CN105206855B - 一种用于制氧的复合电解质膜 - Google Patents

一种用于制氧的复合电解质膜 Download PDF

Info

Publication number
CN105206855B
CN105206855B CN201510575172.6A CN201510575172A CN105206855B CN 105206855 B CN105206855 B CN 105206855B CN 201510575172 A CN201510575172 A CN 201510575172A CN 105206855 B CN105206855 B CN 105206855B
Authority
CN
China
Prior art keywords
cathode
active
electrolyte membrane
dielectric substrate
composite electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510575172.6A
Other languages
English (en)
Other versions
CN105206855A (zh
Inventor
刘备之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGXI SAICI MATERIALS Co Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201510575172.6A priority Critical patent/CN105206855B/zh
Publication of CN105206855A publication Critical patent/CN105206855A/zh
Application granted granted Critical
Publication of CN105206855B publication Critical patent/CN105206855B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Conductive Materials (AREA)

Abstract

本发明公开了一种用于制氧的复合电解质膜,在电解质层的一侧由内向外依次为活性阴极层、阴极支撑层;在电解质层的另一侧由内向外依次为活性阳极层、阳极支撑层;所述电解质层的厚度为5~50μm,活性阴极层/活性阳极层的厚度为20~50μm,阴极支撑层/阳极支撑层的厚度为40~120μm。本发明通过优化电解质膜结构组成,使产品具有高强度、低电阻和高反应活性,从而突破了高温透氧膜领域的技术瓶颈,扩大了电解质膜的应用领域。同时,本发明产品有效解决了现有密封技术难题,并具有成品率高、成本低的优点,从而便于产业化应用。

Description

一种用于制氧的复合电解质膜
技术领域
本发明涉及复合材料技术领域,尤其涉及一种具有多层结构的用于制氧的复合电解质膜。
背景技术
电解质膜是一种重要的固体材料,在电化学领域有着广泛的应用。其中,氧离子导体电解质膜的一个重要应用领域是固体氧化物燃料电池(SOFC)。作为核心部件,电解质膜对SOFC的性能具有关键影响,因为电解质膜的电阻造成能量转化时的欧姆极化损失,电解质膜结构需要超薄化处理才能达到理想的转化效率。而且SOFC的工作温度较高,理论运行温度为500~1000℃,因此,实际应用对电解质膜的成分和结构提出了很高的要求。当前普遍的做法是以高温稳定性优良的10mol%Sc2O3稳定的ZrO2(ScSZ)作为电解质膜支撑起自身及电极层,但是这种结构中ScSZ厚度需要达到150μm以上才能达到所需的支撑强度,这会对作为昂贵稀土原料的Sc2O3造成极大浪费,生产成本极高。为此,有人采用加大单一电极的厚度而作为支撑以大大降低电解质层的厚度以降低内阻、提高转化效率。然而,电极的加厚又会阻碍原料气体的扩散,从而造成浓差极化;另一方面,单一电极支撑的电解质膜片制备难度大,往往不能完全平整,成品率低。在组堆时,电极支撑型电解质膜的密封也是一个难题,要求密封材料完全熔融,进入电极多孔结构,这样才能避免侧漏实现完整的密封。
利用氧离子/电子混合导体膜材料进行空气分离制氧或进行甲烷燃料部分氧化重整的研究也非常引人注目。其中,用于部分氧化重整的透氧膜要求其在氧化性气氛和强还原性气氛中同时稳定,这对材料的稳定性提出了极高的要求;而用于空气分离的混合导体透氧膜要求承受5倍以上的压强差,这对膜材料的强度和厚度提出了极高的要求。鉴于这样的苛刻要求,混合导体透氧膜难以实现薄膜化,致使氧透析路径长、氧通量低,因而难以得到实际应用。
发明内容
本发明的目的在于克服现有技术的不足,提供一种用于制氧的复合电解质膜,通过优化电解质膜结构组成,使产品具有高强度、低电阻和高反应活性,从而突破高温透氧膜领域的技术瓶颈,获得高的氧通量,扩大电解质膜的应用领域。
本发明的目的通过以下技术方案予以实现:
本发明提供的一种用于制氧的复合电解质膜,在电解质层的一侧由内向外依次为活性阴极层、阴极支撑层;在电解质层的另一侧由内向外依次为活性阳极层、阳极支撑层;所述电解质层的厚度为5~50μm,活性阴极层/活性阳极层的厚度为20~50μm,阴极支撑层/阳极支撑层的厚度为40~120μm。
本发明电解质膜大大降低了其电解质层和电极层的厚度,有助于减小电解质层内阻、提高电极层活性,并在外侧采用阴极支撑层和阳极支撑层的复合结构,保证了电解质膜的整体强度。
进一步地,本发明所述电解质层在边缘处分叉,分别包覆外侧阴极支撑层/阳极支撑层的两端平面而形成密封边。这样,密封材料只需具有一定的变形能力、无需完全熔融,处于密封边上即可,使得密封更容易进行。
上述方案中,本发明所述活性阴极层/活性阳极层为多孔结构而具有多孔骨架,开口气孔率为20~50%,平均孔径为5~10μm。所述阴极支撑层/阳极支撑层为多孔结构而具有多孔骨架,开口气孔率为40~50%,平均孔径为10~20μm。所述活性阴极层/活性阳极层的多孔骨架气孔内壁、以及阴极支撑层/阳极支撑层的多孔骨架气孔内壁附着有1~10wt%的导电材料。为保证膜两边的气体不相互扩散,本发明所述电解质层的相对密度为99.5~99.9%。
进一步地,本发明所述电解质层的成分,以及活性阴极层/活性阳极层其多孔骨架的成分为以下物质的一种或其组合:
钇稳定氧化锆(YSZ)(Y2O3)x(ZrO2)1-x,x=0.03~0.08、
钪稳定氧化锆(ScSZ)(Sc2O3)x(ZrO2)1-x,x=0.08~0.11、
Gd掺杂氧化铈(GDC)GdxCe1-xO2-0.5x,x=0.1~0.4、
Sm掺杂氧化铈(SDC)SmxCe1-xO2-0.5x,x=0.1~0.4、
Sr和Mg共掺杂的镓酸镧(LSGM)La0.8Sr0.2Ga0.9Mg0.1O3
Er掺杂氧化铋(ESB)(Er2O3)x(Bi2O3)1-x,x=0.1~0.3。
进一步地,本发明所述阴极支撑层/阳极支撑层其多孔骨架的成分为氧化铝和/或钇稳定氧化锆(YSZ)。
进一步地,本发明所述导电材料为La1-xSrxMnO3(LSM,x=0.2~0.4)、La1-xSrxCoO3(LSC,x=0.2~0.4)、La1-xSrxFeO3(LSF,x=0.2~0.4)、La1-xSrxNiO3(LSN,x=0.2~0.4)、Nd2NiO4(NN)和Sr2Fe1.5Mo0.5O6(SFM)中的一种或其组合。
本发明具有以下有益效果:
(1)本发明用于制氧的电解质膜大大降低了其电解质层和电极层的厚度,电解质层内阻小(0.26~0.41Ωcm2)、电极层活性高(0.28~0.56Ωcm2),同时通过在外侧采用阴极支撑层和阳极支撑层的复合结构,使得薄膜本身具有足够的强度(198~338MPa)。
(2)针对现有技术电极支撑型电解质膜的密封难题,本发明在边沿处设置了密封边,密封材料处于密封边上,具有一定的变形能力即可,无需完全熔融,因此密封温度较低,对电极的活性不产生影响,并使得密封容易进行,从而有效解决了现有密封技术的难题。
(3)本发明电解质膜同时具有成品率高、成本低的优点,便于产业化应用。
附图说明
下面将结合实施例和附图对本发明作进一步的详细描述:
图1是本发明实施例用于制氧的复合电解质膜的结构示意图。
图中:电解质层1,活性阴极层2,阴极支撑层3,活性阳极层4,阳极支撑层5,密封边6
具体实施方式
图1所示为本发明一种用于制氧的复合电解质膜的实施例,在电解质层1的一侧由内向外依次为活性阴极层2、阴极支撑层3;在电解质层1的另一侧由内向外依次为活性阳极层4、阳极支撑层5;电解质层1在边缘处分叉,分别包覆外侧阴极支撑层3/阳极支撑层5的两端平面而形成密封边6。活性阴极层2、活性阳极层4、阴极支撑层3、阳极支撑层5均为多孔结构而具有多孔骨架,且多孔骨架气孔内壁附着有导电材料。
本发明各实施例复合电解质膜的结构参数如表1所示。
表1 本发明各实施例复合电解质膜的结构参数
注:wt%为导电材料在所在组成中的重量百分比。
本发明各实施例复合电解质膜各部分的组成成分如表2所示。
表2 本发明各实施例复合电解质膜各部分的组成成分
注:wt%为各成分在其所在组成中的重量百分比。
本发明各实施例复合电解质膜的性能指标如表3所示。
表3 本发明各实施例复合电解质膜的性能指标

Claims (7)

1.一种用于制氧的复合电解质膜,其特征在于:在电解质层(1)的一侧由内向外依次为活性阴极层(2)、阴极支撑层(3);在电解质层(1)的另一侧由内向外依次为活性阳极层(4)、阳极支撑层(5);所述电解质层(1)的厚度为5~50μm,活性阴极层(2)/活性阳极层(4)的厚度为20~50μm,阴极支撑层(3)/阳极支撑层(5)的厚度为40~120μm;所述电解质层(1)在边缘处分叉,分别包覆外侧阴极支撑层(3)/阳极支撑层(5)的两端平面而形成密封边(6);所述活性阴极层(2)/活性阳极层(4)、阴极支撑层(3)/阳极支撑层(5)为多孔结构而具有多孔骨架;
所述电解质层(1)的成分,以及所述活性阴极层(2)/活性阳极层(4)其多孔骨架的成分为以下物质的一种或其组合:
钇稳定氧化锆(Y2O3)x(ZrO2)1-x,x=0.03~0.08、
钪稳定氧化锆(Sc2O3)x(ZrO2)1-x,x=0.08~0.11、
Gd掺杂氧化铈GdxCe1-xO2-0.5x,x=0.1~0.4、
Sm掺杂氧化铈SmxCe1-xO2-0.5x,x=0.1~0.4、
Sr和Mg共掺杂的镓酸镧La0.8Sr0.2Ga0.9Mg0.1O3
Er掺杂氧化铋(Er2O3)x(Bi2O3)1-x,x=0.1~0.3;
所述阴极支撑层(3)/阳极支撑层(5)其多孔骨架的成分为氧化铝和/或钇稳定氧化锆。
2.根据权利要求1所述的用于制氧的复合电解质膜,其特征在于:所述活性阴极层(2)/活性阳极层(4)的开口气孔率为20~50%,平均孔径为5~10μm。
3.根据权利要求1所述的用于制氧的复合电解质膜,其特征在于:所述阴极支撑层(3)/阳极支撑层(5)的开口气孔率为40~50%,平均孔径为10~20μm。
4.根据权利要求2所述的用于制氧的复合电解质膜,其特征在于:所述活性阴极层(2)/活性阳极层(4)的结构为在多孔骨架气孔内壁附着1~10wt%的导电材料而形成的复合结构。
5.根据权利要求3所述的用于制氧的复合电解质膜,其特征在于:所述阴极支撑层(3)/阳极支撑层(5)的结构为在多孔骨架气孔内壁附着1~10wt%的导电材料而形成的复合结构。
6.根据权利要求1所述的用于制氧的复合电解质膜,其特征在于:所述电解质层(1)的相对密度为98.5~99.9%。
7.根据权利要求4或5所述的用于制氧的复合电解质膜,其特征在于:所述导 电材料为La1-xSrxMnO3、La1-xSrxCoO3、La1-xSrxFeO3、La1-xSrxNiO3、Nd2NiO4和Sr2Fe1.5Mo0.5O6中的一种或其组合;其中,所述La1-xSrxMnO3、La1-xSrxCoO3、La1-xSrxFeO3、La1-xSrxNiO3中的x均为0.2~0.4。
CN201510575172.6A 2015-09-10 2015-09-10 一种用于制氧的复合电解质膜 Active CN105206855B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510575172.6A CN105206855B (zh) 2015-09-10 2015-09-10 一种用于制氧的复合电解质膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510575172.6A CN105206855B (zh) 2015-09-10 2015-09-10 一种用于制氧的复合电解质膜

Publications (2)

Publication Number Publication Date
CN105206855A CN105206855A (zh) 2015-12-30
CN105206855B true CN105206855B (zh) 2018-03-30

Family

ID=54954391

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510575172.6A Active CN105206855B (zh) 2015-09-10 2015-09-10 一种用于制氧的复合电解质膜

Country Status (1)

Country Link
CN (1) CN105206855B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106833640B (zh) * 2017-02-22 2019-08-09 广东工业大学 一种荧光粉及其制备方法
KR20190079139A (ko) * 2017-12-27 2019-07-05 현대자동차주식회사 내구성이 향상된 연료전지용 막-전극 접합체 및 이를 포함하는 고분자 전해질막 연료전지
CN108682884B (zh) * 2018-04-27 2021-05-25 山东理工大学 一种中温固体氧化物燃料电池氧离子型复合电解质及制备方法
CN111384421A (zh) * 2020-03-17 2020-07-07 江西赛瓷材料有限公司 一种五层结构单电池及其制备方法和制得的产品
CN114191994B (zh) * 2021-11-22 2024-08-02 南京理工大学 一种管式高温固体氧化物透氧膜及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101978537A (zh) * 2008-03-18 2011-02-16 丹麦科技大学 一种全陶瓷固体氧化物电池
CN103872366A (zh) * 2012-12-12 2014-06-18 中国科学院上海硅酸盐研究所 一种金属支撑固体氧化物燃料电池及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2517928B (en) * 2013-09-04 2018-02-28 Ceres Ip Co Ltd Metal supported solid oxide fuel cell
KR101549443B1 (ko) * 2014-03-26 2015-09-03 국립대학법인 울산과학기술대학교 산학협력단 이중층 페로브스카이트 구조를 가지는 대칭형 고체 산화물 연료전지의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101978537A (zh) * 2008-03-18 2011-02-16 丹麦科技大学 一种全陶瓷固体氧化物电池
CN103872366A (zh) * 2012-12-12 2014-06-18 中国科学院上海硅酸盐研究所 一种金属支撑固体氧化物燃料电池及其制备方法

Also Published As

Publication number Publication date
CN105206855A (zh) 2015-12-30

Similar Documents

Publication Publication Date Title
CN105206855B (zh) 一种用于制氧的复合电解质膜
Jiang Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: advances and challenges
US20130280634A1 (en) Unit Cell of Metal-Supported Solid Oxide Fuel Cell, Preparation Method Thereof, and Solid Oxide Fuel Cell Stack Using the Unit Cell
Yoo et al. LST–GDC composite anode on LaGaO3-based solid oxide fuel cell
Bozza et al. High performance anode-supported intermediate temperature solid oxide fuel cells (IT-SOFCs) with La0. 8Sr0. 2Ga0. 8Mg0. 2O3− δ electrolyte films prepared by electrophoretic deposition
US20070015045A1 (en) High performance anode-supported solid oxide fuel cell
US11817589B2 (en) Solid oxide fuel cells with cathode functional layers
CN105839138B (zh) 一种固体氧化物电解池高温熔融碳酸盐空气电极的制备方法
Chen et al. Effect of SDC-impregnated LSM cathodes on the performance of anode-supported YSZ films for SOFCs
Guo et al. Electrochemical contribution of silver current collector to oxygen reduction reaction over Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ electrode on oxygen-ionic conducting electrolyte
JP2013201035A (ja) 固体酸化物電気化学セル
JP2014060028A (ja) 固体酸化物型燃料電池
CN105226295B (zh) 一种基于空气制氧的电解质膜以及制氧方法
JP2016207630A (ja) メタルサポート固体酸化物形燃料電池およびその製造方法
Orui et al. Electrochemical characteristics of tubular flat-plate-SOFCs fabricated by co-firing cathode substrate and electrolyte
Sun et al. Direct electrolysis of CO2 in solid oxide cells supported on ceramic fuel electrodes with straight open pores and coated catalysts
JP5481611B2 (ja) 高温水蒸気電解セル
JP2019517100A (ja) 固体酸化物燃料電池の電解質、これを含む固体酸化物燃料電池、前記電解質用組成物および前記電解質の製造方法
KR101277885B1 (ko) 튜브형 연료전지 및 그 제조방법
KR102154634B1 (ko) 지지체식 전기화학셀의 제조방법 및 이에 의해 제조된 전기화학셀
DK2669984T3 (en) Layered anode system for electrochemical applications and processes for their preparation
US20170005341A1 (en) High permeability oxygen separation membrane coated with electroactive layer on both sides and fabrication method thereof
KR101778574B1 (ko) 전도성 활성층이 양면 코팅된 고투과성 복합체 산소 분리막 및 그 제조방법
JP2021150133A (ja) 電気化学セル、電気化学セルスタックおよび電気化学セル用電解質
Nisar et al. Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190404

Address after: 332500 Taishan Industrial Park, Hukou County, Jiujiang, Jiangxi

Patentee after: JIANGXI SAICI MATERIALS CO., LTD.

Address before: 408, Building 4, Cuiwei Road, Haidian District, Beijing 100000

Patentee before: Liu Beizhi