CN105224738B - Lssvm非高斯脉动风速预测方法 - Google Patents

Lssvm非高斯脉动风速预测方法 Download PDF

Info

Publication number
CN105224738B
CN105224738B CN201510612740.5A CN201510612740A CN105224738B CN 105224738 B CN105224738 B CN 105224738B CN 201510612740 A CN201510612740 A CN 201510612740A CN 105224738 B CN105224738 B CN 105224738B
Authority
CN
China
Prior art keywords
lssvm
gaussian
formula
wind speed
ant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510612740.5A
Other languages
English (en)
Other versions
CN105224738A (zh
Inventor
李春祥
丁晓达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201510612740.5A priority Critical patent/CN105224738B/zh
Publication of CN105224738A publication Critical patent/CN105224738A/zh
Application granted granted Critical
Publication of CN105224738B publication Critical patent/CN105224738B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提供一种LSSVM非高斯脉动风速预测方法,该方法包括七个步骤,具体步骤如下:用无记忆非线性转化法模拟产生非高斯随机脉动风速样本,将非高斯脉动风速样本分为训练集、测试集两部分,对其分别进行归一化处理;由训练集对LSSVM进行训练学习,进行测试集的预测,计算群体中的每一个染色体的适应度,判断算法收敛准则是否满足,若满足最优参数组合则把组合解放入集合,进入第五步,否则进入第四步。本发明利用遗传算法和蚁群算法混合方式智能提取LSSVM的最有参数组合,进而建立优化的LSSVM预测模型,对测试集进行预测,得到预测的非高斯脉动风速时程谱。

Description

LSSVM非高斯脉动风速预测方法
技术领域
本发明涉及一种LSSVM(最小二乘支持向量机)非高斯脉动风速预测方法,具体的说是一种采用遗传算法(GA)和蚁群算法(ACO)混合的LSSVM非高斯脉动风速预测方法。
背景技术
在建筑工程设计中,风荷载是各类建筑结构的主要荷载之一。通常把风分为平均风和脉动风,其中脉动风具有随机特征,其周期较短,更接近于建筑物的自振周期,它将使结构可能发生顺风向振动、横风向驰振、漩涡脱落、扭转发散振动及其它耦合振动等形式的风致随机振动。风振时域分析可以更全面地了解超高层建筑风振响应特性,更直观地反映超高层建筑风致振动控制的有效性。传统的分析方法是假设风荷载为高斯平稳随机过程而作用在线性结构上,这个假定能极大地简化分析计算过程。然而,在考虑分离流作用的一些重要区域,例如建筑物屋盖边缘、屋面转角等,风荷载表现出强烈的非高斯特性,风洞试验结果也证实了这一点。Debasis Karmakar,Samit Ray-Chaudhuri,Masanobu Shinozuka在美国洛杉矶港文森特托马斯大桥进行的风速实测也表明,在大桥某些部位所受到的风速时程明显程非高斯特性;哈尔滨工业大学张星明在《近地实测台风脉动风速的非高斯性分析与建模》中也表明,在台风风眼壁强风区,风向发生急剧变化,非高斯特性显著。因此,实现非高斯脉动风速的预测对工程中分析非高斯脉动风的动力振动响应具有重要意义。
支持向量机(SVM)是基于统计学习理论提出的一种小样本学习方法,遵循结构风险最小化原理。利用支持向量机很好的学习能力,可实现对有限样本的风速时程的预测模拟。支持向量机的性能依赖于模型的参数,对于参数的选择,至今还未提出明确的理论依据。利用智能优化方式对LSSVM模型参数进行智能提取成为一大热点。目前常见的对LSSVM优化的方式主要有人工鱼群算法、遗传算法、蚁群算法和粒子群算法等,在一定程度上,各类优化算法在对LSSVM参数优化中取得一定的效果,但是得到的预测模型预测精度和速度还是有一定的缺陷。
结合智能优化算法各自的优缺点,可实现智能优化算法的优势互补。因此,本发明对LSSVM模型参数进行智能提取分为两个阶段:第一步,利用遗传算法具有良好的全局搜索能力,获得最优解存在的区域;第二步,利用蚁群算法使用动态搜索步长在第一步得到的最优解邻域内进行精细的局部搜索。蚁群算法使用动态搜索使搜索过程越来越细致,提高了解的精度,最终获得运行速度更快、预测精度更高的LSSVM对非高斯脉动风速的预测模型。
发明内容
本发明所要解决的技术问题是提供一种LSSVM非高斯脉动风速预测方法,其根据指定的边缘概率密度函数(PDF)和目标PSD函数模拟产生非高斯随机过程,将样本划分为训练集和测试集,初始化LSSVM模型参数,利用GA和ACO混合方式智能提取LSSVM的最有参数组合(C,σ),进而建立优化的LSSVM预测模型,对测试集进行预测,得到预测的非高斯脉动风速时程谱。
本发明是通过下述技术方案来解决上述技术问题的:本发明LSSVM非高斯脉动风速预测方法包括如下步骤:
第一步:根据指定的边缘概率密度函数和目标功率谱函数,用无记忆非线性转化法模拟产生非高斯随机脉动风速样本,将非高斯脉动风速样本分为训练集、测试集两部分,对其分别进行归一化处理;
第二步:初始化遗传算法相关参数,设置LSSVM模型核函数参数C和正则化参数σ范围C∈[Cmin,Cmax]和σ∈[σminmax],对染色体进行二进制编码,随机产生初始种群;
第三步:由训练集对LSSVM进行训练学习,进行测试集的预测,计算群体中的每一个染色体的适应度,判断算法收敛准则是否满足,若满足最优参数组合则把组合解放入集合A,进入第五步,否则进入第四步;
第四步:设计遗传算子和确定遗传算法的运行参数,进行遗传算法的选择、交叉、变异操作;检查是否满足迭代终止条件,若不满足,返回第二步;否则,算法结束将满足条件的最优参数组合放入集合A进入第五步;
第五步:利用遗传算法得到的参数组合集合A,得到初始化蚁群算法的最优解集合Xbest,用蚁群算法在其邻域内进行精细的局部搜索;由训练集对LSSVM进行训练学习,计算各蚂蚁当前的适应度值,再将各蚂蚁的当前适应度值与集合A中初始化的蚂蚁适应度值进行比较,如果更优,则将该蚂蚁当前的位置作为该蚂蚁的最优位置;
第六步:迭代过程中对每个位置上蚂蚁信息素浓度进行更新,检查是否满足迭代终止条件,若不满足,返回第二步;否则,算法结束输出最优参数组合;
第七步:利用第六步得到的最优参数组合,建立优化的LSSVM预测模型;对测试集进行预测,得到预测的非高斯脉动风速时程谱;计算预测结果并分别与GA-LSSVM、ACO-LSSVM预测样本数据的平均绝对百分比误差、平均绝对误差和均方根误差进行比较分析。
优选地,所述第一步中的无记忆非线性转化法把高斯随机过程转换为非高斯随机过程,公式如下:
式中,表示非高斯随机过程概率密度函数的逆反函数,FG()为高斯随机过程的概率密度函数,而高斯随机过程相关函数RG(τ)和非高斯随机过程相关函数RNG(τ)转换公式如下:
其中,
ρ(τ)为标准相关函数系数:
式中,Φ为非高斯随机过程样本的边缘分布函数,σ2为高斯随机过程对应的方差,ρ(τ)为标准相关函数系数;
样本归一化处理公式为以下式:
式中,xmin是x的最小值,xmax是x的最大值,利用此式把x的范围调整到[0,1]。
优选地,所述第二步中的染色体采用二进制编码,具体编码公式如下:
其中b为二进制数,m为字长,Cmax、Cmin为正则化参数C允许的最大值和最小值,σmax、σmin为核函数参数σ允许的最大值和最小值。
优选地,所述第三步中的每个染色体适应度的计算公式如下式:
其中f为适应度函数,MSE为测试集数据的均方误差,yi分别为测试集的真实值和预测值。
优选地,所述第四步的具体内容如下:
遗传算法的选择算子采用适应度比例法,按个体适应度在整个群体适应度中所占的比例确定该个体的被选择概率,个体i被选取的概率Pi和该个体的累计概率Qi计算公式如下:
其中N为种群规模,fi为第i个染色体的适应度;
遗传算法的交叉算子计算公式如下:
c1=p1a+p2(1-a)
c2=p1(1-a)+p2a
式中,p1,p2为一组配对的俩个个体;c1,c2为交叉操作后得到的新个体;a为随机产生的位于(0,1)区间的随机数;
遗传算法的变异算子选择第i个个体的第j个基因进行变异操作,即
f(g)=r′(1-g/T)
其中,Cmin,Cmax为基因的上下限,r,r′为[0,1]间的随机数,g为当前进化次数,T为最大进化代数。
优选地,所述第五步中的蚂蚁的位置迭代公式如下:
X′best=Xbest±h·δ
式中,δ=0.1×rand(),若f(X′best)≤f(Xbest),取“+”,否则,取“-”;
h为动态搜索步长,按下式更新:
式中,hmax和hmin为初始设定的常数,itermax为最大迭代次数,iter为当前迭代次数;
计算每个蚂蚁个体的目标函数值的公式为:
Cmin≤C≤Cmaxmin≤σ≤σmax
其中F为最小均方误差,yi分别为监测样本的真实值和通过LSSVM计算出的预测值。
优选地,所述第六步中的蚂蚁i的处的信息素浓度τ(i)以及更新规则如下式:
τ(i)=(1-ρ)τ(i)+Δτ(i)
其中:F(Xi)蚂蚁该位置的均方误差;τ(i)为蚂蚁在该位置处的信息素浓度,ρ表示信息素挥发系数。
本发明带来的有益效果:与自适应的遗传算法、蚁群算法相比,基于遗传算法和蚁群算法混合优化算法具有优化精度高,收敛精度高,迭代次数少,成功率高等特点,体现出良好的鲁棒性和较快的收敛速度。本发明具有很强的工程应用意义,通过小样本的精确快速预测,大大节省了非高斯脉动风速的实测成本。
附图说明
图1是原始非高斯脉动风速模拟样本示意图;
图2是GA+ACO-LSSVM、GA-LSSVM和ACO-LSSVM预测非高斯脉动风速与模拟非高斯脉动风速对比示意图;
图3是GA+ACO-LSSVM、GA-LSSVM和ACO-LSSVM预测非高斯脉动风速与模拟非高斯脉动风速自相关函数对比示意图;
图4为GA+ACO-LSSVM模型的流程图。
具体实施方式
以下结合附图对本发明的实施进一步详细说明。
本发明采用核函数为径向基函数的LSSVM,接下来应用GA和ACO混合的方法快速选取最佳的核函数参数σ和正则化参数C组合。遗传算法从串集开始搜索,覆盖面大,全局寻优能力强,但是容易过早收敛,陷入局部最优,因此,将遗传算法和蚁群算法结合起来,采用遗传算法进行全局搜索,确定最优解存在的领域。用遗传算法确定的最优解区域初始化蚁群算法,然后利用蚁群算法在最优蚂蚁邻域内进行小步长局部搜索,找到算法的最优参数组合,建立了LSSVM非高斯脉动风速预测方法,该LSSVM非高斯脉动风速预测方法是基于混合遗传算法和蚁群算法优化LSSVM的非高斯脉动风速预测模型。
本发明LSSVM非高斯脉动风速预测方法包括如下步骤:
第一步,根据指定的边缘概率密度函数(PDF)和目标功率谱函数(PSD),用无记忆非线性转化法模拟产生非高斯随机脉动风速样本,将非高斯脉动风速样本分为训练集、测试集两部分,对其分别进行归一化处理。脉动风速功率谱采用Kaimal风速功率谱,边缘概率密度函数(PDF)采用对数函数,模拟产生非高斯随机脉动风速样本,见图1。本发明取非高斯脉动风速时程样本数据前1000s,嵌入维数取10,对样本进行空间重构。取800s非高斯脉动风速值作为学习样本,后200s非高斯脉动风速值作为验证样本,并对样本进行归一化处理。其他相关参数见表1:
表1
上述第一步中的无记忆非线性转化法把高斯随机过程转换为非高斯随机过程,公式如下式(1):
式中,表示非高斯随机过程概率密度函数的逆反函数。FG()为高斯随机过程的概率密度函数。而高斯随机过程相关函数RG(τ)和非高斯随机过程相关函数RNG(τ)转换公式如下式(2):
其中,
ρ(τ)为标准相关函数系数:
式中,Φ为非高斯随机过程样本的边缘分布函数,σ2为高斯随机过程对应的方差,ρ(τ)为标准相关函数系数。
归一化处理公式为式(3):
式中,xmin是x的最小值,xmax是x的最大值,利用此式把x的范围调整到[0,1]。
第二步:初始化遗传算法相关参数(群体规模N,最大进化代数T,交叉概率Pc,变异概率Pm),设置LSSVM模型核函数参数C和正则化参数σ范围C∈[Cmin,Cmax]和σ∈[σminmax],对染色体进行二进制编码,随机产生初始种群;比如初始化遗传算法,设置遗传算法种群规模N1=20,最大进化代数T=100,交叉概率Pc=0.7,变异概率Pm=0.05;设置核函数参数和正则化参数范围C∈[10-1,103]和σ∈[10-2,102],对核函数参数和正则化参数进行二进制编码,随机产生初始种群。
第二步中,染色体编码方式采用二进制编码,具体如式(4)和(5):
其中b为二进制数,m为字长,Cmax、Cmin为正则化参数C允许的最大值和最小值,σmax、σmin为核函数参数σ允许的最大值和最小值。
第三步:由训练集对LSSVM进行训练学习,进行测试集的预测,计算群体中的每一个染色体的适应度,判断算法收敛准则是否满足,若满足最优参数组合则把组合解放入集合A,进入第五步,否则进入第四步;
第三步中,每个染色体适应度的计算公式如下式(6):
其中f为适应度函数,MSE为测试集数据的均方误差,yi分别为测试集的真实值和预测值。
第四步:设计遗传算子(即选择算子,交叉算子和变异算子)和确定遗传算法的运行参数,进行遗传算法的选择、交叉、变异操作;检查是否满足迭代终止条件,若不满足,返回第二步;否则,算法结束将满足条件的最优参数组合放入集合A进入第五步;
第四步中:遗传算法的选择算子采用适应度比例法,按个体适应度在整个群体适应度中所占的比例确定该个体的被选择概率。个体i被选取的概率Pi和该个体的累计概率Qi计算公式如下式(7)和式(8):
其中N为种群规模,fi为第i个染色体的适应度。
遗传算法的交叉算子计算公式如下式(9)和式(10):
c1=p1a+p2(1-a) (9)
c2=p1(1-a)+p2a (10)
式中,p1,p2为一组配对的俩个个体;c1,c2为交叉操作后得到的新个体;a为随机产生的位于(0,1)区间的随机数。
遗传算法的变异算子,选择第i个个体的第j个基因进行变异操作,即如下式(11)和式(12):
f(g)=r′(1-g/T) (12)
其中,Cmin,Cmax为基因的上下限,r,r′为[0,1]间的随机数,g为当前进化次数,T为最大进化代数。
第五步:利用遗传算法得到的参数组合集合A,得到初始化蚁群算法的最优解集合Xbest,用蚁群算法在其邻域内进行精细的局部搜索。由训练集对LSSVM进行训练学习,计算各蚂蚁当前的适应度值,再将各蚂蚁的当前适应度值与集合A中初始化的蚂蚁适应度值进行比较,如果更优,则将该蚂蚁当前的位置作为该蚂蚁的最优位置。比如设置蚁群种群规模N2=25,最大迭代次数M2=60,信息挥发系数ρ=0.40,设置核函数参数和正则化参数范围C∈[10-1,103]和σ∈[10-2,102]。
第五步中,蚂蚁位置迭代公式如下式(13):
X′best=Xbest±h·δ (13)
式中,δ=0.1×rand(),若f(X′best)≤f(Xbest),取“+”,否则,取“-”。
h为动态搜索步长,按下式更新如下式(14):
式中,hmax和hmin为初始设定的常数,itermax为最大迭代次数,iter为当前迭代次数。
计算每个蚂蚁个体的目标函数值的公式为如下式(15)和式(16):
Cmin≤C≤Cmaxmin≤σ≤σmax (16)
其中F为最小均方误差,yi分别为监测样本的真实值和通过LSSVM计算出的预测值。
第六步:迭代过程中式(18)、(19)对每个位置上蚂蚁信息素浓度进行更新,检查是否满足迭代终止条件,若不满足,返回第二步;否则,算法结束输出最优参数组合(C,σ)。
第六步中,蚂蚁i处的信息素浓度τ(i)以及更新规则如下式式(17)和式(18):
τ(i)=(1-ρ)τ(i)+Δτ(i) (18)
其中:F(Xi)蚂蚁该位置的均方误差;τ(i)为蚂蚁在该位置处的信息素浓度,ρ表示信息素挥发系数。
第七步:利用第六步得到的最优参数组合(C,σ),建立优化的LSSVM预测模型;对测试集进行预测,得到预测的非高斯脉动风速时程谱;计算预测结果并分别与GA-LSSVM、ACO-LSSVM预测样本数据的均方根误差(RMSE)、平均绝对误差(MAE)和相关系数(R)进行比较分析,见表2:
表2训练、预测指标表
以上步骤可以参考图4,直观地给出了本发明的实施流程。从图2和图3可以直观看出,结合GA、AC0混合的LSSVM模型所得到的预测数据图像和自相关函数图像和实际的更吻合。从表2数据上可以直观的看出,结合GA、ACO混合的LSSVM模型预测数据的均方根误差(RMSE)相比ACO优化算法下降了24.0%,相比GA优化算法下降了30.0%;平均绝对误差(MAE)相比ACO优化算法下降了19.3%,相比GA优化算法下降了25.6%;相关系数(R)有所上升,三种预算模型相关系数R均在0.9以上,一般认为相关系数在0.9以上,认为具有很强的相关性。
本发明通过GA和ACO混合算法对LSSVM的模型参数进行智能选择,获得优化的LSSVM模型,利用前800s的非高斯脉动风速对LSSVM模型进行训练学习,实现了更精确、更快速地预测后200s的非高斯脉动风速。

Claims (7)

1.一种LSSVM非高斯脉动风速预测方法,其特征在于,其包括以下步骤:
第一步:根据指定的边缘概率密度函数和目标功率谱函数,用无记忆非线性转化法模拟产生非高斯随机脉动风速样本,将非高斯脉动风速样本分为训练集、测试集两部分,对其分别进行归一化处理;
第二步:初始化遗传算法相关参数,设置LSSVM模型核函数参数C和正则化参数σ范围C∈[Cmin,Cmax]和σ∈[σminmax],对染色体进行二进制编码,随机产生初始种群;
第三步:由训练集对LSSVM进行训练学习,进行测试集的预测,计算群体中的每一个染色体的适应度,判断算法收敛准则是否满足,若满足最优参数组合则把组合解放入集合A,进入第五步,否则进入第四步;
第四步:设计遗传算子和确定遗传算法的运行参数,进行遗传算法的选择、交叉、变异操作;检查是否满足迭代终止条件,若不满足,返回第二步;否则,算法结束将满足条件的最优参数组合放入集合A进入第五步;
第五步:利用遗传算法得到的参数组合集合A,得到初始化蚁群算法的最优解集合Xbest,用蚁群算法在其邻域内进行精细的局部搜索;由训练集对LSSVM进行训练学习,计算各蚂蚁当前的适应度值,再将各蚂蚁的当前适应度值与集合A中初始化的蚂蚁适应度值进行比较,如果更优,则将该蚂蚁当前的位置作为该蚂蚁的最优位置;
第六步:迭代过程中对每个位置上蚂蚁信息素浓度进行更新,检查是否满足迭代终止条件,若不满足,返回第二步;否则,算法结束输出最优参数组合;
第七步:利用第六步得到的最优参数组合,建立优化的LSSVM预测模型;对测试集进行预测,得到预测的非高斯脉动风速时程谱;计算预测结果并分别与GA-LSSVM、ACO-LSSVM预测样本数据的平均绝对百分比误差、平均绝对误差和均方根误差进行比较分析。
2.根据权利要求1所述的LSSVM非高斯脉动风速预测方法,其特征在于,所述第一步中的无记忆非线性转化法把高斯随机过程转换为非高斯随机过程,公式如下:
式中,表示非高斯随机过程概率密度函数的逆反函数,FG()为高斯随机过程的概率密度函数,而高斯随机过程相关函数RG(τ)和非高斯随机过程相关函数RNG(τ)转换公式如下:
其中,
ρ(τ)为标准相关函数系数:
式中,Φ为非高斯随机过程样本的边缘分布函数,σ2为高斯随机过程对应的方差,ρ(τ)为标准相关函数系数;
样本归一化处理公式为以下式:
式中,xmin是x的最小值,xmax是x的最大值,利用此式把x的范围调整到[0,1]。
3.根据权利要求1所述的LSSVM非高斯脉动风速预测方法,其特征在于,所述第二步中的染色体采用二进制编码,具体编码公式如下:
其中b为二进制数,m为字长,Cmax、Cmin为正则化参数C允许的最大值和最小值,σmax、σmin为核函数参数σ允许的最大值和最小值。
4.根据权利要求1所述的LSSVM非高斯脉动风速预测方法,其特征在于,所述第三步中的每个染色体适应度的计算公式如下式:
其中f为适应度函数,MSE为测试集数据的均方误差,yi分别为测试集的真实值和预测值。
5.根据权利要求1所述的LSSVM非高斯脉动风速预测方法,其特征在于,所述第四步的具体内容如下:
遗传算法的选择算子采用适应度比例法,按个体适应度在整个群体适应度中所占的比例确定该个体的被选择概率,个体i被选取的概率Pi和该个体的累计概率Qi计算公式如下:
其中N为种群规模,fi为第i个染色体的适应度;
遗传算法的交叉算子计算公式如下:
c1=p1a+p2(1-a)
c2=p1(1-a)+p2a
式中,p1,p2为一组配对的俩个个体;c1,c2为交叉操作后得到的新个体;a为随机产生的位于(0,1)区间的随机数;
遗传算法的变异算子选择第i个个体的第j个基因进行变异操作,即
f(g)=r′(1-g/T)
其中,Cmin,Cmax为基因的上下限,r,r′为[0,1]间的随机数,g为当前进化次数,T为最大进化代数。
6.根据权利要求1所述的LSSVM非高斯脉动风速预测方法,其特征在于,所述第五步中的蚂蚁的位置迭代公式如下:
X′best=Xbest±h·δ
式中,δ=0.1×rand(),若f(X′best)≤f(Xbest),取“+”,否则,取“-”;
h为动态搜索步长,按下式更新:
式中,hmax和hmin为初始设定的常数,itermax为最大迭代次数,iter为当前迭代次数;
计算每个蚂蚁个体的目标函数值的公式为:
Cmin≤C≤Cmaxmin≤σ≤σmax
其中F为最小均方误差,yi分别为监测样本的真实值和通过LSSVM计算出的预测值。
7.根据权利要求1所述的LSSVM非高斯脉动风速预测方法,其特征在于,所述第六步中的蚂蚁i的处的信息素浓度τ(i)以及更新规则如下式:
τ(i)=(1-ρ)τ(i)+Δτ(i)
其中:F(Xi)蚂蚁该位置的均方误差;τ(i)为蚂蚁在该位置处的信息素浓度,ρ表示信息素挥发系数。
CN201510612740.5A 2015-09-23 2015-09-23 Lssvm非高斯脉动风速预测方法 Expired - Fee Related CN105224738B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510612740.5A CN105224738B (zh) 2015-09-23 2015-09-23 Lssvm非高斯脉动风速预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510612740.5A CN105224738B (zh) 2015-09-23 2015-09-23 Lssvm非高斯脉动风速预测方法

Publications (2)

Publication Number Publication Date
CN105224738A CN105224738A (zh) 2016-01-06
CN105224738B true CN105224738B (zh) 2018-12-07

Family

ID=54993704

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510612740.5A Expired - Fee Related CN105224738B (zh) 2015-09-23 2015-09-23 Lssvm非高斯脉动风速预测方法

Country Status (1)

Country Link
CN (1) CN105224738B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107292432A (zh) * 2017-06-09 2017-10-24 西北民族大学 一种风电场短期负荷预测模型的建立方法
CN107705157A (zh) * 2017-10-19 2018-02-16 大连理工大学 基于统一动态集成模型和元启发式算法的汽车备件销量预测方法及系统
CN109242141B (zh) * 2018-07-24 2020-12-25 杭州汇数智通科技有限公司 一种商品库存数量的预测方法及装置
CN110503153B (zh) * 2019-08-26 2021-06-11 哈尔滨工程大学 基于差分进化算法和支持向量机的光伏系统故障诊断方法
CN113419050A (zh) * 2021-07-20 2021-09-21 山东恒拓科技发展有限公司 水泥生料成分软测量的方法及装置
CN113705780B (zh) * 2021-08-16 2023-10-27 武汉大学 一种基于伽玛随机场生成非正态随机场的无记忆转换方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449603B1 (en) * 1996-05-23 2002-09-10 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services System and method for combining multiple learning agents to produce a prediction method
CN104899431A (zh) * 2015-05-19 2015-09-09 上海大学 基于蚁群和粒子群集成的lssvm脉动风速预测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449603B1 (en) * 1996-05-23 2002-09-10 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services System and method for combining multiple learning agents to produce a prediction method
CN104899431A (zh) * 2015-05-19 2015-09-09 上海大学 基于蚁群和粒子群集成的lssvm脉动风速预测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《非高斯脉动风压的模拟研究》;李锦华,李春祥,申建红;《振动与冲击》;20090930;第28卷(第9期);第5-8页 *

Also Published As

Publication number Publication date
CN105224738A (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
CN105224738B (zh) Lssvm非高斯脉动风速预测方法
CN109142171B (zh) 基于特征扩张的融合神经网络的城市pm10浓度预测方法
CN104899431B (zh) 基于蚁群和粒子群集成的lssvm脉动风速预测方法
CN108090510A (zh) 一种基于间隔优化的集成学习方法及装置
CN112183826B (zh) 基于深度级联生成对抗网络的建筑能耗预测方法及相关产品
CN104899135A (zh) 软件缺陷预测方法和系统
CN103294601A (zh) 一种基于选择性动态权重神经网络集成的软件可靠性预测方法
CN105701572A (zh) 一种基于改进高斯过程回归的光伏短期出力预测方法
CN114169442A (zh) 基于双原型网络的遥感图像小样本场景分类方法
CN109086540A (zh) 一种构建热带气旋路径预报模型的方法及装置
WO2021196743A1 (zh) 热带气旋强度预报信息的生成方法及系统
CN109492748A (zh) 一种基于卷积神经网络的电力系统的中长期负荷预测模型建立方法
CN111723523B (zh) 一种基于级联神经网络的河口余水位预测方法
CN116644970A (zh) 一种基于vmd分解和叠层深度学习的光伏功率预测方法
CN114169445A (zh) 基于cae和gan混合网络的日前光伏功率预测方法、装置与系统
CN108629358A (zh) 对象类别的预测方法及装置
CN109121133B (zh) 一种位置隐私保护方法及装置
Qin et al. A wireless sensor network location algorithm based on insufficient fingerprint information
CN112200262B (zh) 支持多任务和跨任务的小样本分类训练方法及装置
CN114004153A (zh) 一种基于多源数据融合的侵彻深度预测方法
CN113722980A (zh) 海洋浪高预测方法、系统、计算机设备、存储介质、终端
CN110648248B (zh) 一种发电站的控制方法、装置及设备
Nagahamulla et al. Selecting most suitable members for neural network ensemble rainfall forecasting model
CN116244484A (zh) 一种面向不平衡数据的联邦跨模态检索方法及系统
CN110163437A (zh) 基于DPK-means的日前光伏发电功率预测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181207

Termination date: 20210923

CF01 Termination of patent right due to non-payment of annual fee