CN105242133A - 一种改进配电线路雷电跳闸率计算方法 - Google Patents

一种改进配电线路雷电跳闸率计算方法 Download PDF

Info

Publication number
CN105242133A
CN105242133A CN201510598745.7A CN201510598745A CN105242133A CN 105242133 A CN105242133 A CN 105242133A CN 201510598745 A CN201510598745 A CN 201510598745A CN 105242133 A CN105242133 A CN 105242133A
Authority
CN
China
Prior art keywords
lightning
formula
trip
line
out rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510598745.7A
Other languages
English (en)
Other versions
CN105242133B (zh
Inventor
杨仲江
刘健
卢慧慧
肖扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Information Science and Technology
Original Assignee
Nanjing University of Information Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Information Science and Technology filed Critical Nanjing University of Information Science and Technology
Priority to CN201510598745.7A priority Critical patent/CN105242133B/zh
Publication of CN105242133A publication Critical patent/CN105242133A/zh
Application granted granted Critical
Publication of CN105242133B publication Critical patent/CN105242133B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明提出了一种改进配电线路雷电跳闸率计算方法,包括如下步骤:(1)获取每基杆塔的经纬度坐标,再统计每一杆塔线路走廊范围内落雷次数,接着将线路走廊落雷密度转化为线路直接落雷密度;(2)收集线路的基本参数配置;(3)根据线路走廊范围内雷电流数据,拟合雷电流累积概率分布公式和概率密度公式,再结合闪电定位系统的线路走廊雷电数据,拟合得出α和β;(4)计算每基杆塔的直击雷跳闸率;(5)通过区间组合统计法计算每基杆塔的感应雷跳闸率;(6)对整条线路的雷击跳闸率进行计算,分析线路雷害状况。有益效果:能够获得比较准确的配电网雷电跳闸率,对防雷性能评估提供准确数据,提高了采取雷电防护措施的有效性和科学性。

Description

一种改进配电线路雷电跳闸率计算方法
技术领域
本发明属电力系统雷电防护领域,涉及基于闪电定位数据及GIS输电线路走廊精确路径,更为具体的是,涉及一种改进配电线路雷电跳闸率的计算方法。
背景技术
配电线路是配电系统的重要组成部分,承担着向负荷分配电能的重任,其安全稳定运行至关重要。由于配电线路的绝缘水平低,对雷电的防护能力较弱,雷击引起的跳闸事故在配网故障中占据很大比例。直击雷和感应雷都可能引发绝缘子闪络,导致线路跳闸。部分雷击闪络跳闸事后无明显痕迹,难以对跳闸原因进行确认。因此,合理计算配电线路雷电跳闸率对于掌握配电线路雷电防护性能,有效开展配电线路防雷工作意义重大。
在配电线路的防雷设计中一直沿用的标准和规程以及计算方法都普遍缺乏实用的雷电实测数据,而不同区域、不同季节雷电参数特征可能相差较大,传统参数取法并不能全面科学地反映某一地区的雷电活动。雷电参数的缺乏使得在选择线路防雷薄弱区段实施防雷措施时带有很大的盲目性,其技术经济性不高,防雷没有差异性、针对性。在防雷计算评估方法中,缺乏对沿线不同区段雷电活动差异性、环境特征差异性、线路结构差异性的综合、全面考虑,评估结果无法确切反映线路雷击故障的风险,也不能确定影响雷击闪络的各因素所起的作用。
随着闪电定位系统的推广,地闪的发生时间、地点、强度、陡度等一系列参数能够被准确记录,而GIS系统记录了配电线路走廊精确路径。通过两个系统数据的匹配能对线路走廊范围所有落雷情况进行统计,分别建立配电线路直击雷及感应雷跳闸模型,能够较为准确分析线路雷电跳闸概率。
以下通过研究相关最新发明和实用新型专利,进一步说明本发明的技术背景。专利-一种配电线路雷电跳闸率计算方法(201310365345)根据雷电定位系统落雷统计数据及GIS系统配电线路走廊精确路径,按直击雷及感应雷分类结合区域配电线路设备技术水平进行计算。但是此方法直击雷与感应雷跳闸率计算是基于原有规程方法,没有考虑不同地区雷电流参数、不同杆塔绝缘水平等因素的影响。专利-一种自动生成10kV配电线路杆塔雷击跳闸率的方法(201410313779)通过MATLAB软件,将规程法计算配电线路雷击跳闸率的公式编为计算模块,读入线路基本参数,自动输出逐基杆塔雷击跳闸率计算结果报告,制订相应防雷改造措施。该方法跳闸率的计算仍然按照原有规程,同样做不到精确计算。
发明内容
为了对配电线路的雷害活动进行准确评估,合理开展防雷工作,需要能够获得比较准确的配电网雷电跳闸率,本发明基于闪电定位系统数据及GIS系统配电线路参数信息,分别计算直击雷及感应雷跳闸率,分析整条线路的雷害风险,提供了一种改进配电线路雷电跳闸率的计算方法,其具体方案如下:
所述改进配电线路雷电跳闸率计算方法,包括如下步骤:
(1)通过GIS系统获取每基杆塔的经纬度坐标,再利用闪电定位系统统计每一杆塔线路走廊范围内落雷次数,接着将线路走廊落雷密度转化为线路直接落雷密度;
(2)收集线路的基本参数配置:绝缘子串长度lj(单位:m)、绝缘子闪络电压U50%(单位:kV)、导线高度h(单位:m)、导线间距b(单位:m)以及线路额定电压Uc(单位:kV);
(3)根据线路走廊范围内雷电流数据,拟合雷电流累积概率分布公式和概率密度公式,再结合闪电定位系统的线路走廊雷电数据,拟合得出α和β;
(4)通过电气几何模型计算每基杆塔的直击雷跳闸率;
(5)通过区间组合统计法计算每基杆塔的感应雷跳闸率;
(6)对整条线路的雷击跳闸率进行计算,分析线路雷害状况。
所述改进配电线路雷电跳闸率计算方法的进一步设计在于,所述步骤1)中,线路直接落雷密度如式(1)所示,
N G i = N i L - - - ( 1 )
式中,Ni为i第段线路走廊范围内的落雷次数;L为杆塔档距;NGi为第i段线路直接落雷密度。
所述改进配电线路雷电跳闸率计算方法的进一步设计在于,雷电流累积概率分布公式,如式(2)所示,概率密度公式,如式(3)所示,
P ( I ) = 1 1 + ( i α ) β - - - ( 2 )
p ( I ) = β α β i β - 1 [ 1 + ( i α ) β ] 2 - - - ( 3 ) .
所述改进配电线路雷电跳闸率计算方法的进一步设计在于,所述步骤4)中线路的等效引雷宽度的表达式如式(4)所示,
D e q = ∫ I c ∞ ( 2 s 0 ( I ) + b ) p ( I ) d I - - - ( 4 ) ,
式中,s0为雷击大地的临界距离,s0的表达式如式(5)所示,b为线路在地面上的投影宽度,
s 0 ( I ) = R c - ( R g - h ) 2 - - - ( 5 ) ,
式中,Rc为对导线雷击击距,Rc的表达式如式(6)所示,
Rc(I)=0.67h0.6I0.74(6)
式中,h为导线平均高度;I为雷电流幅值;Rg为对地雷击击距,Rg的表达式如式(7)所示,
Rg(I)=(0.36+0.168ln(43-h))Rc(7)
第i基杆塔直击雷跳闸率计算公式,如式(8)所示,
SFR1i=NGiηDeq(8)
式中,η为建弧率。
η = [ 4.5 ( U c 3 l ) 0.75 - 14 ] %
式中,Uc为线路额定电压,kV;lj为绝缘子串长度,m;lm为线路的线间距离(对于铁横担和钢筋混泥土横担线路,lm=0),m。Ic为绕击耐雷水平,配电线路结构简单且一般无避雷线,雷击导线时无需考虑避雷线的耦合作用,相线的波阻抗取400。
I c = U 50 % 100
式中,U50%绝缘子闪络电压,kV。
所述改进配电线路雷电跳闸率计算方法的进一步设计在于,所述步骤5)中包括如下步骤:
A)将雷电流幅值和雷电流产生感应过电压使绝缘子闪络的雷击点区域作为2个随机变量。在大地平面内,取杆塔中心点为坐标原点O,与导线垂直方向为x轴,与导线平行方向为y轴。杆塔档距为L,在y轴上距原点±L/2两点分别作y轴的垂线;
B)在两垂线之间的范围内落雷,根据式(2)确定雷电流累积幅值概率小于0.1%的临界值Imax,并根据感应过电压计算公式得到Smax
IEEE推荐的配电线路感应电压计算公式:
U e = 38.8 I h s
式中,Ue为感应过电压;I为雷电流幅值;s为落雷点距导线水平距离;h为导线平均高度。
C)沿x轴正向,从o点开始,以Δx为长度将±L/2区间划分成1△x、2△x、3△x…、m△x若干个子区间,每个子区间面积为L△x,从1△x子区间开始,依次计算各子区间内落雷引起原点处绝缘子闪络次数,直到Smax为止,对于每个子区间内落雷的处理,选择落雷点位于x轴上,子区间距导线的平均距离作为雷电流对导线的击距。
所述改进配电线路雷电跳闸率计算方法的进一步设计在于,所述步骤C)中在第k个△x区间内感应过电压幅值超过U50%的临界雷电流幅值,如式(9)所示,
I k = U 50 % [ ( k - 0.5 ) Δ x + s 0 ] 38.8 h - - - ( 9 )
各子区间遭受雷击且引起绝缘闪络的次数的表达式如式(10)所示,
Nsik=NGiΔxP(Ik)(10)
式中,P(I)为雷电流幅值超过此区间内临界闪络电流的概率。
第i基杆塔上绝缘子的闪络总次数的表达式如式(11)所示:
N s i = 2 Σ k = 1 m N s i k - - - ( 11 )
第i基杆塔感应雷跳闸率的表达式如式(12)所示,
SFR2i=Nsiη(12)。
所述的改进配电线路雷电跳闸率计算方法进一步设计在于,所述步骤6)中整条线路雷击跳闸率的表达式如式(13)所示,
S F R = Σ i = 1 n ( SFR 1 i + SFR 2 i ) - - - ( 13 )
折算成每100km线路雷击跳闸率:
SFR 100 k m = S F R × 100000 n L .
本发明的有益效果:
基于闪电定位系统统计雷电数据及GIS配电线路走廊精确路径,分别计算直击雷跳闸率及感应雷跳闸率,不仅计算了整条线路的雷击跳闸率,还给出了每基杆塔雷击跳闸率。该方法能够获得比较准确的配电网雷电跳闸率,对防雷性能评估提供准确数据,提高了采取雷电防护措施的有效性和科学性。
附图说明
图1为本发明所涉一种线路分段示意图。
图2为本发明所涉一种计算配电线路引雷宽度示意图。
图3为本发明所涉一种基于组合统计方法计算感应雷跳闸率示意图。
图4为本发明所涉一种计算配电线路雷电跳闸率流程示意图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
本实施例的改进配电线路雷电跳闸率的计算方法包括如下的步骤:
(1)、对整条配电线路的每基杆塔进行编号,分别为1、2、…、n。通过GIS系统获取每基杆塔的经纬度坐标,再利用闪电定位系统统计每一杆塔线路走廊范围内落雷次数,然后将线路走廊落雷密度转化为线路直接落雷密度。线路走廊划分见图1。
线路直接落雷密度
N G i = N i L
式中,Ni为i第段线路走廊范围内的落雷次数,次/a;L为杆塔档距,m;NGi为第i段线路直接落雷密度,次/m·a。
(2)、收集线路的基本参数配置:绝缘子串长度lj,m;绝缘子闪络电压U50%,kV;导线高度h,m、导线间距b,m;线路额定电压Uc,kV。
(3)、根据线路走廊范围内雷电流数据,拟合雷电流累积概率分布公式和概率密度公式。
雷电流累积概率分布公式和概率密度公式是计算输电线路雷击跳闸率的重要参数,其取值的准确性直接影响到雷击跳闸率的计算结果的准确性。雷电流累积概率分布和概率密度分布与气象、自然条件等有关,具有很强的地域性。
根据IEEE给出的雷电流累积概率分布公式:
P ( I ) = 1 1 + ( i α ) β
概率密度分布公式:
p ( I ) = β α β i β - 1 [ 1 + ( i α ) β ] 2
结合闪电定位系统的线路走廊雷电数据,拟合得出α和β。
(4)、通过电气几何模型计算每基杆塔的直击雷跳闸率。
对于某一幅值为I的雷电流,当雷电下行先导距导线较近时,由于导线的引雷作用,雷电将击在导线上,形成直击雷过电压;若下行先导距导线较远,雷电可能直接击向大地。对于架空线路的引雷宽度,我国电力行业普遍采用线路在地面的投影宽度加上最高导线两侧共4倍高度的等值宽度,对于上层导线平均高度约为60m的线路,该引雷宽度能较好地符合运行状况。但是配电线路高度较低,平均高度10-20m,该计算方法存在一定误差。基于电气几何模型,计算配电线路的引雷范围,见图2。
线路的等效引雷宽度:
D e q = ∫ I c ∞ ( 2 s 0 ( I ) + b ) p ( I ) d I
式中,s0为雷击大地的临界距离,m;b为线路在地面上的投影宽度,m。
s 0 ( I ) = R c - ( R g - h ) 2
式中,Rc为对导线雷击击距,m。
Rc(I)=0.67h0.6I0.74
式中,h为导线平均高度,m;I为雷电流幅值,kA;Rg为对地雷击击距,m。
Rg(I)=(0.36+0.168ln(43-h))Rc
第i基杆塔直击雷跳闸率计算公式:
SFR1i=NGiηDeq
式中,η为建弧率。
η = [ 4.5 ( U c 3 l ) 0.75 - 14 ] %
式中,Uc为线路额定电压,kV;lj为绝缘子串长度,m;lm为线路的线间距离(对于铁横担和钢筋混泥土横担线路,lm=0),m。Ic为绕击耐雷水平,配电线路结构简单且一般无避雷线,雷击导线时无需考虑避雷线的耦合作用,相线的波阻抗取400。
I c = U 50 % 100
式中,U50%绝缘子闪络电压,kV。
(5)、通过区间组合统计法计算每基杆塔的感应雷跳闸率。
该方法将雷电流幅值和雷电流产生感应过电压使绝缘子闪络的雷击点区域作为2个随机变量。在大地平面内,取杆塔中心点为坐标原点O,与导线垂直方向为x轴,与导线平行方向为y轴。杆塔档距为L,在y轴上距原点±L/2两点分别作y轴的垂线。在两垂线之间的范围内落雷,如果感应雷过电压幅值足够高,首先将引起杆塔绝缘闪络,在此范围外落雷,考虑到邻近杆塔绝缘预先闪络,传递的雷电波幅值对该杆塔的影响可忽略不计。对于幅值为I的雷电流,落雷点距线路水平距离小于雷击大地临界距离s0的情况不予考虑,同样,当落雷点距线路水平距离大于Smax时,雷击大地在导线上感应出的过电压小于绝缘子U50%,也不予考虑。根据式(2)确定雷电流累积幅值概率小于0.1%的临界值Imax,并根据感应过电压计算公式得到Smax
采用IEEE推荐的配电线路感应电压计算公式:
U e = 38.8 I h s
式中,Ue为感应过电压,kV;I为雷电流幅值,kA;s为落雷点距导线水平距离,m;h为导线平均高度,m。
假设地面落雷服从均匀分布,那么导线两侧雷电分布情况相同,统计一侧数据即可。沿x轴正向,从o点开始,以Δx为长度将±L/2区间划分成1△x、2△x、3△x…、m△x若干个子区间,每个子区间面积为L△x,从1△x子区间开始,依次计算各子区间内落雷引起原点处绝缘子闪络次数,直到Smax为止,对于每个子区间内落雷的处理,选择落雷点位于x轴上,子区间距导线的平均距离作为雷电流对导线的击距。
在第k个△x区间内感应过电压幅值超过U50%的临界雷电流幅值:
I k = U 50 % [ ( k - 0.5 ) Δ x + s 0 ] 38.8 h
各子区间遭受雷击且引起绝缘闪络的次数:
Nsik=NGiΔxP(Ik)
式中,P(I)为雷电流幅值超过此区间内临界闪络电流的概率。
第i基杆塔上绝缘子的闪络总次数:
N s i = 2 Σ k = 1 m N s i k
第i基杆塔感应雷跳闸率:
SFR2i=Nsiη
(6)、计算整条线路雷击跳闸率。
整条线路雷击跳闸率:
S F R = Σ i = 1 n ( SFR 1 i + SFR 2 i )
折算成每100km线路雷击跳闸率:
SFR 100 k m = S F R × 100000 n L .

Claims (7)

1.一种改进配电线路雷电跳闸率计算方法,其特征在于包括如下步骤:
(1)通过GIS系统获取每基杆塔的经纬度坐标,再利用闪电定位系统统计每一杆塔线路走廊范围内落雷次数,接着将线路走廊落雷密度转化为线路直接落雷密度;
(2)收集线路的基本参数配置:绝缘子串长度lj(单位:m)、绝缘子闪络电压U50%(单位:kV)、导线高度h(单位:m)、导线间距b(单位:m)以及线路额定电压Uc(单位:kV);
(3)根据线路走廊范围内雷电流数据,拟合雷电流累积概率分布公式和概率密度公式,再结合闪电定位系统的线路走廊雷电数据,拟合得出α和β;
(4)通过电气几何模型计算每基杆塔的直击雷跳闸率;
(5)通过区间组合统计法计算每基杆塔的感应雷跳闸率;
(6)对整条线路的雷击跳闸率进行计算,分析线路雷害状况。
2.根据权利要求1所述的改进配电线路雷电跳闸率计算方法,其特征在于所述步骤1)中,线路直接落雷密度如式(1)所示,
N G i = N i L - - - ( 1 )
式中,Ni为i第段线路走廊范围内的落雷次数;L为杆塔档距;NGi为第i段线路直接落雷密度。
3.根据权利要求1所述的改进配电线路雷电跳闸率计算方法,其特征在于雷电流累积概率分布公式,如式(2)所示,概率密度公式,如式(3)所示,
P ( I ) = 1 1 + ( i α ) β - - - ( 2 )
p ( I ) = β α β i β - 1 [ 1 + ( i α ) β ] 2 - - - ( 3 ) .
4.根据权利要求1所述的改进配电线路雷电跳闸率计算方法,其特征在于所述步骤4)中线路的等效引雷宽度的表达式如式(4)所示,
D e q = ∫ I c ∞ ( 2 s 0 ( I ) + b ) p ( I ) d I - - - ( 4 ) ,
式中,s0为雷击大地的临界距离,s0的表达式如式(5)所示,b为线路在地面上的投影宽度,
s 0 ( I ) = R c - ( R g - h ) 2 - - - ( 5 ) ,
式中,Rc为对导线雷击击距,Rc的表达式如式(6)所示,
Rc(I)=0.67h0.6I0.74(6)
式中,h为导线平均高度;I为雷电流幅值;Rg为对地雷击击距,Rg的表达式如式(7)所示,
Rg(I)=(0.36+0.168ln(43-h))Rc(7)
第i基杆塔直击雷跳闸率计算公式,如式(8)所示,
SFR1i=NGiηDeq(8)
式中,η为建弧率。
η = [ 4.5 ( U c 3 l ) 0.75 - 14 ] %
式中,Uc为线路额定电压,kV;lj为绝缘子串长度,m;lm为线路的线间距离(对于铁横担和钢筋混泥土横担线路,lm=0),m。Ic为绕击耐雷水平,配电线路结构简单且一般无避雷线,雷击导线时无需考虑避雷线的耦合作用,相线的波阻抗取400。
I c = U 50 % 100
式中,U50%绝缘子闪络电压,kV。
5.根据权利要求1所述的改进配电线路雷电跳闸率计算方法,其特征在于所述步骤5)中包括如下步骤:
A)将雷电流幅值和雷电流产生感应过电压使绝缘子闪络的雷击点区域作为2个随机变量。在大地平面内,取杆塔中心点为坐标原点O,与导线垂直方向为x轴,与导线平行方向为y轴。杆塔档距为L,在y轴上距原点±L/2两点分别作y轴的垂线;
B)在两垂线之间的范围内落雷,根据式(2)确定雷电流累积幅值概率小于0.1%的临界值Imax,并根据感应过电压计算公式得到Smax
IEEE推荐的配电线路感应电压计算公式:
U e = 38.8 I h s
式中,Ue为感应过电压;I为雷电流幅值;s为落雷点距导线水平距离;h为导线平均高度,
C)沿x轴正向,从o点开始,以Δx为长度将±L/2区间划分成1△x、2△x、3△x…、m△x若干个子区间,每个子区间面积为L△x,从1△x子区间开始,依次计算各子区间内落雷引起原点处绝缘子闪络次数,直到Smax为止,对于每个子区间内落雷的处理,选择落雷点位于x轴上,子区间距导线的平均距离作为雷电流对导线的击距。
6.根据权利要求5所述的改进配电线路雷电跳闸率计算方法,其特征在于所述步骤C)中在第k个△x区间内感应过电压幅值超过U50%的临界雷电流幅值,如式(9)所示,
I k = U 50 % [ ( k - 0.5 ) Δ x + s 0 ] 38.8 h - - - ( 9 )
第k个子区间遭受雷击且引起绝缘闪络的次数的表达式如式(10)所示,
Nsik=NGiΔxP(Ik)(10)
式中,P(I)为雷电流幅值超过此区间内临界闪络电流的概率。
第i基杆塔上绝缘子的闪络总次数的表达式如式(11)所示:
N s i = 2 Σ k = 1 m N s i k - - - ( 11 )
第i基杆塔感应雷跳闸率的表达式如式(12)所示,
SFR2i=Nsiη(12)。
7.根据权利要求1所述的改进配电线路雷电跳闸率计算方法,其特征在于所述步骤6)中整条线路雷击跳闸率的表达式如式(13)所示,
S F R = Σ i = 1 n ( SFR 1 i + SFR 2 i ) - - - ( 13 )
折算成每100km线路雷击跳闸率:
SFR 100 k m = S F R × 100000 n L .
CN201510598745.7A 2015-09-18 2015-09-18 一种改进配电线路雷电跳闸率计算方法 Expired - Fee Related CN105242133B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510598745.7A CN105242133B (zh) 2015-09-18 2015-09-18 一种改进配电线路雷电跳闸率计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510598745.7A CN105242133B (zh) 2015-09-18 2015-09-18 一种改进配电线路雷电跳闸率计算方法

Publications (2)

Publication Number Publication Date
CN105242133A true CN105242133A (zh) 2016-01-13
CN105242133B CN105242133B (zh) 2019-05-21

Family

ID=55039846

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510598745.7A Expired - Fee Related CN105242133B (zh) 2015-09-18 2015-09-18 一种改进配电线路雷电跳闸率计算方法

Country Status (1)

Country Link
CN (1) CN105242133B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107179462A (zh) * 2017-06-27 2017-09-19 山东大学 基于雷电物理的风机叶片动态击距与电气几何模型的构建方法
CN107221882A (zh) * 2017-07-06 2017-09-29 国家电网公司 一种线路避雷器安装选点方法
CN108152668A (zh) * 2017-12-04 2018-06-12 昆明理工大学 一种计算导通的线路避雷器与线路闪络点之间距离的方法
CN108490283A (zh) * 2018-02-09 2018-09-04 深圳市安信技术有限公司 一种防雷设备的预警装置
CN109541409A (zh) * 2018-11-30 2019-03-29 国家电网有限公司 基于电气几何模型的配电线路闪络率改进算法
CN109670229A (zh) * 2018-12-12 2019-04-23 西南交通大学 高速铁路高架桥接触网系统附近地面落雷密度的估算方法
CN110414120A (zh) * 2019-07-24 2019-11-05 国网湖南省电力有限公司 一种取消避雷线输电线路防雷性能计算方法
CN112541211A (zh) * 2020-11-30 2021-03-23 武汉大学 考虑输电通道内多条线路屏蔽的雷击跳闸率扫描计算方法
CN112821388A (zh) * 2021-01-12 2021-05-18 广东电网有限责任公司广州供电局 一种线路雷击跳闸分析方法、装置、设备及存储介质
CN115329284A (zh) * 2022-10-14 2022-11-11 国网江苏省电力有限公司苏州供电分公司 基于相邻时段参数的配电线路雷击跳闸概率计算方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045118A (ja) * 2002-07-10 2004-02-12 Tokyo Electric Power Co Inc:The 架空配電線の事故点探査方法
CN101315400A (zh) * 2008-07-15 2008-12-03 国网武汉高压研究院 基于雷电参数统计的输电线路防雷性能评估方法
CN101900779A (zh) * 2010-07-28 2010-12-01 西南交通大学 一种结合地形地貌测量高压输电线路雷电绕击跳闸率的方法
CN102662120A (zh) * 2012-05-30 2012-09-12 广东电网公司佛山供电局 低压配电线路雷击跳闸风险评估方法与装置
CN102854415A (zh) * 2012-08-06 2013-01-02 广东电网公司东莞供电局 一种区域电网线路雷击闪络风险评估方法
CN103439602A (zh) * 2013-08-21 2013-12-11 国家电网公司 一种配电线路雷电跳闸率计算方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045118A (ja) * 2002-07-10 2004-02-12 Tokyo Electric Power Co Inc:The 架空配電線の事故点探査方法
CN101315400A (zh) * 2008-07-15 2008-12-03 国网武汉高压研究院 基于雷电参数统计的输电线路防雷性能评估方法
CN101900779A (zh) * 2010-07-28 2010-12-01 西南交通大学 一种结合地形地貌测量高压输电线路雷电绕击跳闸率的方法
CN102662120A (zh) * 2012-05-30 2012-09-12 广东电网公司佛山供电局 低压配电线路雷击跳闸风险评估方法与装置
CN102854415A (zh) * 2012-08-06 2013-01-02 广东电网公司东莞供电局 一种区域电网线路雷击闪络风险评估方法
CN103439602A (zh) * 2013-08-21 2013-12-11 国家电网公司 一种配电线路雷电跳闸率计算方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107179462B (zh) * 2017-06-27 2019-06-14 山东大学 基于雷电物理的风机叶片动态击距与电气几何模型的构建方法
CN107179462A (zh) * 2017-06-27 2017-09-19 山东大学 基于雷电物理的风机叶片动态击距与电气几何模型的构建方法
CN107221882A (zh) * 2017-07-06 2017-09-29 国家电网公司 一种线路避雷器安装选点方法
CN108152668A (zh) * 2017-12-04 2018-06-12 昆明理工大学 一种计算导通的线路避雷器与线路闪络点之间距离的方法
CN108490283A (zh) * 2018-02-09 2018-09-04 深圳市安信技术有限公司 一种防雷设备的预警装置
CN109541409B (zh) * 2018-11-30 2020-05-26 国家电网有限公司 基于电气几何模型的配电线路闪络率改进算法
CN109541409A (zh) * 2018-11-30 2019-03-29 国家电网有限公司 基于电气几何模型的配电线路闪络率改进算法
CN109670229A (zh) * 2018-12-12 2019-04-23 西南交通大学 高速铁路高架桥接触网系统附近地面落雷密度的估算方法
CN109670229B (zh) * 2018-12-12 2022-07-22 西南交通大学 高速铁路高架桥接触网系统附近地面落雷密度的估算方法
CN110414120A (zh) * 2019-07-24 2019-11-05 国网湖南省电力有限公司 一种取消避雷线输电线路防雷性能计算方法
CN110414120B (zh) * 2019-07-24 2022-12-09 国网湖南省电力有限公司 一种取消避雷线输电线路防雷性能计算方法
CN112541211A (zh) * 2020-11-30 2021-03-23 武汉大学 考虑输电通道内多条线路屏蔽的雷击跳闸率扫描计算方法
CN112541211B (zh) * 2020-11-30 2022-06-07 武汉大学 考虑输电通道内多条线路屏蔽的雷击跳闸率扫描计算方法
CN112821388A (zh) * 2021-01-12 2021-05-18 广东电网有限责任公司广州供电局 一种线路雷击跳闸分析方法、装置、设备及存储介质
CN112821388B (zh) * 2021-01-12 2023-04-07 广东电网有限责任公司广州供电局 一种线路雷击跳闸分析方法、装置、设备及存储介质
CN115329284A (zh) * 2022-10-14 2022-11-11 国网江苏省电力有限公司苏州供电分公司 基于相邻时段参数的配电线路雷击跳闸概率计算方法及系统

Also Published As

Publication number Publication date
CN105242133B (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
CN105242133B (zh) 一种改进配电线路雷电跳闸率计算方法
CN100578488C (zh) 电网雷害分布确定方法
CN102841280B (zh) 500kV同塔四回路输电线雷击跳闸率仿真方法
CN104808109B (zh) 基于录波数据的高压输电线路故障识别方法和系统
CN110309527B (zh) 一种基于电气几何模型的架空配电线路雷害风险评估方法
CN110414120B (zh) 一种取消避雷线输电线路防雷性能计算方法
CN102435921A (zh) 同塔双回输电线路绝缘及耐雷电冲击性能的判定方法
CN103488815A (zh) 一种输电线路雷电绕击风险评估方法
CN104897958B (zh) 一种输电线路雷击类型的辨识方法
CN103675607B (zh) 架空输电线路雷电绕击与反击识别方法
CN103837769A (zh) 一种输电线路雷害预警方法及其系统
CN105092997A (zh) 一种特高压输电线路雷电绕击与反击的识别方法
CN103001153B (zh) 一种经济合理的配电网雷电防护方法
Malcolm et al. The impact of multiple lightning strokes on the energy absorbed by MOV surge arresters in wind farms during direct lightning strikes
CN105224797A (zh) 一种特高压大跨越线路反击跳闸率计算方法
CN102175936B (zh) 一种配网避雷器给定置信水平下非限制性预期运行寿命评估方法
CN103884935A (zh) 结合分布式雷电流监测的输电线路防雷性能评估方法
CN112069691A (zh) 一种基于避雷器动作电流频带分析的配电网直击雷与感应雷辨识方法
CN112257238A (zh) 多重雷下的断路器绝缘受损风险评估方法及其装置
Abdullah et al. Cloud-to-ground lightning occurrences in Peninsular Malaysia and its use in improvement of distribution line lightning performances
CN103439602A (zh) 一种配电线路雷电跳闸率计算方法
CN203838288U (zh) 一种交、直流输电线路雷电绕击与反击识别装置
CN104833873A (zh) 一种电感型限流避雷针防雷效果的理论验证方法
CN105548740A (zh) 雷击故障侵入波与接地故障侵入波的辨识方法与系统
CN112798853B (zh) 一种变电站电气设备抵御连续雷击的雷电侵入波水平的评估方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190521

Termination date: 20210918

CF01 Termination of patent right due to non-payment of annual fee