CN105223629A - 微型地下蛇行自盾构探测机器人 - Google Patents

微型地下蛇行自盾构探测机器人 Download PDF

Info

Publication number
CN105223629A
CN105223629A CN201510666071.XA CN201510666071A CN105223629A CN 105223629 A CN105223629 A CN 105223629A CN 201510666071 A CN201510666071 A CN 201510666071A CN 105223629 A CN105223629 A CN 105223629A
Authority
CN
China
Prior art keywords
earth
snake
skin
shield
machine device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510666071.XA
Other languages
English (en)
Other versions
CN105223629B (zh
Inventor
王建秀
刘笑天
殷尧
高峰
邵雨乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201510666071.XA priority Critical patent/CN105223629B/zh
Publication of CN105223629A publication Critical patent/CN105223629A/zh
Application granted granted Critical
Publication of CN105223629B publication Critical patent/CN105223629B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明是微型地下蛇行自盾构探测机器人,包括蜕皮蛇盾构机器人与地表辅助机器人。蜕皮蛇盾构机器人可在地下进行蛇行运动,侧壁环向3D打印喷头向周围土体喷射粘合剂形成高强度盾壳,自身搭载电磁探头、摄像头、微型机械手、压力传感器、温度传感器可对星球浅表层土体结构进行探测。地表辅助机器人跟随蜕皮蛇盾构机器人在地表做同步运动,利用电磁波向蜕皮蛇盾构机器人无线输电并将采集的数据发送给空间中转站,自身也可对地表进行探测、采样。本发明能够实现星球浅表层网络探测,弥补已有方法只能进行表面探测的不足,能够为工程地质、工程勘察、星球表面探测等相关领域提供较为完整的探测浅表层土壤结构,获得地下岩土体基本物理力学参数。

Description

微型地下蛇行自盾构探测机器人
技术领域
本发明属于地质工程、工程勘察、星球表面探测领域,尤其是涉及一种微型地下蛇行自盾构探测机器人。
背景技术
美国和前苏联是星球探测机器人研究的先驱国,在20世纪60年代末期便开始了月球表面的探测任务,随后,美国又陆续对火星展开了一系列的探测任务。我国于2013年成功向月球发射“嫦娥三号”登月探测器,并在月球表面实现软着陆。日本、欧空局等国家或组织都根据自己的探测计划,纷纷投入巨资,研制各种星球探测机器人。这些探测机器人都有一定的变形能力,在着陆后会根据地形环境自动从闭合状态自动展开至工作状态。目前,国内外星球探测主要采用“车型”探测机器人进行表层行驶探测,其行驶机构大致分为轮式、腿式和履带式3种。被探测星球浅表层土体结构往往是研究星球古气候与未来资源开发的关键,而目前“车型”探测机器人仅能对地表进行探测,无法深入地下。
综上所述,目前尚无一款能够在星球表面实现地下网络探测的微型地下蛇行自盾构机器人。
发明内容
本发明的目的是为了克服上述技术缺陷而提供的微型地下蛇行自盾构探测机器人。
本发明的目的可以通过以下技术方案来实现:
一种微型地下蛇行自盾构探测机器人,其特征在于,包括蜕皮蛇盾构机器人与地表辅助机器人;
所述的蜕皮蛇盾构机器人,其结构为:包括骨架、两端设有的盾构刀头2、陀螺仪3、摄像头6、照明装置7、微型可伸缩机械手8、环向3D打印喷头4、电磁探头5、压力传感器9、温度传感器10、电池装置11、数据发射装置12、电源装置,其中:所述骨架由一系列的单元机构串联组成,每个单元机构由外壳保护,分为中央单元机构和两侧的六自由度并联单元机构(所述六自由度并联机构已属于现有技术),如此通过多个单元机构依次串联实现地下多自由度蛇行运动;所述中央单元机构,壳体侧壁设计有凹槽,用于安装环向3D打印喷头4,向周围土体喷射粘合剂提高土的强度和自稳性;所述中央单元机构还设置有电磁探头5、压力传感器9、温度传感器10、电池装置11、数据发射装置12;自身搭载电磁探头5,可对浅表层结构进行辅助探测;所述电池装置设置于骨架中央机构单元内部,电池装置设有磁环用来接收地表辅助机器人发射的电磁波来充电;电池装置11分别与盾构刀头2、陀螺仪3、摄像头6、照明装置7、微型可伸缩机械手8、环向3D打印喷头4、电磁探头5、压力传感器9、温度传感器10、数据发射装置12连接为它们供电;所述中央单元机构的侧壁还安装有压力传感器9和温度传感器10,测量盾构阻力及浅表层地温。
所述陀螺仪安装于六自由度并联单元机构内,可以为蜕皮蛇盾构机器人提供导向服务;在两端的六自由度并联单元机构均设有盾构刀头2用于切削土壤,当遇到障碍物无法前进时,机器人可以转换前进方向,在地下自由前进与倒退,切削废土从前进端刀头进入机器人内部并从尾端排出;
在两端盾构刀头2中间安装有摄像头6、照明装置7和微型可伸缩机械手8,通过摄影测量分析土壤颗粒与孔隙结构,微型可伸缩机械手可以进行样品采集及原位测试;
所述的地表辅助机器人采用车型探测机器人,包括地表行车17,还包括安装于所述地表行车的太阳能电池板13、电磁供电装置14、数据接收装置15、数据发射装置16,所述太阳能电池板13与电磁供电装置14的输入端连接,所述电磁供电装置14能量输出端又与电池装置连接,所述数据接收装置15与数据发射装置12连接;地表辅助机器人跟随蜕皮蛇盾构机器人在地表做同步运动,自身搭载的太阳能电池板转化太阳能发电并利用电磁波向蜕皮蛇盾构机器人无线输电,接收蜕皮蛇盾构机器人采集的数据并发送给空间中转站。
进一步优化,所述的地表辅助机器人在配合蜕皮蛇盾构机器人的同时自身也可对地表进行探测、采样。
本发明的使用:蜕皮蛇盾构机器人在星球表面选定盾构下穿地点后开启前进方向盾构刀头切削土体前进,切削废土从前进方向尾端排出。蜕皮蛇盾构机器人在前进过程中由内部陀螺仪实现导向并通过一系列串联而成的小型六自由度并联机构改变运动方向。前进过程中环向3D打印喷头向周围土体喷射粘合剂提高土的强度和自稳性,蜕皮蛇盾构机器人脱出后形成高强度盾壳。行进过程中蜕皮蛇盾构机器人自身搭载电磁探头,可对浅表层结构进行辅助探测,两端盾构刀头中间安装有摄像头、照明装置和微型可伸缩机械手,通过摄影测量分析土壤颗粒与孔隙结构,微型可伸缩机械手可以进行样品采集及原位测试,蜕皮蛇盾构机器人侧壁还安装有压力传感器和温度传感器,测量盾构阻力及浅表层地温。地表辅助机器人跟随蜕皮蛇盾构机器人在地表做同步运动,自身搭载的太阳能电池板转化太阳能发电并利用电磁波向蜕皮蛇盾构机器人无线输电,接收蜕皮蛇盾构机器人采集的数据并发送给空间中转站,地表辅助机器人在配合蜕皮蛇盾构机器人的同时自身也可对地表进行探测、采样。
本发明技术方案的有益效果:
本发明能够实现星球浅表层网络探测,弥补已有方法只能进行表面探测的不足,能够为工程地质、工程勘察、星球表面探测等相关领域提供较为完整的探测浅表层土壤结构,获得地下岩土体基本物理力学参数。
附图说明
图1为本发明的蜕皮蛇盾构机器人结构示意图;
图2为本发明的地表辅助机器人结构示意图;
图1中,1为小型六自由度并联机构,2为盾构刀头,3为陀螺仪,4为环向3D打印喷头,5为电磁探头,6为摄像头,7为照明装置,8为微型可伸缩机械手,9为压力传感器,10为温度传感器,11为电池装置,12为数据发射装置;
图2中,13为太阳能电池板,14为电磁供电装置,15为数据接收装置,16为数据发射装置,17为地表行车。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例
具体实施例中,如图1所示,所述的蜕皮蛇盾构机器人,其结构为:包括骨架、两端设有的盾构刀头2、陀螺仪3、摄像头6、照明装置7、微型可伸缩机械手8、环向3D打印喷头4、电磁探头5、压力传感器9、温度传感器10、电池装置11、数据发射装置12、电源装置,其中:所述骨架由一系列的单元机构串联组成,每个单元机构由外壳保护,分为中央单元机构和两侧的六自由度并联单元机构(所述六自由度并联机构已属于现有技术),如此通过多个单元机构依次串联实现地下多自由度蛇行运动;所述中央单元机构,壳体侧壁设计有凹槽,用于安装环向3D打印喷头4,向周围土体喷射粘合剂提高土的强度和自稳性;所述中央单元机构还设置有电磁探头5、压力传感器9、温度传感器10、电池装置11、数据发射装置12;自身搭载电磁探头5,可对浅表层结构进行辅助探测;所述电池装置设置于骨架中央机构单元内部,电池装置设有磁环用来接收地表辅助机器人发射的电磁波来充电;电池装置11分别与盾构刀头2、陀螺仪3、摄像头6、照明装置7、微型可伸缩机械手8、环向3D打印喷头4、电磁探头5、压力传感器9、温度传感器10、数据发射装置12连接为它们供电;所述中央单元机构的侧壁还安装有压力传感器9和温度传感器10,测量盾构阻力及浅表层地温。
所述陀螺仪安装于六自由度并联单元机构内,可以为蜕皮蛇盾构机器人提供导向服务;在两端的六自由度并联单元机构均设有盾构刀头2用于切削土壤,当遇到障碍物无法前进时,机器人可以转换前进方向,在地下自由前进与倒退,切削废土从前进端刀头进入机器人内部并从尾端排出;
在两端盾构刀头2中间安装有摄像头6、照明装置7和微型可伸缩机械手8,通过摄影测量分析土壤颗粒与孔隙结构,微型可伸缩机械手可以进行样品采集及原位测试.
如图2所示,所述的地表辅助机器人采用车型探测机器人,包括地表行车17,还包括安装于所述地表行车的太阳能电池板13、电磁供电装置14、数据接收装置15、数据发射装置16,所述太阳能电池板13与电磁供电装置14的输入端连接,所述电磁供电装置14能量输出端又与电池装置连接,所述数据接收装置15与数据发射装置12连接;地表辅助机器人跟随蜕皮蛇盾构机器人在地表做同步运动,自身搭载的太阳能电池板转化太阳能发电并利用电磁波向蜕皮蛇盾构机器人无线输电,接收蜕皮蛇盾构机器人采集的数据并发送给空间中转站。
装置使用时,蜕皮蛇盾构机器人在星球表面选定盾构下穿地点后开启前进方向盾构刀头2切削土体前进,切削废土从前进方向尾端排出。蜕皮蛇盾构机器人在前进过程中由内部陀螺仪3实现导向并通过一系列串联而成的小型六自由度并联机构1改变运动方向。前进过程中环向3D打印喷头4向周围土体喷射粘合剂提高土的强度和自稳性,蜕皮蛇盾构机器人脱出后形成高强度盾壳。行进过程中蜕皮蛇盾构机器人自身搭载电磁探头5,可对浅表层结构进行辅助探测,两端盾构刀头2中间安装有摄像头6、照明装置7和微型可伸缩机械手8,通过摄影测量分析土壤颗粒与孔隙结构,微型可伸缩机械手8可以进行样品采集及原位测试,蜕皮蛇盾构机器人侧壁还安装有压力传感器9和温度传感器10,测量盾构阻力及浅表层地温,测量数据通过数据发射装置12发送给地表辅助机器人。蜕皮蛇盾构机器人通过内部电池装置11进行供电运行。地表辅助机器人跟随蜕皮蛇盾构机器人在地表做同步运动,自身搭载的太阳能电池板13转化太阳能发电并利用电磁供电装置14向蜕皮蛇盾构机器人无线输电,数据接收装置15接收蜕皮蛇盾构机器人采集的数据并通过数据发射装置16发送给空间中转站,地表辅助机器人在配合蜕皮蛇盾构机器人的同时自身也可对地表进行探测、采样。

Claims (2)

1.一种微型地下蛇行自盾构探测机器人,其特征在于,包括蜕皮蛇盾构机器人与地表辅助机器人;
所述的蜕皮蛇盾构机器人,其结构为:包括骨架、两端设有的盾构刀头(2)、陀螺仪(3)、摄像头(6)、照明装置(7)、微型可伸缩机械手(8)、环向3D打印喷头(4)、电磁探头(5)、压力传感器(9)、温度传感器(10)、电池装置(11)、数据发射装置(12)、电源装置,其中:所述骨架由一系列的单元机构串联组成,每个单元机构由外壳保护,分为中央单元机构和两侧的六自由度并联单元机构(所述六自由度并联机构已属于现有技术),如此通过多个单元机构依次串联实现地下多自由度蛇行运动;所述中央单元机构,壳体侧壁设计有凹槽,用于安装环向3D打印喷头(4),向周围土体喷射粘合剂提高土的强度和自稳性;所述中央单元机构还设置有电磁探头(5)、压力传感器(9)、温度传感器(10)、电池装置(11)、数据发射装置(12);自身搭载电磁探头(5),可对浅表层结构进行辅助探测;所述电池装置设置于骨架中央机构单元内部,电池装置设有磁环用来接收地表辅助机器人发射的电磁波来充电;电池装置(11)分别与盾构刀头(2)、陀螺仪(3)、摄像头(6)、照明装置(7)、微型可伸缩机械手(8)、环向3D打印喷头(4)、电磁探头(5)、压力传感器(9)、温度传感器(10)、数据发射装置(12)连接为它们供电;所述中央单元机构的侧壁还安装有压力传感器(9)和温度传感器(10),测量盾构阻力及浅表层地温。
所述陀螺仪安装于六自由度并联单元机构内,可以为蜕皮蛇盾构机器人提供导向服务;在两端的六自由度并联单元机构均设有盾构刀头(2)用于切削土壤,当遇到障碍物无法前进时,机器人可以转换前进方向,在地下自由前进与倒退,切削废土从前进端刀头进入机器人内部并从尾端排出;
在两端盾构刀头(2)中间安装有摄像头(6)、照明装置(7)和微型可伸缩机械手(8),通过摄影测量分析土壤颗粒与孔隙结构,微型可伸缩机械手可以进行样品采集及原位测试;
所述的地表辅助机器人采用车型探测机器人,包括地表行车(17),还包括安装于所述地表行车的太阳能电池板(13)、电磁供电装置(14)、数据接收装置(15)、数据发射装置(16),所述太阳能电池板(13)与电磁供电装置(14)的输入端连接,所述电磁供电装置(14)能量输出端又与电池装置连接,所述数据接收装置(15)与数据发射装置(12)连接;地表辅助机器人跟随蜕皮蛇盾构机器人在地表做同步运动,自身搭载的太阳能电池板转化太阳能发电并利用电磁波向蜕皮蛇盾构机器人无线输电,接收蜕皮蛇盾构机器人采集的数据并发送给空间中转站。
2.如权利要求1所述的微型地下蛇行自盾构探测机器人,其特征在于,所述的地表辅助机器人在配合蜕皮蛇盾构机器人的同时自身也可对地表进行探测、采样。
CN201510666071.XA 2015-10-15 2015-10-15 微型地下蛇行自盾构探测机器人 Active CN105223629B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510666071.XA CN105223629B (zh) 2015-10-15 2015-10-15 微型地下蛇行自盾构探测机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510666071.XA CN105223629B (zh) 2015-10-15 2015-10-15 微型地下蛇行自盾构探测机器人

Publications (2)

Publication Number Publication Date
CN105223629A true CN105223629A (zh) 2016-01-06
CN105223629B CN105223629B (zh) 2017-08-25

Family

ID=54992684

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510666071.XA Active CN105223629B (zh) 2015-10-15 2015-10-15 微型地下蛇行自盾构探测机器人

Country Status (1)

Country Link
CN (1) CN105223629B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105698757A (zh) * 2016-02-24 2016-06-22 宿州学院 一种基于三维扫描和3d打印的地下空洞窥视装置及方法
CN106239494A (zh) * 2016-08-26 2016-12-21 沈炜 电控万向机械臂
CN106695771A (zh) * 2017-03-15 2017-05-24 天津大学 一种基于rsr构型并联机构的模块化仿生蛇形机器人
CN107263452A (zh) * 2017-08-04 2017-10-20 哈尔滨工业大学 一种并联式线驱动软体机器人弯曲扭转变形模块
CN108868837A (zh) * 2018-04-28 2018-11-23 中国矿业大学 一种地下空间构建系统
WO2018214217A1 (zh) * 2017-05-24 2018-11-29 中国矿业大学 一种基于磁轮驱动的提升机罐道蛇形巡检机器人机构
CN109262600A (zh) * 2018-10-17 2019-01-25 尉长虹 一种可伸缩软体机械装置
CN109372526A (zh) * 2018-11-12 2019-02-22 中铁工程装备集团有限公司 可穿越异物障碍的新型土压平衡盾构机
CN109470508A (zh) * 2018-10-19 2019-03-15 宁波大学 一种土壤探测仿生机器人
CN110161335A (zh) * 2019-05-28 2019-08-23 深圳供电局有限公司 检测机器人
CN110293542A (zh) * 2019-06-20 2019-10-01 中船重工海为郑州高科技有限公司 一种推杆驱动蛇形机械臂
CN112462448A (zh) * 2020-11-16 2021-03-09 中国地质科学院岩溶地质研究所 基于wifi定位的管道型岩溶地下空间探测装置及探测方法
CN112462036A (zh) * 2020-11-20 2021-03-09 盐城师范学院 滩涂土壤环境快速检测仪
CN115853428A (zh) * 2023-02-09 2023-03-28 浙大城市学院 一种用于硬质岩层钻进的推进姿态调整装置
US11623703B2 (en) 2017-10-31 2023-04-11 Crover Ltd Propulsion in granular media

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936233A (en) * 1998-02-26 1999-08-10 The Curators Of The University Of Missouri Buried object detection and neutralization system
CN201363508Y (zh) * 2008-12-29 2009-12-16 重庆工商大学 地下管道机器人
KR20130052153A (ko) * 2011-11-11 2013-05-22 한국과학기술연구원 지뢰탐지로봇
CN103216192A (zh) * 2013-04-17 2013-07-24 同济大学 一种具有地下探测功能的螺旋钻进机器人
JP2014114653A (ja) * 2012-12-12 2014-06-26 Kawase Co Ltd ロボット利用埋設管工事用装置
CN104527834A (zh) * 2014-12-26 2015-04-22 浙江工业大学 三足机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936233A (en) * 1998-02-26 1999-08-10 The Curators Of The University Of Missouri Buried object detection and neutralization system
CN201363508Y (zh) * 2008-12-29 2009-12-16 重庆工商大学 地下管道机器人
KR20130052153A (ko) * 2011-11-11 2013-05-22 한국과학기술연구원 지뢰탐지로봇
JP2014114653A (ja) * 2012-12-12 2014-06-26 Kawase Co Ltd ロボット利用埋設管工事用装置
CN103216192A (zh) * 2013-04-17 2013-07-24 同济大学 一种具有地下探测功能的螺旋钻进机器人
CN104527834A (zh) * 2014-12-26 2015-04-22 浙江工业大学 三足机器人

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王春 等: "星际创客"玩转"航天科技-未来星球表面探测机器人创意创客大赛上的精彩镜头", 《科技日报》 *
陈双叶 等: "自行走式地下掘进机器人姿态测量系统的设计", 《传感技术学报》 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105698757A (zh) * 2016-02-24 2016-06-22 宿州学院 一种基于三维扫描和3d打印的地下空洞窥视装置及方法
CN105698757B (zh) * 2016-02-24 2018-01-26 宿州学院 一种基于三维扫描和3d打印的地下空洞窥视装置及方法
CN106239494A (zh) * 2016-08-26 2016-12-21 沈炜 电控万向机械臂
CN106695771A (zh) * 2017-03-15 2017-05-24 天津大学 一种基于rsr构型并联机构的模块化仿生蛇形机器人
WO2018214217A1 (zh) * 2017-05-24 2018-11-29 中国矿业大学 一种基于磁轮驱动的提升机罐道蛇形巡检机器人机构
CN107263452A (zh) * 2017-08-04 2017-10-20 哈尔滨工业大学 一种并联式线驱动软体机器人弯曲扭转变形模块
US11623703B2 (en) 2017-10-31 2023-04-11 Crover Ltd Propulsion in granular media
CN108868837B (zh) * 2018-04-28 2019-07-19 中国矿业大学 一种地下空间构建系统
CN108868837A (zh) * 2018-04-28 2018-11-23 中国矿业大学 一种地下空间构建系统
CN109262600A (zh) * 2018-10-17 2019-01-25 尉长虹 一种可伸缩软体机械装置
CN109262600B (zh) * 2018-10-17 2022-02-22 尉长虹 一种可伸缩软体机械装置
CN109470508A (zh) * 2018-10-19 2019-03-15 宁波大学 一种土壤探测仿生机器人
CN109470508B (zh) * 2018-10-19 2021-04-09 宁波大学 一种土壤探测仿生机器人
CN109372526A (zh) * 2018-11-12 2019-02-22 中铁工程装备集团有限公司 可穿越异物障碍的新型土压平衡盾构机
CN110161335A (zh) * 2019-05-28 2019-08-23 深圳供电局有限公司 检测机器人
CN110293542A (zh) * 2019-06-20 2019-10-01 中船重工海为郑州高科技有限公司 一种推杆驱动蛇形机械臂
CN112462448A (zh) * 2020-11-16 2021-03-09 中国地质科学院岩溶地质研究所 基于wifi定位的管道型岩溶地下空间探测装置及探测方法
CN112462448B (zh) * 2020-11-16 2021-07-06 中国地质科学院岩溶地质研究所 基于wifi定位的管道型岩溶地下空间探测装置及探测方法
CN112462036A (zh) * 2020-11-20 2021-03-09 盐城师范学院 滩涂土壤环境快速检测仪
CN115853428A (zh) * 2023-02-09 2023-03-28 浙大城市学院 一种用于硬质岩层钻进的推进姿态调整装置

Also Published As

Publication number Publication date
CN105223629B (zh) 2017-08-25

Similar Documents

Publication Publication Date Title
CN105223629A (zh) 微型地下蛇行自盾构探测机器人
CN103713335B (zh) 隧道掘进机搭载的综合超前地质探测系统
US9091779B2 (en) Advanced detector system and method using forward three-dimensional induced polarization method for TBM construction tunnel
CN105068128B (zh) 土压平衡盾构搭载的三维激电法超前预报系统及探测方法
US20190203594A1 (en) Automatic method and system for detecting problematic geological formations ahead of tunnel faces
WO2015103721A1 (zh) 隧道掘进机搭载的综合超前地质探测系统
CN203658603U (zh) 隧道掘进机搭载的综合超前地质探测系统
CN106501861A (zh) 一种小型智能海洋地震电磁数据采集系统
CN104181581A (zh) 基于任意排布的地震波地下工程空间观测的系统及方法
CN104656667B (zh) 自动行走地震采集站
CN105301663A (zh) 时频电磁勘探数据空中采集装置及系统
CN106199686A (zh) 在浅层地表实现采矿爆破点实时定位的系统及方法
CN205210324U (zh) 用于隧道围岩动态分级的围岩地质参数获取装置
CN104502984A (zh) 特定频率噪声对消地下核磁共振探测装置及探测方法
CN113107506B (zh) 一种超前探测方法
CN105301645A (zh) 一种盾构法施工超前地质预报方法以及系统
CN103364823A (zh) 震动源实时定位与分析系统
CN104020488B (zh) 无线分布式弹性波反射体探测装置、系统和方法
CN206270503U (zh) 在浅层地表实现采矿爆破点实时定位的系统
CN203337830U (zh) 一种以掌子面放炮为震源的监测装置
CN205139386U (zh) 时频电磁勘探数据空中采集装置及系统
CN105866842A (zh) 一种具有定位功能的智能电极系统及其定位方法
CN109738964A (zh) 地震波和电磁波联合反演的隧道预报装置、掘进机及方法
CN204925406U (zh) 一种隧道掘进机超前地质预警系统
CN103744055B (zh) 一种矿区防盗采监测定位方法及其设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant