CN105239002A - 340MPa级连退冷轧汽车结构钢板及其生产方法 - Google Patents

340MPa级连退冷轧汽车结构钢板及其生产方法 Download PDF

Info

Publication number
CN105239002A
CN105239002A CN201510777427.7A CN201510777427A CN105239002A CN 105239002 A CN105239002 A CN 105239002A CN 201510777427 A CN201510777427 A CN 201510777427A CN 105239002 A CN105239002 A CN 105239002A
Authority
CN
China
Prior art keywords
temperature
iron
340mpa
structural steel
moves back
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510777427.7A
Other languages
English (en)
Other versions
CN105239002B (zh
Inventor
刘庆春
郑之旺
周一林
张功庭
王平利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Original Assignee
Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd filed Critical Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Priority to CN201510777427.7A priority Critical patent/CN105239002B/zh
Publication of CN105239002A publication Critical patent/CN105239002A/zh
Application granted granted Critical
Publication of CN105239002B publication Critical patent/CN105239002B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明属于冶金技术领域,特别涉及一种成形性能优良的340MPa级连退冷轧汽车结构钢板及其生产方法及其制备方法。本发明提供一种340MPa级连退冷轧汽车结构钢板,其化学成分按重量百分计为:C≤0.0040、Si:0~0.05、Mn:0.25~0.45、Nb:0.030~0.050、Ti:0.010~0.030、N:0.002~0.006、P:0.04~0.07、S:0~0.015、Als:0.015~0.050,其余为Fe。所得340MPa级连退冷轧汽车结构钢板满足:屈服强度≥170MPa,抗拉强度≥340MPa,延伸率A50mm≥38%,平均加工硬化指数值平均塑性应变比值

Description

340MPa级连退冷轧汽车结构钢板及其生产方法
技术领域
本发明属于冶金技术领域,特别涉及一种成形性能优良的340MPa级连退冷轧汽车结构钢板及其生产方法及其制备方法。
背景技术
我国的汽车工业已进入乘用车高速发展期,为了满足汽车制造业“减重、节能、安全、环保”的需要,汽车零部件越来越多地使用高强度薄钢板。由于磷具有优良的固溶强化效果及经济性,在超低碳钢基础上发展的超低碳含磷冷轧高强钢(即无间隙原子高强度冷轧钢板)既具有高强度,又具有非常好的冲压成形性能,通常用来制作需要深冲压的复杂部件,已经在汽车行业得到了广泛应用。
近期,国内主要汽车制造厂根据新车型设计要求,提出了抗拉强度为340MPa级成形性能优良的冷轧汽车用结构钢的使用需求,主要技术指标:Rel≥170MPa,Rm≥340MPa,断后伸长率A50mm(L0=50mm,b=25mm)≥38%,340MPa级高强度冷轧钢板用于加工乘用车的左/右前纵梁与门槛加强板、前横梁下板、左/右B柱加强板等结构件。钢板的主要技术要求:足够的强度和韧性;良好的成形性能;足够的塑性;低的力学性能各向异性;良好的表面质量。
340MPa级连退冷轧汽车结构钢板化学成分设计通常为超低C-Mn-P-Ti系微合金钢,其中,C含量≤0.0040%,P含量为0.030%-0.070%,Ti含量为0.030%-0.050%,锰、磷含量的控制主要是为了保证强度和塑性,添加钛主要是为了固定钢中的碳、氮间隙原子,保证钢板无时效。主要生产工艺为冶炼-炉外精炼-连铸-热轧-冷轧-连退。常规生产方法以某厂1800mm汽车板专用连退生产线为例,一般采用较高的冷轧压下率(≥80%)、高退火温度(≥830℃)、较快的冷却速度(HGJC,50℃/S)、较长的退火时间等措施,使成品晶粒适当粗化,发展有利织构,提高成品冲压性能。
发明内容
本发明提供一种综合性能优良的340MPa级连退冷轧汽车结构钢板,具有良好的室温力学性能及工艺性能,其成形性能优良,完全符合汽车用结构钢的使用需求。
本发明的技术方案:
本发明所要解决的第一个技术问题是提供一种340MPa级连退冷轧汽车结构钢板,其化学成分按重量百分计为:C≤0.0040、Si:0~0.05、Mn:0.25~0.45、Nb:0.030~0.050、Ti:0.010~0.030、N:0.002~0.006、P:0.04~0.07、S:0~0.015、Als:0.015~0.050,其余为Fe。
进一步,所述340MPa级连退冷轧汽车结构钢板的微观组织结构为铁素体,铁素体晶粒度9.0-10.5级。铁素体指的是C溶于α-Fe中所形成的间隙固溶体,具有体心立方晶体结构。铁素体可以采用本领域技术人员公知的方法测得,例如GB/T6394金相法。
进一步,所述340MPa级连退冷轧汽车结构钢板满足:屈服强度≥170MPa,抗拉强度≥340MPa,延伸率A50mm≥38%,平均加工硬化指数值平均塑性应变比值
本发明所要解决的第二个技术问题是提供上述340MPa级连退冷轧汽车结构钢板的制备方法,包括连铸坯再加热、热轧、层流冷却、卷取、酸洗、冷轧、退火、光整和拉矫工序;其特征在于,
连铸坯再加热工序中的加热温度为1200℃~1220℃,加热时间为1.2小时~1.8小时;
热轧工序中,热轧初轧温度为1100~1200℃,终轧温度为900℃~940℃;
层流冷却工序中,采用前段水冷;
卷取工序中,卷取温度730℃~770℃;
冷轧工序中,冷轧压下率为65%~75%(优选为70%);
退火工序中,退火温度820℃~850℃,过时效段温度≤340℃,二次冷却段终冷温度≤100℃;钢坯的化学成分为(w%):C:≤0.0040、Si:0~0.05、Mn:0.25~0.45、Nb:0.030~0.050、Ti:0.010~0.030、N:0.002~0.006、P:0.04~0.07、S:0~0.015、Als:0.015~0.050,其余为Fe。
进一步,上述方法中,连续退火工序中,过时效段温度为310℃~340℃,二次冷却段终冷温度为60℃~100℃。
进一步,上述方法中,光整工序中,平整延伸率为0.5%~1.0%。
进一步,上述方法中,拉矫工序中,拉矫延伸率为0.2%~0.6%。
进一步,上述方法中,冷却工序中,采用轧后前段水冷。
本发明的有益效果:
1、本发明方法在生产过程采用控制化学成分范围、连铸坯再加热温度、热轧初轧温度、终轧温度、卷取温度、冷轧压下率、退火温度等工艺措施,获得的钢带成品屈服强度Rp0.2≥170MPa,抗拉强度Rm≥340MPa,延伸率A50mm≥38%,平均加工硬化指数值平均塑性应变比值即综合性能优良。
2、化学成分设计时采用低当量方案,钢板焊接性能优良。
3、通过细化热轧态的晶粒尺寸提高产品r值,有效提高钢板的成形性能;通过优化光整工艺来保证n值,有效获得了较高的n值。
4、与常规连退工艺生产的同级别冷轧结构钢板相比,本发明方法采用的生产工艺简单、退火温度不高,产品综合性能优良,推广使用前景良好。
具体实施方式
本发明采用超低碳钢+“Nb+Ti+P”微合金化方案(C与Nb结合成NbC,N与Ti结合成TiN),力学性能稳定,平面各向异性差小;镀层抗粉化能力强。生产过程采用炉外精炼、控轧控冷工艺、控制冷轧压下率及再结晶退火+平整工艺等关键技术措施,经生产后,成品检验结果表明通过该方法生产的340MPa级连退冷轧汽车结构钢板具有良好的力学性能及工艺性能。由于本发明涉及的钢板为Nb、Ti复合微合金化高强IF钢,力学性能稳定,钢板的各向异性小,能有效地适应用户不同的冲压工艺,应用本发明生产的冷轧结构钢板综合性能优良,能适用于多种成形条件的生产(折弯、浅冲压、深冲、翻边等),性价比高,推广使用前景良好。
本发明涉及的340MPa级连退冷轧汽车结构钢板的生产方法工艺流程如下:
转炉冶炼→LF精炼→RH真空处理→连铸→连铸坯→再加热→热轧→冷却→卷取→酸轧→连续退火→光整→拉矫→包装入库。钢坯可以采用本领域技术人员公知的方法由高炉铁水经转炉冶炼、LF精炼、电加热、连铸工序制得。
转炉冶炼具体为将高炉铁水及冶炼炉料在转炉中冶炼得到钢水,然后将钢水在RH精炼炉脱氧并进行合金化;在合金化步骤中将铝铁合金、金属锰、铌铁合金、钛铁合金等加入到脱氧后的钢水中,得到钢水(以钢水总重量为基准,以单质计)为C:≤0.0040、Si:0~0.05、Mn:0.25~0.45、Nb:0.030~0.050、Ti:0.010~0.030、N:0.002~0.006、P:0.04~0.07、S:0~0.015、Als:0.015~0.050,其余为Fe。为了使入炉原料中S的含量小于或等于入炉铁水总重量的0.010%,可以采用低硫铁水或半钢冶炼。为了防止金属元素尤其是锰元素的烧损,要严格控制冶炼过程温度及出钢时的氧活度,冶炼条件为出钢温度1680~1700℃,出钢过程只使用中碳锰铁进行Mn的合金化,出钢时氧活度条件为[a0]400~700PPm。冶炼的时间为常规的冶炼的时间,优选为35~45分钟。
LF精炼工序只进行钢水调温及钢包底吹氩气处理,钢水罐底部通入压力200~400Pa的氩气4~6分钟,氩气流量以钢水不大翻为条件,可以避免钢水出现二次氧化及温度下降过快,使钢中夹杂物充分上浮,进一步提高钢材清洁度。LF工序处理时间10~25分钟,出站温度1620~1635℃。LF精炼工序采取的技术为本领域技术人员公知的方法。
RH精炼工序进行钢水终脱氧、合金化、成分微调,处理时间20~35分钟,出站温度1585~1600℃。RH精炼工序采取的技术为本领域技术人员公知的方法。得到钢水(以钢水总重量为基准,以单质计)为C:≤0.0040、Si:0~0.05、Mn:0.25~0.45、Nb:0.030~0.050、Ti:0.010~0.030、N:0.002~0.006、P:0.04~0.07、S:0~0.015、Als:0.015~0.050,其余为Fe。
为了保证钢的化学成分均匀,脱氧合金化后RH真空室钢水循环时间5~8分钟,真空度≤2.0mba。对钢水罐进行底吹氩气处理。所述底吹氩气处理的条件压力200~400帕。
连续浇铸步骤可以采用本领域技术人员公知的方法,本发明方法将精炼后的钢水浇铸至预先烧烤过的中间包,经全流程保护的连续铸机浇铸成板坯。浇铸后,可以按照常规方法进行冷却,如在室温下自然冷却。
热轧步骤是将浇铸的板坯经加热后进行轧制。轧制的目的是使连铸板坯达到所需的厚度。本发明热轧板钢带的轧制道次为粗轧4~6个,精轧5~6个,每架机架轧制一道每道次轧制使热轧料坯的厚度减少3~9毫米。
连铸后得到的连铸坯在热轧轧制前进行再加热,目的是能够充分固溶微合金元素,消除铸坯因枝晶偏板带来的化学元素偏析,同时避免了液析碳化物后降低微合金元素在钢中的作用。本发明连铸坯再加热温度为1200~1220℃,时间为1.2~1.8小时。热轧的终轧温度指钢带出精轧机组的温度,为了使成品的厚度和力学性能均匀,采用热轧中间坯热卷箱工艺技术,使精轧前的热轧中间坯料头、中、尾部保持特定的终轧温度。本发明中,热轧步骤的初轧温度为1100~1200℃,终轧温度为为900℃~940℃;热轧过程中的温度控制能够使钢在精轧出口前处于完全奥氏体组织,并且避免奥氏体组织过于粗大。
冷却步骤可以采用各种常规的方法。通常情况下,热轧轧制的薄板钢带经过冷却后调整了钢材内部的组织状态,然后进行卷取成卷。为了满足成品r值要求原料需要具备细小铁素体晶粒尺寸(10.5级-11.0级),从轧机出来的钢带必须在很短的时间内,在很高的冷却速度下冷却到卷取温度进行卷取。例如,所述冷却的速度为10~30℃/秒,冷却至730℃~770℃。
酸轧步骤可以采用各种常规的方法。通常情况下,经过热轧轧制的薄板钢带在酸轧机组头部经焊接后组成连续钢带,经过矫直、酸洗、碱洗、干燥、切边后进行连续轧制,冷轧机组可采用可以采用各种常规的冷连轧机组,如4-5机架冷连轧机组,钢板经酸轧后厚度降低至退火机组原料厚度,采用的冷轧压下率为70%左右;表面氧化铁皮、擦伤等被清除,表面质量得到改善。所述酸轧步骤可以采用本领域技术人员公知的方法和技术。
连续退火步骤可以采用各种常规的方法。通常情况下,经过酸轧后的薄板钢带在连退机组入口经焊接后组成连续钢带,经过表面连续清洗、干燥后进行连续退火,清洗工序为本领域技术人员公知的方法。退火工序为连续退火方式,钢带经退火机组进行预热、再结晶退火及均热、一次冷却、快速冷却、过时效处理、终冷后进行平整、拉矫、分卷。其中退火温度820℃-850℃,过时效段(OAS段)温度≤340℃,二次冷却段终冷温度≤100℃,平整延伸率0.5%~1.0%,拉矫延伸率≤0.2%。所述连退步骤可以采用本领域技术人员公知的方法和技术。
本发明中化学成分的检测方法分别为碳素钢和中低合金钢火花源原子发射光谱分析方法,国家标准为GB/T4336;非合金钢低碳含量的测定第2部分:感应炉(经预加热)内燃烧后红外吸收法,国家标准为GB/T20126-2006。
以下结合实施例对本发明作进一步的阐述。实施例仅用于说明本发明,而不是以任何方式来限制本发明。
实施例1
a、冶炼钢水:冶炼设备为顶吹转炉,高炉铁水作为原料,高炉铁水温度1380℃,加入炼钢辅料熔炼至1690℃出钢到钢水罐,出钢1/3时加入500Kg的中碳锰铁合金(德昌铁合金有限公司)预脱氧,随后在炉外小平台对钢水罐进行底吹氩气处理,氩气压力200~400Pa,时间为4分钟。
b、LF电加热:钢水罐底部通入一定压力(200~400Pa)的氩气4分钟,氩气流量以钢水不大翻为条件,LF处理终止温度1625℃。
c、RH真空精炼:进行钢水终脱氧、合金化、成分微调,处理时间30分钟,出站温度1595℃,得到钢水(以钢水总重量为基准,以单质计)为C:0.0030、Si:0.01、Mn:0.30、Nb:0.042、Ti:0.025、N:0.0032、P:0.062、S:0.008、Als:0.038,其余为Fe。
d、连铸:钢水罐运至浇铸位置,钢水罐的底部滑动水口Al质塞棒(安阳冶辅有限公司),钢水自动流入中间包,经Al质塞棒、引流至结晶器进行连续浇铸。全流程采用保护渣进行保护浇铸,浇铸后冷却成热轧板钢坯。
e、热轧:连铸板坯再加热温度为1218℃(消除枝晶偏析、控制原始奥氏体晶粒尺寸),粗轧温度为1150℃,精轧终轧温度920℃;冷却方式采用轧后前段水冷,卷取温度745℃。精轧的轧制道次为6个,每道次轧制使得中间坯的厚度分别为35~25毫米、25~17毫米、17~11毫米、11~8毫米、8~5毫米和5~3.50毫米。
f、酸轧:钢带经酸轧机组厚度轧制为1.0毫米,冷轧压下率71.4%。
g、连续退火:钢带加热段温度750℃,退火均热温度830℃,过时效段(OAS段)温度300℃,二次冷却段终冷温度90℃,平整延伸率0.5%,拉矫延伸率0.2%。
将制备的板卷进行机械性能测试,分别检测室温的屈服强度Rel、抗拉强度Rm、伸长率A50mm,加工硬化指数平均值及塑性应变比平均值拉伸性能按照GB/T228金属材料室温拉伸试验方法进行。成品屈服强度(Rp0.2)为230MPa,抗拉强度(Rm)为390MPa,延伸率(A50mm)为42.0%,为0.22、为2.10,符合340MPa冷轧结构钢板的技术条件要求。
实施例2
制备方法与实施例1基本相同,不同的是转炉冶炼得到的钢水成分为C:0.0028、Si:0.01、Mn:0.28、Nb:0.043、Ti:0.020、N:0.0035、P:0.058、S:0.008、Als:0.035,其余为Fe,(Wt,%)。并用前述钢水生产的热轧钢板,板坯再加热温度1220℃,精轧终轧温度为925℃,卷取温度为750℃,热轧厚度4.10mm,酸轧厚度1.4mm,退火温度828℃,过时效段(OAS段)温度320℃,二次冷却段终冷温度100℃,平整延伸率0.5%,拉矫延伸率0.2%。
将制备的板卷进行机械性能测试,分别检测室温的屈服强度Rel、抗拉强度Rm、伸长率A50mm,加工硬化指数平均值及塑性应变比平均值拉伸性能按照GB/T228金属材料室温拉伸试验方法进行。成品屈服强度(Rp0.2)为223MPa,抗拉强度(Rm)为385MPa,延伸率(A50mm)为43.0%,为0.22、为2.0,符合340MPa冷轧结构钢板的技术条件要求。
对比例
制备方法与实施例1基本相同,不同的是转炉冶炼得到的钢水成分为C:0.0030%,Si:0.01%,Mn:0.14、Nb:0.040、Ti:0.018、N:0.0035、P:0.011、S:0.010、Als:0.035,其余为Fe,(Wt,%)。并用前述钢水生产的热轧钢板,板坯再加热温度1215℃,精轧终轧温度为910℃,卷取温度为720℃,热轧厚度3.75mm,酸轧厚度1.0mm。钢带加热段温度740℃,退火均热温度825℃,过时效段(OAS段)温度340℃,二次冷却段终冷温度110℃,平整延伸率0.6%,拉矫延伸率0.2%。
将制备的板卷进行机械性能测试,分别检测室温的屈服强度Rp0.2、抗拉强度Rm、伸长率A50mm,加工硬化指数平均值及塑性应变比平均值拉伸性能按照GB/T228金属材料室温拉伸试验方法进行。成品屈服强度(Rp0.2)为172MPa,抗拉强度(Rm)为308MPa,延伸率(A50mm)为41.0%,为0.24、为2.30,力学性能不符合340MPa冷轧结构钢板的技术条件要求。

Claims (7)

1.340MPa级连退冷轧汽车结构钢板,其特征在于,其化学成分按重量百分计为:C≤0.0040、Si:0~0.05、Mn:0.25~0.45、Nb:0.030~0.050、Ti:0.010~0.030、N:0.002~0.006、P:0.04~0.07、S:0~0.015、Als:0.015~0.050,其余为Fe。
2.根据权利要求1所述340MPa级连退冷轧汽车结构钢板,其特征在于,所述冷轧汽车结构钢板的微观组织结构为铁素体,铁素体晶粒度9.0~10.5级。
3.根据权利要求1或2所述340MPa级连退冷轧汽车结构钢板,其特征在于,所述340MPa级连退冷轧汽车结构钢板满足:屈服强度≥170MPa,抗拉强度≥340MPa,延伸率A50mm≥38%,平均加工硬化指数值平均塑性应变比值
4.权利要求1~3任一项所述340MPa级连退冷轧汽车结构钢板的制备方法,包括连铸坯再加热、热轧、层流冷却、卷取、酸洗、冷轧、退火、光整和拉矫工序;其特征在于,
连铸坯再加热工序中的加热温度为1200℃~1220℃,加热时间为1.2小时~1.8小时;
热轧工序中,热轧初轧温度为1100~1200℃,终轧温度为900℃~940℃;
层流冷却工序中,采用前段水冷;
卷取工序中,卷取温度730℃~770℃;
冷轧工序中,冷轧压下率为65%~75%;
退火工序中,退火温度820℃~850℃,过时效段温度≤340℃,二次冷却段终冷温度≤100℃。
5.根据权利要求4所述340MPa级连退冷轧汽车结构钢板的制备方法,其特征在于,退火工序中,过时效段温度为310℃~340℃,二次冷却段终冷温度为60℃~100℃。
6.根据权利要求4或5所述340MPa级连退冷轧汽车结构钢板的制备方法,其特征在于,光整工序中,平整延伸率为0.5%~1.0%。
7.根据权利要求4~6任一项所述340MPa级连退冷轧汽车结构钢板的制备方法,其特征在于,拉矫工序中,拉矫延伸率为0.2%~0.6%。
CN201510777427.7A 2015-11-12 2015-11-12 340MPa 级连退冷轧汽车结构钢板及其生产方法 Active CN105239002B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510777427.7A CN105239002B (zh) 2015-11-12 2015-11-12 340MPa 级连退冷轧汽车结构钢板及其生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510777427.7A CN105239002B (zh) 2015-11-12 2015-11-12 340MPa 级连退冷轧汽车结构钢板及其生产方法

Publications (2)

Publication Number Publication Date
CN105239002A true CN105239002A (zh) 2016-01-13
CN105239002B CN105239002B (zh) 2017-05-31

Family

ID=55036820

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510777427.7A Active CN105239002B (zh) 2015-11-12 2015-11-12 340MPa 级连退冷轧汽车结构钢板及其生产方法

Country Status (1)

Country Link
CN (1) CN105239002B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107699797A (zh) * 2017-11-24 2018-02-16 攀钢集团攀枝花钢铁研究院有限公司 390MPa级连退冷轧汽车结构钢板及其生产方法
CN108300845A (zh) * 2017-09-22 2018-07-20 新疆八钢铁股份有限公司 汽车结构用钢b280vk连铸坯轧制工艺
CN113201632A (zh) * 2021-04-09 2021-08-03 唐山钢铁集团有限责任公司 一种低硅加磷高强钢的生产方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102732778A (zh) * 2012-06-19 2012-10-17 马钢(集团)控股有限公司 一种340MPa级深冲用高强度冷轧钢板及其生产方法
CN103045833A (zh) * 2011-10-11 2013-04-17 攀钢集团攀枝花钢铁研究院有限公司 一种钢板和镀锌钢板及其制备方法
CN103993227A (zh) * 2014-05-12 2014-08-20 攀钢集团攀枝花钢铁研究院有限公司 一种冷轧钢板及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045833A (zh) * 2011-10-11 2013-04-17 攀钢集团攀枝花钢铁研究院有限公司 一种钢板和镀锌钢板及其制备方法
CN102732778A (zh) * 2012-06-19 2012-10-17 马钢(集团)控股有限公司 一种340MPa级深冲用高强度冷轧钢板及其生产方法
CN103993227A (zh) * 2014-05-12 2014-08-20 攀钢集团攀枝花钢铁研究院有限公司 一种冷轧钢板及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108300845A (zh) * 2017-09-22 2018-07-20 新疆八钢铁股份有限公司 汽车结构用钢b280vk连铸坯轧制工艺
CN107699797A (zh) * 2017-11-24 2018-02-16 攀钢集团攀枝花钢铁研究院有限公司 390MPa级连退冷轧汽车结构钢板及其生产方法
CN113201632A (zh) * 2021-04-09 2021-08-03 唐山钢铁集团有限责任公司 一种低硅加磷高强钢的生产方法

Also Published As

Publication number Publication date
CN105239002B (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN100510144C (zh) 一种加长型汽车大梁用钢及其制造方法
CN101805873B (zh) 一种低成本高强汽车大梁用钢及其制造方法
CN104264038A (zh) 一种440MPa级连退冷轧结构钢板及其生产工艺
CN108842024A (zh) 一种390MPa级冷轧含磷IF高强钢带及其LF-RH双联生产工艺
CN107641759A (zh) 基于csp流程生产薄规格热成形钢的方法
CN111218609A (zh) 高强度连退冷轧冲压用汽车结构钢板及其生产方法
CN107419078A (zh) 屈服强度345MPa级低成本热轧钢板及其制造方法
CN109136755B (zh) 一种汽车用冷轧高强度钢及其生产方法
CN101153371B (zh) 高强度冷成型热连轧钢板及其生产方法
CN109136754B (zh) 一种冷轧低合金高强度钢及其生产方法
CN107287489A (zh) 基于全无头薄板坯连铸连轧流程生产钛微合金钢的方法
CN106498293A (zh) 一种热成形用高碳热连轧酸洗钢带的制备方法
CN111485177A (zh) 一种低成本780MPa级冷轧双相钢及其生产方法
CN112011737B (zh) 一种桥梁结构用390MPa级耐-20℃热轧角钢及其生产方法
CN105401090B (zh) 一种精密冲压汽车座椅调节齿板用冷轧钢板及其制造方法
CN100560773C (zh) 一种高强度耐疲劳钢材及其制造方法
CN106636907A (zh) 屈服强度600MPa级薄规格厢体钢带及其制造方法
CN107385319A (zh) 屈服强度400MPa级精密焊管用钢板及其制造方法
CN107699797A (zh) 390MPa级连退冷轧汽车结构钢板及其生产方法
CN101139685A (zh) 一种高强度耐疲劳钢材及其制造方法
CN103361552A (zh) V-N微合金化460MPa级厚板及其制造方法
CN112210725A (zh) 抗拉强度1900MPa级热成形用钢带及其生产方法
CN111575592A (zh) 一种屈服强度460MPa级的低合金高强钢及生产方法
CN105239002B (zh) 340MPa 级连退冷轧汽车结构钢板及其生产方法
CN105369134B (zh) 400MPa级免酸洗汽车结构热轧钢板及其生产方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant