CN105193379B - 一种基于拉锥结构的全光纤内窥oct探针 - Google Patents

一种基于拉锥结构的全光纤内窥oct探针 Download PDF

Info

Publication number
CN105193379B
CN105193379B CN201510467764.6A CN201510467764A CN105193379B CN 105193379 B CN105193379 B CN 105193379B CN 201510467764 A CN201510467764 A CN 201510467764A CN 105193379 B CN105193379 B CN 105193379B
Authority
CN
China
Prior art keywords
fiber
mode
optical module
transmission
tapered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510467764.6A
Other languages
English (en)
Other versions
CN105193379A (zh
Inventor
丁志华
严雪过
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Core Photoelectric Technology Co.,Ltd.
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201710108047.3A priority Critical patent/CN106913309B/zh
Priority to CN201510467764.6A priority patent/CN105193379B/zh
Publication of CN105193379A publication Critical patent/CN105193379A/zh
Application granted granted Critical
Publication of CN105193379B publication Critical patent/CN105193379B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种基于拉锥结构的全光纤内窥OCT探针,包括由多段光纤熔接而成的光学组件、传动组件以及保护套。所述光学组件有两种结构:一种由传输单模光纤、过渡段拉锥光纤与大纤芯多模光纤构成;另一种由传输单模光纤与非对称双拉锥光纤构成。拉锥光纤均由大纤芯多模光纤经拉锥而成,光学组件各段光纤熔接处模场直径一致。本发明的内窥OCT探针无需光学聚焦透镜,结构紧凑、传输效率高、焦深范围大,非常适合心脑血管的高质量OCT成像。

Description

一种基于拉锥结构的全光纤内窥OCT探针
技术领域
本发明属于内窥光学相干层析成像领域,具体涉及一种基于拉锥结构的全光纤内窥OCT探针。
技术背景
光学相干层析成像(Optical coherence tomography,简称OCT)是一种有力的生物医学诊断方法,相比于其他常用的医学影像学方法,如超声成像,OCT具有更高的灵敏度与分辨率,可以对眼睛、皮肤等体外组织与器官进行非侵入式高分辨率实时在体成像。然而,OCT在生物组织中的成像深度十分有限,通常为2-3 mm,这制约了其在更广泛的生物医学领域的应用。小型化和紧凑化的内窥探针可以在低侵入的条件下深入人体内部组织,为OCT进行人体内部组织的高分辨率实时在体成像提供了可能。目前,将内窥技术与OCT技术相结合的内窥光学相干层析成像(Endoscopic optical coherence tomography,简称E-OCT)已经成为一种趋势,在胃肠科,心脏科,妇科以及泌尿科等众多生物医学领域得到了广泛应用。而如何设计与制作更加小型化和紧凑化的高性能内窥OCT探针是E-OCT的关键问题。光纤-透镜型内窥OCT探针一直是内窥OCT探针设计的主流方案,其主要由单模光纤,玻璃隔片以及微型聚焦光学元件(如格林透镜与球透镜)组成。这种设计受到微型聚焦光学元件尺寸的天然制约,直径很难达到1mm以下;探针横向分辨率由透镜的数值孔径决定,在数值孔径不变的条件下,探针尺寸的减小意味着其工作距(定义为探针出光端面到探针聚焦点的距离)也会随之减小;硬端长度长,一般在几十到几百毫米之间,并不适用于诸如心血管疾病的诊断与监测等形态弯曲复杂,要求探针直径小于1mm的生物医学领域。为解决这一问题,2011年,澳大利亚西澳大学的 Dirk Lorenser等人提出由单模光纤、无芯光纤以及渐变折射率光纤组成的全光纤内窥OCT探针设计方案并此基础上加入了本质上是一段渐变折射率光纤的相位掩模板,以牺牲一定的信噪比为代价拓展该探针的焦深。这一技术方案在一定程度上解决了内窥OCT探针的小型化问题,但设计与制作均较为繁琐且需要借助额外的光学元件以获得足够的有效成像范围。
2013年,美国加州大学的陈忠平等人提出一种设计与制作更为简易的,直径更小的(仅为125 μm)由单模光纤、中等纤芯多模光纤以及大纤芯多模光纤组成的全光纤内窥OCT探针设计方案;2015年,韩国国民大学的Sucbei Moon等人进一步优化了该方案,利用多段纤芯阶梯式增加的多模光纤替代中等纤芯多模光纤,能够在800 μm的成像范围内实现优于30 μm的横向分辨率并通过化学蚀刻法减小探针直径至85 μm。然而,该多段阶梯过渡式结构增加了探针的硬端长度,不利于弯曲的血管内成像,同时引入额外的插入损耗,降低了内窥OCT系统的成像灵敏度。
发明内容
针对现有技术的不足,本发明提出一种基于拉锥结构的全光纤内窥OCT探针。
一种基于拉锥结构的全光纤内窥OCT探针,包括光学组件、传动组件以及保护套,光学组件由多段光纤熔接而成,各段光纤熔接处模场直径相一致;光学组件除传输单模光纤以外固定于保护套内部,光学组件与保护套之间的间隙采用光学胶进行填充;传动组件带动传输单模光纤旋转段旋转,传输单模光纤旋转段与传输单模光纤静止段耦合;所述光学组件的出射光纤端面加工成特定角度的斜面,使得探测光经过该斜面发生全内反射;保护套的管壁开有窗口,探测光经过光学组件之后由该窗口出射;
所述光学组件由传输单模光纤、过渡段拉锥光纤以及大纤芯多模光纤构成;过渡段拉锥光纤由大纤芯多模光纤经拉锥处理后得到,传输单模光纤与过渡段拉锥光纤、过渡段拉锥光纤与大纤芯多模光纤熔接处模场直径匹配;其中,过渡段拉锥光纤的最优长度为2.7 mm,大纤芯多模光纤的最优长度为7 mm;
所述光学组件由传输单模光纤与非对称双拉锥光纤构成;两段非对称的拉锥光纤均由大纤芯多模光纤经拉锥处理后得到,传输单模光纤与拉锥光纤、拉锥光纤与拉锥光纤熔接处模场直径匹配且第二段拉锥光纤出射端的模场直径小于其入射端模场直径,大于传输单模光纤的模场直径;其中,第一段拉锥光纤的最优长度为10 mm,第二段拉锥光纤的最优长度为5 mm;
所述传动组件包括直流电机,不锈钢传动套管,光纤旋转接头以及齿轮,直流电机通过齿轮与包裹在不锈钢传动套管中的传输单模光纤旋转段相连接并带动其旋转;
所述保护套为不锈钢,硅或者塑料材质。
一种基于拉锥结构的全光纤内窥OCT探针,包括光学组件、传动组件以及保护套,光学组件由多段光纤熔接而成,各段光纤熔接处模场直径相一致;光学组件除传输单模光纤以外固定于保护套内部,光学组件与保护套之间的间隙采用光学胶进行填充;所述传动组件包括直流电机,微型反射棱镜以及固定圈,直流电机通过固定圈安装在保护套的一端,微型反射棱镜固定在直流电机的转子上,光学组件出射的探测光束被微型反射棱镜反射;保护套的管壁开有窗口,微型反射棱镜反射的光由该窗口出射;
所述光学组件由传输单模光纤、过渡段拉锥光纤以及大纤芯多模光纤构成;过渡段拉锥光纤由大纤芯多模光纤经拉锥处理后得到,传输单模光纤与过渡段拉锥光纤、过渡段拉锥光纤与大纤芯多模光纤熔接处模场直径匹配;其中,过渡段拉锥光纤的最优长度为2.7 mm,大纤芯多模光纤的最优长度为7 mm;
所述光学组件由传输单模光纤与非对称双拉锥光纤构成;两段非对称的拉锥光纤均由大纤芯多模光纤经拉锥处理后得到,传输单模光纤与拉锥光纤、拉锥光纤与拉锥光纤熔接处模场直径匹配且第二段拉锥光纤出射端的模场直径小于其入射端模场直径,大于传输单模光纤的模场直径;其中,第一段拉锥光纤的最优长度为10 mm,第二段拉锥光纤的最优长度为5 mm;
所述保护套为不锈钢,硅或者塑料材质。
光学组件的直径可以控制在85-250 μm的范围内以满足不同的成像要求。
与背景技术相比,本发明具有的有益效果是:
1、与传统的光纤-透镜型内窥OCT探针相比,本发明的全光纤内窥OCT探针能够实现更小的直径,且利用化学蚀刻法能够进一步减小,大大减轻了病人的痛苦,适用于对探针尺寸要求苛刻的生物医学成像领域,如心脑血管疾病的诊断与监测等;同时,一体化的全光纤结构改善了探针的机械性能,从而可以避免近端驱动扫描成像时由摩擦力引起的非均匀旋转失真。
2、与现有的全光纤内窥OCT探针相比,本发明的内窥OCT探针利用大纤芯多模光纤本身的低光束发散特性扩大了探针的有效成像范围而无需借助额外的光学聚焦元件;过渡段拉锥光纤避免了多段纤芯阶梯式增大的过渡结构中多段光纤之间由于模场直径不匹配而引入的额外插入损耗,提高了探针的通光效率,且进一步减小了硬端长度,增加了探针的灵活性。
3、基于拉锥结构的全光纤内窥OCT探针设计简易,利用拉锥,切割,熔接以及研磨工艺即可完成制作,成本较低,可实现大批量生产;且探针内部元件之间无任何反射面,能够基本消除光束在探针内部各界面上的反射所造成的鬼像。
附图说明
图1是本发明的基于拉锥结构的全光纤内窥OCT探针结构示意图;
图2a是本发明的一种光学组件结构示意图;
图2b是本发明的一种光学组件结构示意图;
图3是本发明的内窥OCT探针近端驱动侧向环状扫描模式示意图;
图4是本发明的内窥OCT探针远端驱动侧向环状扫描模式示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明具体实施方式作进一步的详细描述。
如图1所示,本发明的内窥OCT探针包括光学组件101,传动组件102,保护套103。光学组件101前端固定于保护套103内部,两者之间的间隙采用光学胶104进行填充。保护套103可以是不锈钢,硅或者塑料材质。
如图2a、图2b所示,光学组件有两种结构:一种由传输单模光纤201,过渡段拉锥光纤202以及大纤芯多模光纤203构成,传输单模光纤201,过渡段拉锥光纤202,大纤芯多模光纤203依次熔接相连且各段光纤熔接处模场直径匹配,过渡段拉锥光纤202由大纤芯多模光纤203经拉锥处理得到;另一种由传输单模光纤201,第一拉锥光纤204以及第二拉锥光纤205构成,传输单模光纤201,第一拉锥光纤204,第二拉锥光纤205依次熔接相连且各段光纤熔接处模场直径匹配,第一与第二拉锥光纤由相同的大纤芯多模光纤经拉锥处理得到,第二拉锥光纤205末端的模场直径小于其前端的模场直径,大于传输单模光纤201的模场直径。
本发明的内窥OCT探针可以分别通过近端驱动和远端驱动实现侧向环状扫描成像。
如图3所示,光学组件的出射光纤203或205端面加工成与水平面成40-50度的斜面,探测光束经过该斜面发生全内反射,从保护套管壁的窗口206出射;传输单模光纤201的旋转部包裹在不锈钢传动套管207中,通过齿轮208与直流电机209相连,传输单模光纤201的静止部通过光纤旋转接头210与其旋转部耦合,传递光信号;直流电机208带动光学组件前端旋转,出射探测光束随之旋转,可实现对样品组织侧壁的环状扫描成像。
如图4所示,直流电机通过固定圈211固定在保护套的一端,光学组件的出射光纤203或205端面与水平面垂直,45度微型反射棱镜212固定在直流电机转子上;探测光束被微型反射棱镜212反射,从保护套管壁窗口206出射;直流电机带动45度微型反射棱镜旋转,出射探测光束随之旋转,也可实现对样品组织侧壁的环状扫描成像。
在传输单模光纤-过渡段拉锥光纤-大纤芯多模光纤的结构中,过渡段拉锥光纤与大纤芯多模光纤的最佳理论长度分别是2.7 mm与7 mm;在传输单模光纤-非对称双拉锥光纤的结构中,第一与第二拉锥光纤的最佳理论长度分别是10 mm与5 mm,这能够保证在适当的横向分辨率下实现尽可能大的探针焦深。
本发明结合OCT系统可以实现人体内部组织的低侵入式高分辨率实时在体成像,大大减轻了病人诊断过程中的痛苦,且为手术引导与术后监测提供了更加精确的辅助手段,在生物医学领域尤其是心脑血管领域具有广阔前景。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种基于拉锥结构的全光纤内窥OCT探针,包括光学组件、传动组件以及保护套,其特征在于:光学组件由多段光纤熔接而成,各段光纤熔接处模场直径相一致;光学组件除传输单模光纤以外固定于保护套内部,光学组件与保护套之间的间隙采用光学胶进行填充;传动组件带动传输单模光纤旋转段旋转,传输单模光纤旋转段与传输单模光纤静止段耦合;所述光学组件的出射光纤端面加工成斜面,使得探测光经过该斜面发生全内反射;保护套的管壁开有窗口,探测光经过光学组件之后由该窗口出射;
所述光学组件由传输单模光纤与非对称双拉锥光纤构成;两段非对称的拉锥光纤均由大纤芯多模光纤经拉锥处理后得到,传输单模光纤与拉锥光纤、拉锥光纤与拉锥光纤熔接处模场直径匹配且第二段拉锥光纤出射端的模场直径小于其入射端模场直径,大于传输单模光纤的模场直径;其中,第一段拉锥光纤的长度为10mm,第二段拉锥光纤的长度为5mm。
2.根据权利要求1所述的一种基于拉锥结构的全光纤内窥OCT探针,其特征在于:所述传动组件包括直流电机,不锈钢传动套管,光纤旋转接头以及齿轮,直流电机通过齿轮与包裹在不锈钢传动套管中的传输单模光纤旋转段相连接并带动其旋转。
3.根据权利要求1所述的一种基于拉锥结构的全光纤内窥OCT探针,其特征在于:所述保护套为不锈钢,硅或者塑料材质。
4.根据权利要求1所述的一种基于拉锥结构的全光纤内窥OCT探针,其特征在于:光学组件的出射光纤端面与水平面成的角度40-50度。
5.一种基于拉锥结构的全光纤内窥OCT探针,包括光学组件、传动组件以及保护套,其特征在于:光学组件由多段光纤熔接而成,各段光纤熔接处模场直径相一致;光学组件除传输单模光纤以外固定于保护套内部,光学组件与保护套之间的间隙采用光学胶进行填充;所述传动组件包括直流电机,微型反射棱镜以及固定圈,直流电机通过固定圈安装在保护套的一端,微型反射棱镜固定在直流电机的转子上,光学组件出射的探测光束被微型反射棱镜反射;保护套的管壁开有窗口,微型反射棱镜反射的光由该窗口出射;
所述光学组件由传输单模光纤与非对称双拉锥光纤构成;两段非对称的拉锥光纤均由大纤芯多模光纤经拉锥处理后得到,传输单模光纤与拉锥光纤、拉锥光纤与拉锥光纤熔接处模场直径匹配且第二段拉锥光纤出射端的模场直径小于其入射端模场直径,大于传输单模光纤的模场直径;其中,第一段拉锥光纤的长度为10mm,第二段拉锥光纤的长度为5mm。
6.根据权利要求5所述的一种基于拉锥结构的全光纤内窥OCT探针,其特征在于:所述保护套为不锈钢,硅或者塑料材质。
CN201510467764.6A 2015-07-31 2015-07-31 一种基于拉锥结构的全光纤内窥oct探针 Active CN105193379B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710108047.3A CN106913309B (zh) 2015-07-31 2015-07-31 基于单拉锥结构的全光纤内窥oct探针
CN201510467764.6A CN105193379B (zh) 2015-07-31 2015-07-31 一种基于拉锥结构的全光纤内窥oct探针

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510467764.6A CN105193379B (zh) 2015-07-31 2015-07-31 一种基于拉锥结构的全光纤内窥oct探针

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201710108047.3A Division CN106913309B (zh) 2015-07-31 2015-07-31 基于单拉锥结构的全光纤内窥oct探针

Publications (2)

Publication Number Publication Date
CN105193379A CN105193379A (zh) 2015-12-30
CN105193379B true CN105193379B (zh) 2017-09-01

Family

ID=54941624

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510467764.6A Active CN105193379B (zh) 2015-07-31 2015-07-31 一种基于拉锥结构的全光纤内窥oct探针
CN201710108047.3A Active CN106913309B (zh) 2015-07-31 2015-07-31 基于单拉锥结构的全光纤内窥oct探针

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201710108047.3A Active CN106913309B (zh) 2015-07-31 2015-07-31 基于单拉锥结构的全光纤内窥oct探针

Country Status (1)

Country Link
CN (2) CN105193379B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11224336B2 (en) 2017-11-17 2022-01-18 Canon U.S.A., Inc. Rotational extender and/or repeater for rotating fiber based optical imaging systems, and methods and storage mediums for use therewith
CN108398753A (zh) * 2018-04-20 2018-08-14 上海瑞柯恩激光技术有限公司 光纤接头及医疗设备
CN109846542B (zh) * 2019-04-02 2022-07-08 苏州国科美润达医疗技术有限公司 一种髓内钉定位系统
CN110192839A (zh) * 2019-05-21 2019-09-03 北京清华长庚医院 一种旋转侧扫式oct眼球内窥镜结构
CN112444962A (zh) * 2019-08-28 2021-03-05 成都理想境界科技有限公司 一种光纤结构、光纤扫描器
JP2021182113A (ja) * 2020-05-20 2021-11-25 株式会社日本マイクロニクス 光プローブ、光プローブアレイ、光プローブカードおよび光プローブの製造方法
CN112842270B (zh) * 2021-01-06 2022-05-17 浙江大学 一种基于高阶模式能量调控的焦深拓展探头
CN113237850A (zh) * 2021-04-29 2021-08-10 广州永士达医疗科技有限责任公司 一种用于oct的光纤准直器、制作方法以及oct设备
CN113712503B (zh) * 2021-09-06 2023-06-09 温州医科大学 一种应用于眼底手术的oct探针

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6891984B2 (en) * 2002-07-25 2005-05-10 Lightlab Imaging, Llc Scanning miniature optical probes with optical distortion correction and rotational control
JP5492026B2 (ja) * 2010-08-31 2014-05-14 富士フイルム株式会社 内視鏡用ライトガイドおよびそれを備えた内視鏡、並びに内視鏡用ライトガイドの製造方法
CN102525379B (zh) * 2012-02-21 2013-10-16 无锡微奥科技有限公司 一种提高光学质量的光学探头
CN103211567B (zh) * 2013-05-07 2015-02-11 深圳市中科微光医疗器械技术有限公司 一体化超微型光学相干断层成像探头
CN104257342B (zh) * 2014-10-21 2016-09-21 深圳英美达医疗技术有限公司 一种内窥成像探头及利用上述成像探头进行的成像方法
CN104382548A (zh) * 2014-12-04 2015-03-04 南京沃福曼医疗科技有限公司 一种微型侧面发光成像探头
CN104688172A (zh) * 2015-02-02 2015-06-10 深圳市中科微光医疗器械技术有限公司 一种微型光学相干断层成像探头
CN204889943U (zh) * 2015-07-31 2015-12-23 浙江大学 基于拉锥结构的全光纤内窥oct探针

Also Published As

Publication number Publication date
CN105193379A (zh) 2015-12-30
CN106913309A (zh) 2017-07-04
CN106913309B (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
CN105193379B (zh) 一种基于拉锥结构的全光纤内窥oct探针
US20220031165A1 (en) Imaging probe with combined ultrasound and optical means of imaging
JP5069105B2 (ja) マルチモードの光画像化方法及びその光ファイバスキャナ
Guo et al. Photoacoustic endomicroscopy based on a MEMS scanning mirror
US20050143664A1 (en) Scanning probe using MEMS micromotor for endosocopic imaging
WO2014121082A1 (en) Objective lens arrangement for confocal endomicroscopy
CN110881942A (zh) 基于oct的双模态光纤内窥镜装置
CN104794740A (zh) 利用通用图像处理器处理oct信号的方法及系统
Wen et al. High-fluence relay-based disposable photoacoustic-ultrasonic endoscopy for in vivo anatomical imaging of gastrointestinal tract
Fu et al. Miniature forward-viewing common-path OCT probe for imaging the renal pelvis
CN109349983B (zh) 一种胰胆管的多模态成像系统及其内窥导管装置
CN105286800A (zh) 一种机械旋转式血管内oct成像探头
CN204889943U (zh) 基于拉锥结构的全光纤内窥oct探针
CN209899367U (zh) 基于液体透镜自聚焦的双模态内窥镜装置
Wu et al. Ultrathin lensed fiber based anastigmatic needle probe for endoscopic swept source optical coherence tomography
Wang et al. Intravascular optical coherence tomography utilizing a miniature piezoelectric-driven probe
CN108784739B (zh) 一种结合超声波成像和光学相干断层成像的双模探头
McLaughlin et al. Fiber-optic needle probes: Applications in deep tissue imaging
AU2008207318B2 (en) Imaging probe with combined ultrasound and optical means of imaging
WO2020113566A1 (zh) 一种胰胆管的多模态成像系统及其内窥导管装置
WO2019140152A1 (en) System and apparatus for forward-view imaging
CN117653210A (zh) 成像鞘管及成像系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200331

Address after: 315300 room 2011, Shanglin Yingcai entrepreneurial park, Hushan cultural business district, Cixi City, Ningbo City, Zhejiang Province

Patentee after: Ningbo Core Photoelectric Technology Co.,Ltd.

Address before: 310027 Hangzhou, Zhejiang Province, Xihu District, Zhejiang Road, No. 38, No.

Patentee before: ZHEJIANG University

TR01 Transfer of patent right