可以远离加热区域。可选的,生长区域和加热区域之间具有一定间隙,例如40-100mm的间隙,或者50-95mm的间隙,或者60-90mm的间隙。可以在该间隙中填充隔温材料。隔温材料包括,但不限于,硅酸钙、硅酸铝、特氟龙(Teflon)或聚氨酯。在该隔温材料中设置孔,以使得引导酞菁铁气体的载气能够通过。孔的数目和直径可以根据需要设置。例如,孔的数目为1-12个;孔的直径为3-8mm。通过孔的设置,使得载气在通过上述孔时的流速(L/min)和通过酞菁铁原料时的流速(L/min)相比有较大的提高。由此,使得运载酞菁铁升华气体能够快速到达生长区域。本发明实施例的酞菁铁晶体例如在低于150℃,或者低于100℃,或者低于50℃的生长区域生长,或者在室温区域生长。In step c), the iron phthalocyanine gas obtained by sublimation is quickly transported to the iron phthalocyanine nanowire growth region through the carrier gas. During the transportation process, the iron phthalocyanine sublimation gas is operated quickly to prevent the iron phthalocyanine nanowires from growing other crystal forms of iron phthalocyanine outside the growth area. Optionally, the growth zone adjoins the heating zone. Alternatively the growth area can also be remote from the heating area. Optionally, there is a certain gap between the growing area and the heating area, for example, a gap of 40-100 mm, or a gap of 50-95 mm, or a gap of 60-90 mm. Insulation material can be filled in this gap. Insulation materials include, but are not limited to, calcium silicate, aluminum silicate, Teflon, or polyurethane. Holes are provided in the heat insulating material so that the carrier gas leading the iron phthalocyanine gas can pass through. The number and diameter of the holes can be set as required. For example, the number of holes is 1-12; the diameter of the holes is 3-8mm. Through the arrangement of the holes, the flow rate (L/min) of the carrier gas when passing through the holes is greatly improved compared with the flow rate (L/min) when passing through the iron phthalocyanine raw material. Thus, the sublimation gas carrying iron phthalocyanine can quickly reach the growth region. The iron phthalocyanine crystal in the embodiment of the present invention grows, for example, in a growth region lower than 150° C., or lower than 100° C., or lower than 50° C., or grows in a room temperature region.
在制备酞菁铁纳米线的过程中,可以在常压下进行。该制备酞菁铁纳米线过程,也可以根据需要,在真空或加压下进行。在制备的整个过程中,载气的流量需要保持稳定。载气在入口处的流速一般为0.1L/min-1L/min,或者0.2L/min-0.5L/min。在通过上述隔温材料中的孔时,所述载气的流速(速度)可以为1L/min-20L/min,或者载气的流速为1L/min-9L/min,或者载气的流速为2L/min-6L/min,或者载气的流速为3L/min-5L/min。载气引导酞菁铁升华气体快速通过各温区,减少在生长区域之外的区域生长晶体。In the process of preparing iron phthalocyanine nanowires, it can be carried out under normal pressure. The process of preparing iron phthalocyanine nanowires can also be carried out under vacuum or pressure as required. The flow of carrier gas needs to be kept constant throughout the preparation process. The flow rate of the carrier gas at the inlet is generally 0.1L/min-1L/min, or 0.2L/min-0.5L/min. When passing through the holes in the above-mentioned heat insulating material, the flow rate (velocity) of the carrier gas can be 1L/min-20L/min, or the flow rate of the carrier gas is 1L/min-9L/min, or the flow rate of the carrier gas is 2L/min-6L/min, or the flow rate of carrier gas is 3L/min-5L/min. The carrier gas guides the iron phthalocyanine sublimation gas to pass through each temperature zone quickly, reducing the growth of crystals in areas other than the growth area.
本发明的方法还包括在引入酞菁铁之前,清洗该石英管的步骤,包括,但不限于:The method of the present invention also includes the step of cleaning the quartz tube before introducing iron phthalocyanine, including, but not limited to:
(1)使用有机溶剂丙酮、无水乙醇、去离子水清洗石英管和衬底,除去石英管和衬底上的杂质;(1) Use organic solvent acetone, absolute ethanol, deionized water to clean the quartz tube and the substrate to remove impurities on the quartz tube and the substrate;
(2)使用高纯氮气气体吹干石英管和衬底上残余的杂质和水;(2) Use high-purity nitrogen gas to dry up residual impurities and water on the quartz tube and substrate;
(3)制备前使用真空系统对石英管腔体抽真空,以除去石英管内的空气等杂质。(3) Vacuumize the cavity of the quartz tube by using a vacuum system before preparation to remove impurities such as air in the quartz tube.
本发明实施例提供的上述酞菁铁纳米线在长时间保存后,其物理化学性质保持稳定。The physical and chemical properties of the iron phthalocyanine nanowires provided in the embodiments of the present invention remain stable after long-term storage.
以下通过实施例来具体说明本发明的实现方式。The implementation of the present invention will be described in detail below through examples.
实施例1:Example 1:
采用可编程控温的单温段开启式管式炉。酞菁铁原料置于该管式炉高温段的中央位置。载气N2的流量设定为0.4L/min。通30min分钟N2气后,对酞菁铁原料加热。先加热至400℃,达到400℃后以4℃/min的速度升温至420℃。达到420℃后,保温20min,然后以4℃/min的速度升温至440℃。达到440℃后,保温20min,然后以2℃/min的速度升温至460℃。达到460℃并保温180min。升华酞菁铁气体由载气运输至生长区域。保温完成后,停止加热,继续通N230min,得到酞菁铁纳米线。A single temperature section open-type tube furnace with programmable temperature control. The iron phthalocyanine raw material is placed in the central position of the high temperature section of the tube furnace. The flow rate of carrier gas N2 was set at 0.4 L/min. After passing N2 gas for 30 minutes, heat the raw material of iron phthalocyanine. First heat to 400°C, and then raise the temperature to 420°C at a rate of 4°C/min after reaching 400°C. After reaching 420°C, keep it warm for 20 minutes, and then raise the temperature to 440°C at a rate of 4°C/min. After reaching 440°C, keep it warm for 20 minutes, and then raise the temperature to 460°C at a rate of 2°C/min. Reach 460°C and hold for 180min. The sublimated iron phthalocyanine gas is transported by the carrier gas to the growth area. After the heat preservation is completed, the heating is stopped, and N 2 is continuously passed through for 30 minutes to obtain iron phthalocyanine nanowires.
实施例2:Example 2:
在实施例1的基础上,采用可编程控温的单温段开启式管式炉,调控N2入口处的流量为0.6L/min,以400℃、440℃、460℃、480℃、490℃、500℃的阶梯升温方式,升温至500℃,保温300min。该生长区域与加热区域以一个内径为5mm的石英管连接。通过小口径管,载气的流速提高至3.6L/min。加热结束后,继续通气30min,然后停止通气,酞菁铁纳米线在室温段生长。On the basis of Example 1, a programmable temperature-controlled single-temperature section open-type tube furnace is used, and the flow rate at the N2 inlet is adjusted to 0.6L/min. ℃, 500°C stepwise heating method, heating up to 500°C, holding for 300min. The growth zone is connected to the heating zone by a quartz tube with an inner diameter of 5 mm. Through small-bore tubing, the flow rate of the carrier gas was increased to 3.6 L/min. After heating, continue to ventilate for 30 minutes, then stop ventilating, and the iron phthalocyanine nanowires grow at room temperature.
实施例3:Example 3:
在实施例2的基础上,采用可编程控温的单温段开启式管式炉,调控N2入口处的流量为0.6L/min,以400℃、420℃、450℃、460℃的阶梯升温方式,升温至460℃,保温300min。得到酞菁铁纳米线。On the basis of Example 2, a programmable temperature-controlled single-temperature section open-type tube furnace is used, and the flow rate at the N2 inlet is adjusted to 0.6L/min. The way of heating up is to raise the temperature to 460°C and keep it warm for 300min. Obtain iron phthalocyanine nanowires.
实施例4:Example 4:
改变实验条件:衬底材料为普通玻璃,温度及加热方式重复实施例1,温度达到460℃保持180min后停止加热,酞菁铁纳米线制备结束,收集酞菁铁纳米线。The experimental conditions were changed: the substrate material was ordinary glass, the temperature and heating method were repeated in Example 1, the temperature reached 460° C. and kept for 180 minutes, then the heating was stopped, and the preparation of the iron phthalocyanine nanowires was completed, and the iron phthalocyanine nanowires were collected.
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。The above descriptions are only exemplary implementations of the present invention, and are not intended to limit the protection scope of the present invention, which is determined by the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510735830.3A CN105294706B (en) | 2015-11-03 | 2015-11-03 | New crystal structure phthalocyanine Fe nanowire and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510735830.3A CN105294706B (en) | 2015-11-03 | 2015-11-03 | New crystal structure phthalocyanine Fe nanowire and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105294706A true CN105294706A (en) | 2016-02-03 |
CN105294706B CN105294706B (en) | 2018-09-07 |
Family
ID=55192612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510735830.3A Expired - Fee Related CN105294706B (en) | 2015-11-03 | 2015-11-03 | New crystal structure phthalocyanine Fe nanowire and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105294706B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110034232A (en) * | 2019-04-05 | 2019-07-19 | 东北师范大学 | Using FePC as the preparation method and application of the field effect transistor of raw material |
CN113956261A (en) * | 2021-09-16 | 2022-01-21 | 昆明学院 | New crystal structure of chlorinated gallium phthalocyanine nanobelt and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007037906A2 (en) * | 2005-09-15 | 2007-04-05 | Honda Motor Co., Ltd. | Methods for synthesis of metal nanowires |
CN102272234A (en) * | 2009-04-23 | 2011-12-07 | Dic株式会社 | Phthalocyanine nanowire, ink composition containing the same, electronic component, and method for producing phthalocyanine nanowire |
JP2012082544A (en) * | 2010-10-08 | 2012-04-26 | Dic Corp | Carbon nanofiber and manufacturing method thereof |
CN103255374A (en) * | 2012-09-19 | 2013-08-21 | 苏州大学 | Method for preparing ordered one-dimensional organic nanowire array |
-
2015
- 2015-11-03 CN CN201510735830.3A patent/CN105294706B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007037906A2 (en) * | 2005-09-15 | 2007-04-05 | Honda Motor Co., Ltd. | Methods for synthesis of metal nanowires |
CN102272234A (en) * | 2009-04-23 | 2011-12-07 | Dic株式会社 | Phthalocyanine nanowire, ink composition containing the same, electronic component, and method for producing phthalocyanine nanowire |
JP2012082544A (en) * | 2010-10-08 | 2012-04-26 | Dic Corp | Carbon nanofiber and manufacturing method thereof |
CN103255374A (en) * | 2012-09-19 | 2013-08-21 | 苏州大学 | Method for preparing ordered one-dimensional organic nanowire array |
Non-Patent Citations (1)
Title |
---|
W. Y. TONG,ET AL.,: "Metal Phthalocyanine Nanoribbons and Nanowires", 《J. PHYS. CHEM. B》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110034232A (en) * | 2019-04-05 | 2019-07-19 | 东北师范大学 | Using FePC as the preparation method and application of the field effect transistor of raw material |
CN113956261A (en) * | 2021-09-16 | 2022-01-21 | 昆明学院 | New crystal structure of chlorinated gallium phthalocyanine nanobelt and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN105294706B (en) | 2018-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104086555B (en) | New crystal structure Cobalt Phthalocyanine (J-CoPc) nano wire and preparation method thereof | |
CN106698410B (en) | The preparation method of nitrogen atom doping carbon nanomaterial | |
CN108083339B (en) | A method for preparing monolayer two-dimensional transition metal sulfide materials | |
CN108118395A (en) | A kind of method that chemical vapor deposition prepares two tungsten selenide monocrystal thin films | |
CN104538288B (en) | A kind of device and method of direct growth atomic scale two-dimensional semiconductor hetero-junctions | |
CN107640763B (en) | Preparation method of single-layer single crystal graphene | |
CN105294706B (en) | New crystal structure phthalocyanine Fe nanowire and preparation method thereof | |
CN113930743A (en) | A method for growing two thin layers of tungsten disulfide under normal pressure | |
CN104557952A (en) | New crystalline structural zinc phthalocyanine (iota-ZnPc) nanowire and preparation method thereof | |
CN104610269B (en) | New crystal structure Nickel Phthalocyanine(ω‑NiPc)Nano wire and preparation method thereof | |
Clark et al. | The preparation of large single crystals of cadmium sulphide | |
CN106830081A (en) | A kind of MoO2The preparation method of nanometer rods | |
CN111087404A (en) | A kind of P-type and N-type organic semiconductor eutectic material based on physical vapor deposition and preparation method | |
CN105858715A (en) | A method for preparing acceptor-rich ZnO microtubes | |
CN108109904A (en) | Nanometer wire dirac semimetal Cadmium arsenide and preparation method thereof | |
CN105543972A (en) | Preparation method of high-purity and high-density MoO2 layer flake nanostructure | |
CN109904257B (en) | A kind of preparation and purification method of cesium lead iodine | |
CN105523548B (en) | A kind of carrier of control graphene nucleus growth | |
CN101210347A (en) | A method for preparing organic compound single crystal nanostructure | |
CN105645462A (en) | Preparation method of CdS/ZnO core-shell-structure nanowires | |
CN106185897A (en) | A kind of controlled method preparing graphene nanobelt in multiple substrate | |
CN109019571B (en) | Preparation method of nitrogen-doped graphene with controllable layer number | |
CN113104885B (en) | Non-lamellar Sn 2 P 2 S 6 Preparation method of nanosheet and application of nanosheet in field of photocatalytic hydrogen evolution | |
CN106119968B (en) | Zn(1-x)MnxThe preparation method of Te monocrystal | |
CN105949206A (en) | New crystal structure perfluorocopper phthalocyanine (η-F16CuPc), its production method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180907 |