CN105223689B - 一种基于超材料的全平面结构凸透镜的设计方法 - Google Patents

一种基于超材料的全平面结构凸透镜的设计方法 Download PDF

Info

Publication number
CN105223689B
CN105223689B CN201510683561.0A CN201510683561A CN105223689B CN 105223689 B CN105223689 B CN 105223689B CN 201510683561 A CN201510683561 A CN 201510683561A CN 105223689 B CN105223689 B CN 105223689B
Authority
CN
China
Prior art keywords
msup
mrow
msub
convex lens
coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510683561.0A
Other languages
English (en)
Other versions
CN105223689A (zh
Inventor
罗阳
叶宏
茅红伟
汪春梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Normal University
Original Assignee
Shanghai Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Normal University filed Critical Shanghai Normal University
Priority to CN201510683561.0A priority Critical patent/CN105223689B/zh
Publication of CN105223689A publication Critical patent/CN105223689A/zh
Application granted granted Critical
Publication of CN105223689B publication Critical patent/CN105223689B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本发明涉及一种基于超材料的全平面结构凸透镜的设计方法,包括以下步骤:S01,在原凸透镜的结构基础上确定空间变换;S02,选取能实现凸透镜空间变换的函数,并确定完整的坐标变换关系;S03,利用变换光学原理计算平面凸透镜各空间超材料的材料参数。与现有技术相比,本发明设计出一种既具有全平面的结构又具备常规凸透镜光学特性凸透镜,所设计的凸透镜适用范围广、设计方法简单可行、易于实现、便于安装、调试和集成。

Description

一种基于超材料的全平面结构凸透镜的设计方法
技术领域
本发明涉及一种全平面结构凸透镜的设计方法,尤其是涉及一种基于超材料的全平面结构凸透镜的设计方法。
背景技术
透镜是基本的电磁、光学器件,凸透镜是其中一种重要类型。由于凸透镜的汇聚和成像特性,它被广泛地应用在各类成像设备和系统中。
凸透镜的汇聚及成像主要由光线在透镜表面产生折射形成的。由几何光学可知,它们表现为:
平行于光轴的光线经凸透镜后会汇聚于凸透镜的焦点F处。
当物体与透镜的距离大于2倍焦距时,在透镜的另一侧成缩小倒立的实像;大于1倍焦距时,在透镜的另一侧成放大倒立的实像;小于1倍焦距时,在透镜的同侧成放大正立的虚像。
而平面透镜的光学特性与凸透镜并不相同,平行于光轴的光线经平面透镜后不会改变传播方向。
凸透镜的曲面结构相对平面结构在制备、使用等方面存在诸多不便。然而从传统透镜的制作角度来看,目前尚没有找到一种有效的设计方法能设计出既具有全平面的结构又具备常规凸透镜光学特性的透镜。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种所得凸透镜既具有全平面的结构又具备常规凸透镜光学特性的基于超材料的全平面结构凸透镜的设计方法。
本发明的目的可以通过以下技术方案来实现:
一种基于超材料的全平面结构凸透镜的设计方法,其特征在于,包括以下步骤:
S01,在原凸透镜的结构基础上确定空间变换,原凸透镜占据的空间为s1(x,y,z),原凸透镜右侧自由空间为s2r(x,y,z),原凸透镜左侧自由空间为s2l(x,y,z),将原凸透镜左、右凸面分别压缩为平面,原凸透镜占据的空间s1(x,y,z)被压缩为s1'(x,y,z),原凸透镜右侧自由空间s2r(x,y,z)被扩展为s2r'(x,y,z),原凸透镜左侧自由空间s2l(x,y,z)被扩展为s2l'(x,y,z),从而得到全平面结构凸透镜,所述的全平面结构凸透镜包括空间s1'(x,y,z)、s2r'(x,y,z)和s2l'(x,y,z);
S02,选取能实现凸透镜空间变换的函数,并确定完整的坐标变换关系,具体为:
采取沿x轴的坐标变换,对于原凸透镜右半部分,由空间s1(x,y,z)到空间s1'(x,y,z)的变换表示为:
x'=f1(x),y'=y,z'=z (1)
由自由空间s2r(x,y,z)到自由空间s2r'(x,y,z)的变换表示为:
x'=f2(x),y'=y,z'=z (2)
式(1)、式(2)中,f1(x)、f2(x)为满足空间变换边界条件的坐标变换函数,对于原凸透镜左半部分的空间的坐标变换,与原凸透镜右半部分的空间的坐标变换对称;
S03,利用变换光学原理计算平面凸透镜各空间超材料的材料参数。
所述的原凸透镜的凸面为球面、椭球面、旋转抛物面或旋转双曲面,所述的步骤S02中,对于凸面为球面(x-c)2+y2+z2=a2的原凸透镜,式(1)的坐标变换具体取为:
式(2)中的坐标变换具体取为
其中x1为原凸透镜坐标中心点x坐标,x2为全平面结构凸透镜中s1'(x,y,z)与s2r'(x,y,z)共有平面的x坐标,x3为全平面结构凸透镜中s1'(x,y,z)右端面的x坐标。
对于凸面为椭球面(x-c)2/a2+(y2+z2)/b2=1的原凸透镜,所述的步骤S02中,式(1)的坐标变换具体取为:
式(2)中的坐标变换具体取为
其中x1为原凸透镜坐标中心点x坐标,x2为全平面结构凸透镜中s1'(x,y,z)与s2r'(x,y,z)共有平面的x坐标,x3为全平面结构凸透镜中s1'(x,y,z)右端面的x坐标。
对于凸面为旋转抛物面2p(x-c)=(y2+z2)的原凸透镜,所述的步骤S02中,式(1)的坐标变换具体取为:
式(2)中的坐标变换具体取为
其中x1为原凸透镜坐标中心点x坐标,x2为全平面结构凸透镜中s1'(x,y,z)与s2r'(x,y,z)共有平面的x坐标,x3为全平面结构凸透镜中s1'(x,y,z)右端面的x坐标。
对于凸面为旋转双曲面(x-c)2/a2-(y2+z2)/b2=1的原凸透镜,所述的步骤S02中,式(1)的坐标变换具体取为:
式(2)中的坐标变换具体取为
其中x1为原凸透镜坐标中心点x坐标,x2为全平面结构凸透镜中s1'(x,y,z)与s2r'(x,y,z)共有平面的x坐标,x3为全平面结构凸透镜中s1'(x,y,z)右端面的x坐标。
所述的步骤S03中,各空间超材料的相对介电常数ε'和相对磁导率μ'计算公式为:
ε'=AεAT/det(A),μ'=AμAT/det(A) (3)
式中A为雅克比变换矩阵,ε和μ分别为原凸透镜的相对介电常数和相对磁导率。
所述的空间变换边界条件为:原凸透镜和全平面结构凸透镜的外边界保持不变。
所述的全平面结构透镜的各空间材料呈非均匀各向异性。
光线在全平面结构透镜表面及透镜内部会发生折射,光线传播路径可能发生弯折;光线穿出平面透镜后的传播路径于光线穿过常规凸透镜后到达同一位置的传播路径相同。因此从全平面结构透镜外部看来,光线仿佛是经过了一个常规凸透镜,即所设计的全平面结构透镜与常规凸透镜等效。
与现有技术相比,本发明具有以下优点:
(1)弥补了现有技术空白,设计出一种既具有全平面的结构又具备常规凸透镜光学特性凸透镜,所设计的凸透镜适用于微波、太赫兹及光学频段。与普通凸透镜相比,全平面结构的凸透镜便于安装、调试和集成。
(2)可用于与球面凸透镜、椭球面凸透镜、旋转抛物面凸透镜或旋转双曲面凸透镜等效的全平面结构凸透镜,适用范围广。
(3)设计方法简单可行,易于实现。
附图说明
图1为本发明全平面结构凸透镜的空间变换示意图;
图2为平行光线穿过全平面结构透镜的传播路径示意图;
图3为水平波束照射全平面结构凸透镜时的平均能量分布图;
图4为水平波束照射常规结构凸透镜时的平均能量分布图;
图5为两种透镜中场沿光轴的分布图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例
一种基于超材料的全平面结构凸透镜的设计方法,用于将原凸透镜转换为全平面结构凸透镜,所述的原凸透镜的凸面为球面、椭球面、旋转抛物面或旋转双曲面。设计方法包括以下步骤:
S01,在原凸透镜的结构基础上确定空间变换;
如图1所示,原凸透镜占据的空间CKDHLG表示为s1(x,y,z),原凸透镜右侧自由空间ABDKC表示为s2r(x,y,z),原凸透镜左侧自由空间IJHLG表示为s2l(x,y,z)。将原凸透镜左、右凸面分别压缩为平面,则原凸透镜的空间s1(x,y,z)被压缩为CDHG,表示为s1'(x,y,z);原凸透镜右侧自由空间s2r(x,y,z)被扩展为ABDC,表示为s2r'(x,y,z);原凸透镜左侧自由空间s2l(x,y,z)被扩展为IJHG,表示为s2l'(x,y,z),从而得到全平面结构凸透镜。所述的全平面结构凸透镜包括空间s1'(x,y,z)、s2r'(x,y,z)和s2l'(x,y,z)。自由空间一般指真空,此处为空气空间。
S02,选取能实现凸透镜空间变换的函数,并确定完整的坐标变换关系。由于左、右侧空间的分析具有对称性,下面以右侧空间(即ABFE)为例来进行阐述:
采取沿x轴的坐标变换,对于原凸透镜右半部分,由空间s1(x,y,z)到空间s1'(x,y,z)的变换表示为:
x'=f1(x),y'=y,z'=z (1)
由自由空间s2r(x,y,z)到自由空间s2r'(x,y,z)的变换表示为:
x'=f2(x),y'=y,z'=z (2)
式(1)、式(2)中,f1(x)、f2(x)为满足空间变换边界条件的坐标变换函数,空间变换边界条件为:原凸透镜和全平面结构凸透镜的外边界AB、IJ、AI、BJ保持不变,如图1所示,后边界Γ1(即EF)保持不变,Γ2(即CKD)映射到Γ2'(即CD);后边界Γ3(即AB)保持不变,Γ2(即CKD)映射到Γ2'(即CD)。
其中,坐标变换函数f1(x),f2(x)可为满足边界条件的任意函数形式;边界Γ1,Γ2',Γ3为平面;Γ2是凸透镜的凸面,它可为球面、椭球面、旋转抛物面、旋转双曲面等。
(a)对于凸面为球面(x-c)2+y2+z2=a2的凸透镜,式(1)的坐标变换具体取为:
式(2)中的坐标变换具体取为:
式(4)、式(5)中,c为球面所在球体的球心x坐标,a为球面所在球体的半径。
(b)对于凸面为椭球面(x-c)2/a2+(y2+z2)/b2=1的凸透镜,式(1)的坐标变换具体取为:
式(2)中的坐标变换具体取为
式(6)、式(7)中,c为椭球面所在椭球体的球心x坐标,a、b分别为椭球面所在椭球体的x轴半轴长、y轴半轴长。
(c)对于凸面为旋转抛物面2p(x-c)=(y2+z2)的凸透镜,式(1)的坐标变换具体取为:
式(2)中的坐标变换具体取为
式(8)、式(9)中,c为旋转抛物面的顶点x坐标,p为旋转抛物面的焦距。
(d)对于凸面为旋转双曲面(x-c)2/a2-(y2+z2)/b2=1的凸透镜,式(1)的坐标变换具体取为:
式(2)中的坐标变换具体取为
式(10)、式(11)中,a、b分别为与旋转双曲面对应的标准双曲线实轴、虚轴的半轴长,c为旋转双曲面中心x坐标。
式(4)~(11)中,x1为原凸透镜坐标中心点x坐标,x2为全平面结构凸透镜中s1'(x,y,z)与s2r'(x,y,z)共有平面的x坐标,x3为全平面结构凸透镜中s1'(x,y,z)右端面的x坐标,其中x3的值根据需要来设定。
对于原凸透镜左半部分的坐标变换,与原凸透镜右半部分的坐标变换对称。
S03,利用变换光学原理计算全平面结构凸透镜各空间超材料的材料参数,各空间超材料的相对介电常数和相对磁导率计算公式为:
ε'=AεAT/det(A),μ'=AμAT/det(A) (3)
式中为雅克比变换矩阵,ε和μ分别为原凸透镜的相对介电常数和相对磁导率。
将步骤S02中,各凸透镜的坐标变换式代入式(3)可分别计算出全平面结构凸透镜中相应的CDFE和ABDC中的材料参数。
本发明设计出的透镜为全平面结构,透镜的各层材料为非均匀各向异性。光线在全平面结构凸透镜表面及透镜内部会发生折射,光线传播路径可能发生弯折;光线穿出全平面结构凸透镜后的传播路径于光线穿过常规凸透镜后到达同一位置的传播路径相同。因此从平面透镜外部看来,光线仿佛是经过了一个常规凸透镜,即所设计透镜与常规凸透镜等效。
以平行光线照射凸透镜为例来说明。对于常规凸透镜而言(图2中虚曲线表示),平行入射的光线在凸透镜的两个表面发生折射,然后在焦点处汇聚,其路径如图2中带箭头虚直线所示。平行光线照射本设计中的全平面结构凸透镜时,光线与透镜表面相互垂直。在第一层介质IJHG中,光线传播方向不变,仍沿水平方向。光线在到达介质层IJHG和GHDC的交界面HG处由于折射效应,其传播方向发生弯折,此时光线会偏向主光轴而不再沿着原来的水平方向传播。光线到达介质层GHDC和ABDC的交界面DC处继续发生弯折,此时会稍偏离主光轴方向。当光线传播至透镜外边界AB处时,光线传播方向再次发生弯折而偏向主光轴方向,折射光线(即穿出透镜的光线)的方向与光线穿过常规凸透镜到达该位置处的传播方向相同,进而光线仍在常规凸透镜焦点处会聚。光线在全平面结构凸透镜中的传播路径如图2中带箭头实线所示。因此,从平面透镜外部看来透镜并未改变光线的传播路径,它与常规凸透镜对光线的作用等效。
下面为一个具体的全平面结构平-凸透镜仿真验证。透镜设计参数为:a=0.18m,c=-0.118m,x1=0m,x2=0.03m,x3=0.062m。频率f=12GHz的波束从左向右水平照射平面透镜时空间的平均能量分布如图3所示。由图可见,波束经过全平面结构凸透镜后汇聚。为了与常规凸透镜做直观对比,图4给出了波束水平照射常规凸透镜后的能量分布情况。通过对比可见,波束经过本实施例中所设计的全平面结构凸透镜和经过常规凸透镜等效。为了更准确地对比两种透镜,图5给出了它们光轴上定量的场分布情况,其中灰体粗实线代表常规凸透镜,黑体带圈实线代表实施例中所设计的全平面结构凸透镜。所示结果表明,两种透镜中场沿主光轴的分布几乎一致。以上设计实施例及数值实验证明了设计方法和设计结果的正确性。

Claims (8)

1.一种基于超材料的全平面结构凸透镜的设计方法,其特征在于,包括以下步骤:
S01,在原凸透镜的结构基础上确定空间变换,原凸透镜占据的空间为s1(x,y,z),原凸透镜右侧自由空间为s2r(x,y,z),原凸透镜左侧自由空间为s2l(x,y,z),将原凸透镜左、右凸面分别压缩为平面,原凸透镜占据的空间s1(x,y,z)被压缩为s1'(x,y,z),原凸透镜右侧自由空间s2r(x,y,z)被扩展为s2r'(x,y,z),原凸透镜左侧自由空间s2l(x,y,z)被扩展为s2l'(x,y,z),从而得到全平面结构凸透镜,所述的全平面结构凸透镜包括空间s1'(x,y,z)、s2r'(x,y,z)和s2l'(x,y,z);
S02,选取能实现凸透镜空间变换的函数,并确定完整的坐标变换关系,具体为:
采取沿x轴的坐标变换,对于原凸透镜右半部分,由空间s1(x,y,z)到空间s1'(x,y,z)的变换表示为:
x'=f1(x),y'=y,z'=z (1)
由自由空间s2r(x,y,z)到自由空间s2r'(x,y,z)的变换表示为:
x'=f2(x),y'=y,z'=z (2)
式(1)、式(2)中,f1(x)、f2(x)为满足空间变换边界条件的坐标变换函数,对于原凸透镜左半部分的空间的坐标变换,与原凸透镜右半部分的空间的坐标变换对称,所述的空间变换边界条件为:原凸透镜和全平面结构凸透镜的外边界保持不变;
S03,利用变换光学原理计算全平面结构凸透镜各空间超材料的材料参数。
2.根据权利要求1所述的一种基于超材料的全平面结构凸透镜的设计方法,其特征在于,所述的原凸透镜的凸面为球面、椭球面、旋转抛物面或旋转双曲面。
3.根据权利要求2所述的一种基于超材料的全平面结构凸透镜的设计方法,其特征在于,所述的步骤S02中,对于凸面为球面(x-c)2+y2+z2=a2的原凸透镜,式(1)的坐标变换具体取为:
<mrow> <msup> <mi>x</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msqrt> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> </mrow> </msqrt> <mo>-</mo> <mi>c</mi> <mo>)</mo> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>-</mo> <msqrt> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> </mrow> </msqrt> <mo>-</mo> <mi>c</mi> <mo>)</mo> </mrow> </mfrac> <mo>+</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>,</mo> <msup> <mi>y</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mi>y</mi> <mo>,</mo> <msup> <mi>z</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mi>z</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
式(2)中的坐标变换具体取为
<mrow> <msup> <mi>x</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msqrt> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> </mrow> </msqrt> <mo>-</mo> <mi>c</mi> <mo>)</mo> <mo>(</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msqrt> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> </mrow> </msqrt> <mo>-</mo> <mi>c</mi> <mo>)</mo> </mrow> </mfrac> <mo>+</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>,</mo> <msup> <mi>y</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mi>y</mi> <mo>,</mo> <msup> <mi>z</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mi>z</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
其中x1为原凸透镜坐标中心点x坐标,x2为全平面结构凸透镜中s1'(x,y,z)与s2r'(x,y,z)共有平面的x坐标,x3为全平面结构凸透镜中s1'(x,y,z)右端面的x坐标。
4.根据权利要求2所述的一种基于超材料的全平面结构凸透镜的设计方法,其特征在于,对于凸面为椭球面(x-c)2/a2+(y2+z2)/b2=1的原凸透镜,所述的步骤S02中,式(1)的坐标变换具体取为:
<mrow> <msup> <mi>x</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msqrt> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>-</mo> <mrow> <mo>(</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mi>a</mi> <mo>/</mo> <mi>b</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>-</mo> <mi>c</mi> <mo>)</mo> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>-</mo> <msqrt> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>-</mo> <mrow> <mo>(</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mi>a</mi> <mo>/</mo> <mi>b</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>-</mo> <mi>c</mi> <mo>)</mo> </mrow> </mfrac> <mo>+</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>,</mo> <msup> <mi>y</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mi>y</mi> <mo>,</mo> <msup> <mi>z</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mi>z</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
式(2)中的坐标变换具体取为
<mrow> <msup> <mi>x</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msqrt> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>-</mo> <mrow> <mo>(</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mi>a</mi> <mo>/</mo> <mi>b</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>-</mo> <mi>c</mi> <mo>)</mo> <mo>(</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>-</mo> <msqrt> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>-</mo> <mrow> <mo>(</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mi>a</mi> <mo>/</mo> <mi>b</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>-</mo> <mi>c</mi> <mo>)</mo> </mrow> </mfrac> <mo>+</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>,</mo> <msup> <mi>y</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mi>y</mi> <mo>,</mo> <msup> <mi>z</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mi>z</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
其中x1为原凸透镜坐标中心点x坐标,x2为全平面结构凸透镜中s1'(x,y,z)与s2r'(x,y,z)共有平面的x坐标,x3为全平面结构凸透镜中s1'(x,y,z)右端面的x坐标。
5.根据权利要求2所述的一种基于超材料的全平面结构凸透镜的设计方法,其特征在于,对于凸面为旋转抛物面2p(x-c)=(y2+z2)的原凸透镜,所述的步骤S02中,式(1)的坐标变换具体取为:
<mrow> <msup> <mi>x</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <mo>(</mo> <mrow> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> </mrow> <mo>)</mo> <mo>/</mo> <mo>(</mo> <mrow> <mn>2</mn> <mi>p</mi> </mrow> <mo>)</mo> <mo>-</mo> <mi>c</mi> <mo>)</mo> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>-</mo> <mo>(</mo> <mrow> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> </mrow> <mo>)</mo> <mo>/</mo> <mo>(</mo> <mrow> <mn>2</mn> <mi>p</mi> </mrow> <mo>)</mo> <mo>-</mo> <mi>c</mi> <mo>)</mo> </mrow> </mfrac> <mo>+</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>,</mo> <msup> <mi>y</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mi>y</mi> <mo>,</mo> <msup> <mi>z</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mi>z</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
式(2)中的坐标变换具体取为
<mrow> <msup> <mi>x</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <mo>(</mo> <mrow> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> </mrow> <mo>)</mo> <mo>/</mo> <mo>(</mo> <mrow> <mn>2</mn> <mi>p</mi> </mrow> <mo>)</mo> <mo>-</mo> <mi>c</mi> <mo>)</mo> <mo>(</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>-</mo> <mo>(</mo> <mrow> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> </mrow> <mo>)</mo> <mo>/</mo> <mo>(</mo> <mrow> <mn>2</mn> <mi>p</mi> </mrow> <mo>)</mo> <mo>-</mo> <mi>c</mi> <mo>)</mo> </mrow> </mfrac> <mo>+</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>,</mo> <msup> <mi>y</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mi>y</mi> <mo>,</mo> <msup> <mi>z</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mi>z</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
其中x1为原凸透镜坐标中心点x坐标,x2为全平面结构凸透镜中s1'(x,y,z)与s2r'(x,y,z)共有平面的x坐标,x3为全平面结构凸透镜中s1'(x,y,z)右端面的x坐标。
6.根据权利要求2所述的一种基于超材料的全平面结构凸透镜的设计方法,其特征在于,对于凸面为旋转双曲面(x-c)2/a2-(y2+z2)/b2=1的原凸透镜,所述的步骤S02中,式(1)的坐标变换具体取为:
<mrow> <msup> <mi>x</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msqrt> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>+</mo> <mrow> <mo>(</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mi>a</mi> <mo>/</mo> <mi>b</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>-</mo> <mi>c</mi> <mo>)</mo> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>-</mo> <msqrt> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>+</mo> <mrow> <mo>(</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mi>a</mi> <mo>/</mo> <mi>b</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>-</mo> <mi>c</mi> <mo>)</mo> </mrow> </mfrac> <mo>+</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>,</mo> <msup> <mi>y</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mi>y</mi> <mo>,</mo> <msup> <mi>z</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mi>z</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
式(2)中的坐标变换具体取为
<mrow> <msup> <mi>x</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msqrt> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>+</mo> <mrow> <mo>(</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mi>a</mi> <mo>/</mo> <mi>b</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>-</mo> <mi>c</mi> <mo>)</mo> <mo>(</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>-</mo> <msqrt> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>+</mo> <mrow> <mo>(</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mi>a</mi> <mo>/</mo> <mi>b</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>-</mo> <mi>c</mi> <mo>)</mo> </mrow> </mfrac> <mo>+</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>,</mo> <msup> <mi>y</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mi>y</mi> <mo>,</mo> <msup> <mi>z</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mi>z</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
其中x1为原凸透镜坐标中心点x坐标,x2为全平面结构凸透镜中s1'(x,y,z)与s2r'(x,y,z)共有平面的x坐标,x3为全平面结构凸透镜中s1'(x,y,z)右端面的x坐标。
7.根据权利要求1所述的一种基于超材料的全平面结构凸透镜的设计方法,其特征在于,所述的步骤S03中,各空间超材料的相对介电常数ε'和相对磁导率μ'计算公式为:
ε'=AεAT/det(A),μ'=AμAT/det(A) (3)
式中A为雅克比变换矩阵,ε和μ分别为原凸透镜的相对介电常数和相对磁导率。
8.根据权利要求1所述的一种基于超材料的全平面结构凸透镜的设计方法,其特征在于,所述的全平面结构凸透镜的各空间材料呈非均匀各向异性。
CN201510683561.0A 2015-10-20 2015-10-20 一种基于超材料的全平面结构凸透镜的设计方法 Expired - Fee Related CN105223689B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510683561.0A CN105223689B (zh) 2015-10-20 2015-10-20 一种基于超材料的全平面结构凸透镜的设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510683561.0A CN105223689B (zh) 2015-10-20 2015-10-20 一种基于超材料的全平面结构凸透镜的设计方法

Publications (2)

Publication Number Publication Date
CN105223689A CN105223689A (zh) 2016-01-06
CN105223689B true CN105223689B (zh) 2017-10-27

Family

ID=54992736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510683561.0A Expired - Fee Related CN105223689B (zh) 2015-10-20 2015-10-20 一种基于超材料的全平面结构凸透镜的设计方法

Country Status (1)

Country Link
CN (1) CN105223689B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019516128A (ja) * 2016-04-05 2019-06-13 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ サブ波長解像度イメージング用のメタレンズ
CN106199957B (zh) * 2016-09-19 2019-02-19 上海师范大学 一种凹透镜的设计方法
CN108270081A (zh) * 2016-12-31 2018-07-10 深圳市景程信息科技有限公司 基于变换光学构建超材料的本构参数的方法
EP3631533A4 (en) 2017-05-24 2021-03-24 The Trustees of Columbia University in the City of New York WIDE-BAND ACHROMATIC FLAT OPTICAL COMPONENTS BY DIELECTRIC METASURFACES MODIFIED BY DISPERSION
EP3676973A4 (en) 2017-08-31 2021-05-05 Metalenz, Inc. INTEGRATION OF LENS WITH PERMEABLE METAL SURFACE
CN108761829B (zh) * 2018-05-28 2020-07-10 浙江大学 一种实现超分辨率放大成像的器件
WO2023007246A1 (en) * 2021-07-27 2023-02-02 Menicon Co.Ltd. Systems and methods for forming ophthalmic lens including meta optics
US11927769B2 (en) 2022-03-31 2024-03-12 Metalenz, Inc. Polarization sorting metasurface microlens array device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6406155B1 (en) * 2000-06-21 2002-06-18 Allan James Yeomans Parabolic reflectors
GB0908228D0 (en) * 2009-05-14 2009-06-24 Qinetiq Ltd Reflector assembly and beam forming
CN202305857U (zh) * 2011-10-14 2012-07-04 日芯光伏科技有限公司 大口径花岗岩玻璃复合式球面与非球面反射镜
CN103558655B (zh) * 2013-11-18 2015-09-09 上海师范大学 基于超材料的全平面结构圆锥曲面反射器的设计方法

Also Published As

Publication number Publication date
CN105223689A (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
CN105223689B (zh) 一种基于超材料的全平面结构凸透镜的设计方法
US7830617B2 (en) Optical components including lens having at least one aspherical refractive surface
CN101576591B (zh) 一种三反射镜紧缩场天线测量系统及方法
US10642009B2 (en) Method for designing off-axis aspheric optical system
CN104111520B (zh) 一种离轴反射成像光学系统
US10983316B2 (en) Method of designing and manufacturing freeform surface off-axial imaging system
CN105334606B (zh) 自由曲面离轴三反光学系统
US20190221599A1 (en) Freeform surface off-axial three-mirror imaging system
CN102279047B (zh) 一种15°视场远心三个反射镜同轴的成像系统
CN107247297B (zh) 一种组合式轴棱锥装置
RU2012111441A (ru) Компактная неосесимметричная двухзеркальная антенна
CN105629449A (zh) 一种新型菲涅耳光学天线发射系统
US9818223B2 (en) Method of forming a freeform surface shaped element for an illumination system
JPS6058441B2 (ja) 円柱状の構成成分を有する傾斜させたレンズ要素で構成された反射排除球状光学列
CN107084690A (zh) 一种利用飞秒激光进行角锥棱镜有效面积的测量方法
CN103558655B (zh) 基于超材料的全平面结构圆锥曲面反射器的设计方法
CN111025436B (zh) 鱼眼透镜参数确定方法、装置及设备
CN105784593A (zh) 一种四胞胎物镜的Chernin型多光程气体吸收腔
TWI766555B (zh) 成像光學系統
TWI764536B (zh) 成像光學系統的設計方法
WO2006137712A1 (en) Optical components including lens having at least one aspherical refractive surface
CN106814452A (zh) 一种离轴光束的像差校正方法
CN106199957B (zh) 一种凹透镜的设计方法
WO2021179162A1 (zh) 鱼眼透镜参数确定方法、装置及设备
CN103594081A (zh) 用于声聚束的复合抛物面的设计方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171027