CN105181318B - A kind of blade of wind-driven generator Torsion Coupling vector measurement device - Google Patents
A kind of blade of wind-driven generator Torsion Coupling vector measurement device Download PDFInfo
- Publication number
- CN105181318B CN105181318B CN201510608815.2A CN201510608815A CN105181318B CN 105181318 B CN105181318 B CN 105181318B CN 201510608815 A CN201510608815 A CN 201510608815A CN 105181318 B CN105181318 B CN 105181318B
- Authority
- CN
- China
- Prior art keywords
- blade
- clamping
- hydraulic
- bending
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000008878 coupling Effects 0.000 title claims abstract description 35
- 238000010168 coupling process Methods 0.000 title claims abstract description 35
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 35
- 238000005259 measurement Methods 0.000 title claims abstract description 27
- 230000007246 mechanism Effects 0.000 claims abstract description 38
- 238000005452 bending Methods 0.000 claims abstract description 33
- 238000006073 displacement reaction Methods 0.000 claims abstract description 29
- 230000003068 static effect Effects 0.000 claims abstract description 11
- 238000011068 loading method Methods 0.000 claims description 19
- 239000002131 composite material Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Landscapes
- Wind Motors (AREA)
Abstract
一种风力发电机叶片弯扭耦合向量测量装置,包括夹持机构、载荷施加机构和测量执行机构,所述夹持机构与被测量叶片的根部圆柱体匹配,所述载荷施加机构与被测量叶片的叶尖匹配,所述测量执行机构包括位移传感器、力传感器、静态应变测量系统和计算机,所述位移传感器布置在被测量叶片不同位置截面的前缘和后缘处,所述力传感器安装在载荷施加机构上,所述静态应变测量系统输入端与位移传感器及力传感器连接,其输出端与计算机连接。本发明实现了在风力发电机装机前对叶片弯扭耦合特性的准确测算,保证了风力发电机的可靠运行。
A wind power generator blade bending and torsion coupling vector measurement device, including a clamping mechanism, a load application mechanism and a measurement actuator, the clamping mechanism is matched with the root cylinder of the blade to be measured, and the load application mechanism is matched with the blade to be measured The blade tip is matched, and the measurement actuator includes a displacement sensor, a force sensor, a static strain measurement system and a computer. On the load applying mechanism, the input end of the static strain measurement system is connected with the displacement sensor and the force sensor, and its output end is connected with the computer. The invention realizes the accurate measurement and calculation of the bending-torsion coupling characteristics of the blades before the wind power generator is installed, and ensures the reliable operation of the wind power generator.
Description
技术领域technical field
本发明涉及一种测量装置,尤其是一种风力发电机叶片弯扭耦合向量测量装置,属发电技术领域。The invention relates to a measurement device, in particular to a wind power generator blade bending-torsion coupling vector measurement device, which belongs to the technical field of power generation.
背景技术Background technique
风力发电机叶片是风力发电机的关键部件,常选用复合材料制作,由于复合材料中包含了具有不同铺层角度及铺层厚度的纤维布,使得复合材料具有各向异性的特点,因此叶片在纯弯曲或纯扭转载荷下都会同时发生扭转变形和弯曲变形,即复合材料叶片具有弯扭耦合变形特性。叶片的弯扭耦合特性决定了叶片在载荷作用下的变形行为,利用风力发电机叶片材料各向异性的特性,叶片能随风速的变化,自动改变形状,产生合理的扭曲变形,从而拓宽风力机正常运行风速范围,提高风能捕获能力,降低叶片承受的冲击载荷,并在高风速时改善其安全性能。Wind turbine blades are the key components of wind turbines. They are often made of composite materials. Because the composite materials contain fiber cloth with different ply angles and ply thicknesses, the composite materials have anisotropic characteristics. Therefore, the blades are Both torsional deformation and bending deformation will occur under pure bending or pure torsional load, that is, the composite blade has the characteristics of bending and torsion coupling deformation. The bending-torsion coupling characteristics of the blade determine the deformation behavior of the blade under load. Using the anisotropic characteristics of the blade material of the wind turbine, the blade can automatically change its shape with the change of wind speed, resulting in reasonable distortion and deformation, thereby broadening the wind power. The normal operating wind speed range of the machine can improve the wind energy capture capacity, reduce the impact load on the blades, and improve its safety performance at high wind speeds.
风力发电机叶片的弯扭耦合特性属于叶片整体的固有特性,可通过叶片弯扭耦合向量表示,弯扭耦合向量即叶片各翼型截面弯扭耦合向量α组成的向量(),截面弯扭耦合向量α为产生弯曲角度β与扭转角度θ的比值()。为了保证风力发电机工作的可靠性,在风力发电机装机前需要对叶片的弯扭耦合向量进行测算。The bending and torsion coupling characteristics of wind turbine blades belong to the inherent characteristics of the blade as a whole, and can be obtained through the blade bending and torsion coupling vector Indicates that the bending-torsion coupling vector That is, the vector composed of the bending-torsion coupling vector α of each airfoil section of the blade ( ), the cross-section bending-torsion coupling vector α is the ratio of the bending angle β to the twisting angle θ ( ). In order to ensure the reliability of the wind turbine, the bending and torsion coupling vector of the blade needs to be adjusted before the wind turbine is installed. Make calculations.
发明内容Contents of the invention
本发明的目的在于提供一种风力发电机叶片弯扭耦合向量测量装置,以实现在风力发电机装机前对叶片弯扭耦合特性的准确测算,保证风力发电机的可靠运行。The object of the present invention is to provide a wind generator blade bending-torsion coupling vector measurement device, so as to realize accurate measurement and calculation of the blade bending-torsion coupling characteristics before the wind generator is installed, and ensure the reliable operation of the wind generator.
本发明的目的是通过下述技术方案实现的:The purpose of the present invention is achieved through the following technical solutions:
一种风力发电机叶片弯扭耦合向量测量装置,包括夹持机构、载荷施加机构和测量执行机构;所述夹持机构的结构与被测量叶片的根部圆柱体匹配,所述载荷施加机构的结构与被测量叶片的叶尖匹配;所述测量执行机构包括位移传感器、力传感器、静态应变测量系统和计算机,所述位移传感器布置在被测量叶片不同位置截面的前缘和后缘处,所述力传感器安装在载荷施加机构上,所述静态应变测量系统输入端与位移传感器及力传感器连接,其输出端与计算机连接。A wind power generator blade bending and torsion coupling vector measurement device, including a clamping mechanism, a load applying mechanism and a measurement actuator; the structure of the clamping mechanism matches the root cylinder of the measured blade, and the structure of the load applying mechanism It is matched with the blade tip of the measured blade; the measuring actuator includes a displacement sensor, a force sensor, a static strain measurement system and a computer, and the displacement sensor is arranged at the leading edge and the trailing edge of the measured blade in different positions, the The force sensor is installed on the load applying mechanism, the input end of the static strain measurement system is connected with the displacement sensor and the force sensor, and the output end is connected with the computer.
上述风力发电机叶片弯扭耦合向量测量装置,所述载荷施加机构包括液压加载组件、辅助夹具、第一支架和第二支架;所述辅助夹具套装在被测量叶片的叶尖部位,由上下两个夹持板组成,在上下两个夹持板的中部形成与被测量叶片叶尖匹配的夹持腔,在上下两个夹持板左右两端设置加载工作面。In the wind turbine blade bending and twisting coupling vector measuring device, the load applying mechanism includes a hydraulic loading assembly, an auxiliary fixture, a first bracket and a second bracket; A clamping plate is formed in the middle of the upper and lower two clamping plates to form a clamping cavity matching the blade tip of the measured blade, and a loading working surface is set at the left and right ends of the upper and lower two clamping plates.
上述风力发电机叶片弯扭耦合向量测量装置,所述液压加载组件由第二液压泵站及液压缸组成,所述第二液压泵站与液压缸连接,在液压泵站中设有液压控制系统,所述液压缸包括固定在第一支架上的第一液压缸和固定在第二支架上的第二液压缸,所述第一液压缸的活塞杆向下伸展,所述第二液压缸的活塞杆向上伸展,两个液压缸的活塞杆分别与辅助夹具左右两端的加载工作面对应。In the wind turbine blade bending and torsion coupling vector measuring device, the hydraulic loading assembly is composed of a second hydraulic pump station and a hydraulic cylinder, the second hydraulic pump station is connected to the hydraulic cylinder, and a hydraulic control system is installed in the hydraulic pump station , the hydraulic cylinder includes a first hydraulic cylinder fixed on the first bracket and a second hydraulic cylinder fixed on the second bracket, the piston rod of the first hydraulic cylinder extends downward, and the piston rod of the second hydraulic cylinder The piston rods extend upwards, and the piston rods of the two hydraulic cylinders correspond to the loading working surfaces at the left and right ends of the auxiliary fixture respectively.
上述风力发电机叶片弯扭耦合向量测量装置,所述辅助夹具的夹持腔内壁上设置橡胶垫。In the wind power generator blade bending-twist coupling vector measuring device, a rubber pad is arranged on the inner wall of the clamping cavity of the auxiliary clamp.
上述风力发电机叶片弯扭耦合向量测量装置,所述第一支架和第二支架均为可移动结构。In the above wind generator blade bending-twist coupling vector measuring device, both the first support and the second support are movable structures.
上述风力发电机叶片弯扭耦合向量测量装置,所述夹持机构包括夹持座、液压夹具和第一液压泵站,所述夹持座固定在水平地面上,在夹持座上设置叶片安装孔,在叶片安装孔的周边均匀布置三套液压夹具。In the wind power generator blade bending and torsion coupling vector measuring device, the clamping mechanism includes a clamping seat, a hydraulic clamp and a first hydraulic pump station, the clamping seat is fixed on a horizontal ground, and a blade is installed on the clamping seat. Holes, and three sets of hydraulic clamps are evenly arranged around the blade installation holes.
上述风力发电机叶片弯扭耦合向量测量装置,所述液压夹具包括夹持油缸和夹持块,所述夹持油缸与第一液压泵站连接,夹持油缸的活塞杆与夹持块固定装配,所述夹持块设有与叶片根部匹配的弧形夹持面。In the wind turbine blade bending and torsion coupling vector measuring device, the hydraulic fixture includes a clamping cylinder and a clamping block, the clamping cylinder is connected to the first hydraulic pump station, and the piston rod of the clamping cylinder is fixedly assembled with the clamping block , the clamping block is provided with an arc-shaped clamping surface matching the blade root.
本发明通过夹持机构将被测量叶片的根部圆柱体固定,再将载荷施加机构中辅助夹具套装在被测量叶片的叶尖部位,然后由固定在第一支架上的第一液压缸和固定在第二支架上的第二液压缸分别对辅助夹具左右两端的加载工作面施以大小相同、方向相反的推力,使被测量叶片在扭转力矩作用下产生扭转弯曲变形;此时布置在被测量叶片不同位置截面前缘和后缘的位移传感器将采集到的信息通过静态应变测量系统传递给计算机,同时安装在载荷施加机构上的力传感器将采集到的力载荷信息传递给计算机,再由计算机中设置的程序对不同位置截面前缘和后缘位移传感器采集的信息分析、计算,获得在不同扭矩载荷情况下叶片不同位置截面前缘和后缘的位移值,然后根据该位移值计算出风力发电机叶片的弯扭耦合向量α值,进而得出弯扭耦合向量。由于本发明夹持机构中的夹持块由夹持油缸驱动,并且载荷施加机构中第一支架和第二支架均为可移动结构,因此本发明具有良好的通用性能,适用于对不同型号的风力发电机叶片的测量。由此可见,本发明实现了在风力发电机装机前对叶片弯扭耦合特性的准确测算,保证了风力发电机的可靠运行。The invention fixes the root cylinder of the measured blade through the clamping mechanism, and then sets the auxiliary fixture in the load application mechanism on the blade tip of the measured blade, and then the first hydraulic cylinder fixed on the first bracket and fixed on the The second hydraulic cylinder on the second bracket applies thrusts of the same size and opposite directions to the loading working surfaces at the left and right ends of the auxiliary fixture respectively, so that the measured blade produces torsional bending deformation under the action of torsional moment; at this time, it is arranged on the measured blade Displacement sensors at the front and rear edges of different positions transmit the collected information to the computer through the static strain measurement system, and at the same time, the force sensor installed on the load application mechanism transmits the collected force load information to the computer, and then the computer The set program analyzes and calculates the information collected by the displacement sensors of the leading edge and the trailing edge of the cross-section at different positions, and obtains the displacement values of the leading and trailing edges of the cross-sections at different positions of the blade under different torque loads, and then calculates the wind power generation based on the displacement values. The value of the bending and torsion coupling vector α of the machine blade, and then the bending and torsion coupling vector . Since the clamping block in the clamping mechanism of the present invention is driven by the clamping oil cylinder, and both the first support and the second support in the load applying mechanism are movable structures, the present invention has good universal performance and is suitable for different types of Measurement of wind turbine blades. It can be seen that the present invention realizes the accurate measurement and calculation of the bending-torsion coupling characteristics of the blades before the installation of the wind-driven generator, and ensures the reliable operation of the wind-driven generator.
附图说明Description of drawings
下面结合附图对本发明作进一步说明。The present invention will be further described below in conjunction with accompanying drawing.
图1是本发明的总体结构示意图;Fig. 1 is the overall structural representation of the present invention;
图2是本发明的夹持机构主视图;Fig. 2 is the front view of the clamping mechanism of the present invention;
图3是本发明的夹持机构侧视图;Fig. 3 is a side view of the clamping mechanism of the present invention;
图4是本发明的载荷施加机构示意图;Fig. 4 is a schematic diagram of a load applying mechanism of the present invention;
图5是本发明载荷施加机构中辅助夹具结构示意图;Fig. 5 is a schematic structural view of the auxiliary fixture in the load applying mechanism of the present invention;
图6是本发明的测量执行机构示意图;Fig. 6 is a schematic diagram of the measuring actuator of the present invention;
图7是被测量叶片某一截面位置处位移传感器安装位置示意图;Fig. 7 is a schematic diagram of the installation position of the displacement sensor at a certain section position of the measured blade;
图8是在载荷加载前后被测量叶片某一截面位置变化示意图;Fig. 8 is a schematic diagram of the position change of a certain section of the measured blade before and after loading;
图9是根据叶片不同截面前缘和后缘的位移值计算弯扭耦合向量α值的原理图;Figure 9 is a schematic diagram for calculating the value of the bending-torsion coupling vector α according to the displacement values of the leading edge and the trailing edge of different sections of the blade;
图10是不同截面弯曲变形w随叶片展向坐标z变化曲线图。Fig. 10 is a graph showing the variation of the bending deformation w of different sections with the spanwise coordinate z of the blade.
图中各标号清单为:1、夹持机构,1-1、夹持座,1-1-1、叶片安装孔,1-2、夹持油缸,1-3、夹持块,1-4、第一液压泵站,2、载荷施加机构,2-1、第一支架,2-2、第一液压缸,2-3、第二液压缸,2-4、辅助夹具,2-4-1、夹持板,2-4-2、加载工作面,2-4-3、夹持腔,2-4-4、橡胶垫,2-5、第二支架,2-6、第二液压泵站,3、测量执行机构,3-1、位移传感器,3-2、静态应变测量系统,3-3、计算机,3-4、力传感器,4、被测量叶片,4-1、前缘,4-2、后缘。The list of labels in the figure is: 1. clamping mechanism, 1-1, clamping seat, 1-1-1, blade mounting hole, 1-2, clamping oil cylinder, 1-3, clamping block, 1-4 , the first hydraulic pump station, 2, the load applying mechanism, 2-1, the first bracket, 2-2, the first hydraulic cylinder, 2-3, the second hydraulic cylinder, 2-4, the auxiliary fixture, 2-4- 1. Clamping plate, 2-4-2, loading face, 2-4-3, clamping chamber, 2-4-4, rubber pad, 2-5, second bracket, 2-6, second hydraulic pressure Pump station, 3. Measuring actuator, 3-1, Displacement sensor, 3-2, Static strain measurement system, 3-3, Computer, 3-4, Force sensor, 4. Measured blade, 4-1, Leading edge , 4-2, trailing edge.
具体实施方式Detailed ways
参看图1、图6、图7,本发明包括夹持机构1、载荷施加机构2和测量执行机构3,所述夹持机构1的结构与被测量叶片4的根部圆柱体匹配,所述载荷施加机构2的结构与被测量叶片4的叶尖匹配,所述测量执行机构3包括位移传感器3-1、力传感器3-4、静态应变测量系统3-2和计算机3-3,所述位移传感器3-1布置在被测量叶片4不同位置截面的前缘4-1和后缘4-2处,所述力传感器3-4安装在载荷施加机构2上,所述静态应变测量系统3-2输入端与位移传感器3-1及力传感器3-4连接,其输出端与计算机3-3连接。Referring to Fig. 1, Fig. 6 and Fig. 7, the present invention includes a clamping mechanism 1, a load applying mechanism 2 and a measurement actuator 3, the structure of the clamping mechanism 1 matches the root cylinder of the measured blade 4, and the load The structure of the applying mechanism 2 matches the blade tip of the measured blade 4, and the measuring actuator 3 includes a displacement sensor 3-1, a force sensor 3-4, a static strain measuring system 3-2 and a computer 3-3, and the displacement The sensor 3-1 is arranged at the leading edge 4-1 and the trailing edge 4-2 of the section of the measured blade 4 at different positions, the force sensor 3-4 is installed on the load applying mechanism 2, and the static strain measurement system 3- 2. The input end is connected with the displacement sensor 3-1 and the force sensor 3-4, and its output end is connected with the computer 3-3.
参看图1、图4、图5,本发明的载荷施加机构2包括液压加载组件、辅助夹具2-4、第一支架2-1和第二支架2-5;所述辅助夹具2-4套装在被测量叶片4的叶尖部位,由上下两个夹持板2-4-1组成,在上下两个夹持板2-4-1的中部形成与被测量叶片叶尖匹配的夹持腔2-4-3,在上下两个夹持板左右两端设置加载工作面2-4-2,所述辅助夹具2-4的夹持腔2-4-3内壁上设置橡胶垫2-4-4;所述液压加载组件由第二液压泵站2-6及液压缸组成,所述第二液压泵站2-6与液压缸连接,并在第二液压泵站2-6中设置液压控制系统;所述液压缸包括固定在第一支架2-1上的第一液压缸2-2和固定在第二支架2-5上的第二液压缸2-3,所述第一液压缸2-2的活塞杆向下伸展,所述第二液压缸2-3的活塞杆向上伸展,两个液压缸的活塞杆分别与辅助夹具2-4左右两端的加载工作面2-4-2对应;所述第一支架2-1和第二支架2-5均为可移动结构。Referring to Fig. 1, Fig. 4, Fig. 5, the load application mechanism 2 of the present invention includes a hydraulic loading assembly, an auxiliary clamp 2-4, a first support 2-1 and a second support 2-5; the auxiliary clamp 2-4 suits The blade tip of the measured blade 4 is composed of two upper and lower clamping plates 2-4-1, and a clamping cavity matching the measured blade tip is formed in the middle of the upper and lower two clamping plates 2-4-1 2-4-3, set the loading working surface 2-4-2 at the left and right ends of the upper and lower clamping plates, and set the rubber pad 2-4 on the inner wall of the clamping cavity 2-4-3 of the auxiliary clamp 2-4 -4; the hydraulic loading assembly is composed of a second hydraulic pump station 2-6 and a hydraulic cylinder, the second hydraulic pump station 2-6 is connected to the hydraulic cylinder, and a hydraulic pressure is set in the second hydraulic pump station 2-6 Control system; the hydraulic cylinder includes a first hydraulic cylinder 2-2 fixed on the first support 2-1 and a second hydraulic cylinder 2-3 fixed on the second support 2-5, the first hydraulic cylinder The piston rod of 2-2 extends downward, the piston rod of the second hydraulic cylinder 2-3 extends upward, and the piston rods of the two hydraulic cylinders are respectively connected with the loading working surface 2-4-2 at the left and right ends of the auxiliary fixture 2-4 Correspondingly; both the first support 2-1 and the second support 2-5 are movable structures.
参看图1、图2、图3,本发明的夹持机构1包括夹持座1-1、液压夹具和第一液压泵站1-4,所述夹持座1-1固定在水平地面上,在夹持座1-1上设置叶片安装孔1-1-1,在叶片安装孔1-1-1的周边均匀布置三套液压夹具;所述液压夹具包括夹持油缸1-2和夹持块1-3,所述夹持油缸1-2与第一液压泵站1-4连接,夹持油缸1-2的活塞杆与夹持块1-3固定装配,所述夹持块1-3设有与叶片根部匹配的弧形夹持面。Referring to Fig. 1, Fig. 2 and Fig. 3, the clamping mechanism 1 of the present invention includes a clamping seat 1-1, a hydraulic clamp and a first hydraulic pump station 1-4, and the clamping seat 1-1 is fixed on a level ground , the blade mounting hole 1-1-1 is set on the clamping seat 1-1, and three sets of hydraulic clamps are evenly arranged around the blade mounting hole 1-1-1; the hydraulic clamps include a clamping cylinder 1-2 and a clamp Holding block 1-3, the clamping cylinder 1-2 is connected with the first hydraulic pump station 1-4, the piston rod of clamping cylinder 1-2 is fixedly assembled with the clamping block 1-3, and the clamping block 1 -3 is provided with a curved clamping surface matching the blade root.
参看图1、图7,复合材料风力机叶片在载荷的作用下,不仅会发生弯曲变形,同时还会发生扭转变形。为了测算复合材料叶片结构产生的弯扭耦合变形特性,需要对叶片施加纯弯曲载荷或者纯扭转载荷。由于叶片材料的各向异性及截面的不规则性,使得叶片截面的弯曲中心很难找到,因此在待测风力机叶片上施加一个垂直方向的力时,不能保证该力恰巧通过弯曲中心,即不能保证对叶片施加纯弯曲载荷,所以,本发明采用了纯扭载荷加载方式,即对待测叶片叶尖部位施加一对等值反向的平行力。Referring to Fig. 1 and Fig. 7, under the action of load, the composite material wind turbine blade will not only undergo bending deformation, but also torsion deformation. In order to measure the bending-torsion coupling deformation characteristics of the composite blade structure, it is necessary to apply pure bending load or pure torsional load to the blade. Due to the anisotropy of the blade material and the irregularity of the section, it is difficult to find the bending center of the blade section. Therefore, when a force in the vertical direction is applied to the wind turbine blade to be tested, it cannot be guaranteed that the force will pass through the bending center, that is, It cannot be guaranteed that a pure bending load is applied to the blade. Therefore, the present invention adopts a pure torsional load loading method, that is, a pair of equal and opposite parallel forces are applied to the tip of the blade to be tested.
风力发电机叶片的弯扭耦合特性可通过向量描述,式中,(i=1,2,3…n)为叶片第i个截面弯扭耦合向量,即叶片在承受纯扭转载荷时在该截面产生的弯曲角度和扭转角度θ的比值()。因此,在对叶片的弯扭耦合向量Δ进行测算时,首先需要对叶片各个截面的弯曲角度和扭转角度θ值进行测算,而叶片弯曲角度和扭转角度θ与叶片承受载荷后截面前缘4-1和后缘4-2处位移密切相关,所以可通过对叶片截面前缘4-1和后缘4-2处位移值的测量来推算叶片截面的弯扭耦合向量αi。The bending-torsion coupling characteristics of wind turbine blades can be obtained by vector description, where, (i=1,2,3...n) is the bending and torsion coupling vector of the i-th section of the blade, that is, the bending angle of the blade when it is subjected to pure torsional load and the ratio of the twist angle θ ( ). Therefore, when calculating the bending and torsion coupling vector Δ of the blade, it is first necessary to calculate the bending angle of each section of the blade and the twist angle θ value to measure and calculate, and the blade bending angle and the torsion angle θ are closely related to the displacement at the leading edge 4-1 and trailing edge 4-2 of the blade section under load, so it can be calculated by measuring the displacement values at the leading edge 4-1 and trailing edge 4-2 of the blade section The bending-torsion coupling vector α i of the blade section.
参看图1~图7,本发明为一种风力发电机叶片弯扭耦合向量测量装置,其工作过程为:将被测量叶片4的根部圆柱体固定,再将载荷施加机构2中辅助夹具2-4套装在被测量叶片4的叶尖部位;调整位移传感器3-1,使得被测量叶片4在自重下的变形位置作为传感器测量的初始位置;通过加载合适的扭转载荷,使被测量叶片4发生小角度扭转变形(如扭转角度小于2°),再通过布置在被测量叶片4不同位置截面前缘4-1和后缘4-2处的位移传感器3-1,将前缘4-1和后缘4-2处的位移变化信息通过静态应变测量系统3-2传递给计算机3-3,由计算机3-3计算并显示被测量叶片4前缘4-1的位移量u 1和后缘4-2的位移量u 2。Referring to Figures 1 to 7, the present invention is a wind turbine blade bending-torsion coupling vector measurement device, the working process of which is: fix the root cylinder of the blade 4 to be measured, and then fix the auxiliary fixture 2 in the load applying mechanism 2- 4 is set on the blade tip of the measured blade 4; adjust the displacement sensor 3-1 so that the deformation position of the measured blade 4 under its own weight is used as the initial position of the sensor measurement; by loading an appropriate torsional load, the measured blade 4 Small-angle torsional deformation (such as the torsion angle is less than 2°), and then through the displacement sensors 3-1 arranged at the leading edge 4-1 and trailing edge 4-2 of the measured blade 4 different positions, the leading edge 4-1 and the trailing edge 4-2 The displacement change information at the trailing edge 4-2 is transmitted to the computer 3-3 through the static strain measurement system 3-2, and the computer 3-3 calculates and displays the displacement u 1 and the trailing edge of the leading edge 4-1 of the measured blade 4 4-2 displacement u 2 .
参看图8、图9、图10,根据u 1和u 2的数值可分别计算出弯曲角度和扭转角度θ值,从而进一步计算出弯扭耦合向量α值。其理论依据为:AC、BD分别为加载前、加载后叶片某截面的弦线,弦线长度为L;由于叶片的扭转角度很小,因此直线位移近似等于弧线位移,即AB为被测量叶片4前缘4-1的位移量u 1;CD为被测量叶片4后缘4-2的位移量u 2,将BD直线平行移动到AE位置,则截面扭转变形的扭转角度:Referring to Figure 8, Figure 9, and Figure 10, the bending angle can be calculated according to the values of u 1 and u 2 And the torsion angle θ value, so as to further calculate the bending torsion coupling vector α value. The theoretical basis is: AC and BD are the chord lines of a certain section of the blade before loading and after loading respectively, and the length of the chord line is L; since the torsion angle of the blade is small, the linear displacement is approximately equal to the arc displacement, that is, AB is the measured The displacement u 1 of the leading edge 4-1 of the blade 4; CD is the displacement u 2 of the trailing edge 4-2 of the measured blade 4, and moving BD to the AE position in parallel in a straight line, the torsion angle of the torsional deformation of the section:
; ;
截面弯曲变形用1/4弦长处所对应的变形FH(FH=FI-HI)表示,记做w:The bending deformation of the section is represented by the deformation FH (FH=FI-HI) corresponding to the 1/4 chord length, which is recorded as w:
w=FI-HI= w = FI-HI =
或 or
将不同截面的弯曲变形作曲线拟合w=w(z),得到图10所示不同截面的弯曲变形w随叶片展向坐标z变化的曲线。将w求导,得到截面弯曲角度,即;The bending deformation of different sections is fitted to w=w(z), and the curve of bending deformation w of different sections changing with the spanwise coordinate z of the blade is obtained as shown in Figure 10. Take the derivative of w to get the bending angle of the section ,Right now ;
然后即可通过公式计算出截面弯扭耦合向量α值,最终得到描述叶片弯扭耦合特性的向量Δ()。Then the formula Calculate the value of the cross-section bending-torsion coupling vector α , and finally obtain the vector Δ( ).
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510608815.2A CN105181318B (en) | 2015-09-23 | 2015-09-23 | A kind of blade of wind-driven generator Torsion Coupling vector measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510608815.2A CN105181318B (en) | 2015-09-23 | 2015-09-23 | A kind of blade of wind-driven generator Torsion Coupling vector measurement device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105181318A CN105181318A (en) | 2015-12-23 |
CN105181318B true CN105181318B (en) | 2018-08-10 |
Family
ID=54903559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510608815.2A Expired - Fee Related CN105181318B (en) | 2015-09-23 | 2015-09-23 | A kind of blade of wind-driven generator Torsion Coupling vector measurement device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105181318B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105606356A (en) * | 2016-03-16 | 2016-05-25 | 中国直升机设计研究所 | Tail rotor blade supporting device |
CN106055764B (en) * | 2016-05-26 | 2019-04-16 | 华北电力大学(保定) | Pneumatic equipment bladess based on three-dimensional shell finite element-beam model are displaced calculation method |
CN106370125A (en) * | 2016-10-27 | 2017-02-01 | 沈阳航空航天大学 | Blade continuous deformation measuring device based on residual stress release |
CN110057518B (en) * | 2019-05-21 | 2021-03-19 | 山东理工大学 | Loading method and device for wind power blade trailing edge component |
CN113446979B (en) * | 2021-07-07 | 2022-05-17 | 山东理工大学 | A precise measuring device for the spatial angle of steel wire rope and wind turbine blade in full-scale static loading test of wind turbine blade |
CN113390625B (en) * | 2021-08-17 | 2021-12-07 | 中国航天空气动力技术研究院 | Front edge bending test tool and method |
CN115127943A (en) * | 2022-07-07 | 2022-09-30 | 西安热工研究院有限公司 | A kind of wind turbine blade multifunctional test platform and test method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102778353A (en) * | 2012-08-03 | 2012-11-14 | 国电联合动力技术(连云港)有限公司 | Large megawatt fan blade test bench |
CN203365124U (en) * | 2013-07-18 | 2013-12-25 | 连云港中复连众复合材料集团有限公司 | Full-dimension test system and platform for megawatt-level blower fan blade |
CN104236892A (en) * | 2014-10-08 | 2014-12-24 | 东方电气集团东方汽轮机有限公司 | Method for testing wind turbine blade static force loading vertical displacement and deformation |
CN204495552U (en) * | 2015-04-07 | 2015-07-22 | 中国直升机设计研究所 | A kind of aerofoil profile clamping device for measuring blade twist rigidity |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012205153B4 (en) * | 2012-03-29 | 2013-10-17 | Repower Systems Se | Test device and vibration mass arrangement for a rotor blade of a wind turbine |
-
2015
- 2015-09-23 CN CN201510608815.2A patent/CN105181318B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102778353A (en) * | 2012-08-03 | 2012-11-14 | 国电联合动力技术(连云港)有限公司 | Large megawatt fan blade test bench |
CN203365124U (en) * | 2013-07-18 | 2013-12-25 | 连云港中复连众复合材料集团有限公司 | Full-dimension test system and platform for megawatt-level blower fan blade |
CN104236892A (en) * | 2014-10-08 | 2014-12-24 | 东方电气集团东方汽轮机有限公司 | Method for testing wind turbine blade static force loading vertical displacement and deformation |
CN204495552U (en) * | 2015-04-07 | 2015-07-22 | 中国直升机设计研究所 | A kind of aerofoil profile clamping device for measuring blade twist rigidity |
Non-Patent Citations (2)
Title |
---|
5MW风力机叶片弯扭耦合特性分析;赵鹤翔等;《华北电力大学学报》;20130731;第40卷(第4期);全文 * |
考虑翘曲效应的风力机叶片弯扭耦合特性计算方法;周邢银等;《可再生能源》;20150228;第33卷(第2期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN105181318A (en) | 2015-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105181318B (en) | A kind of blade of wind-driven generator Torsion Coupling vector measurement device | |
CN102519652B (en) | Bolt pre-tightening force testing device and control method thereof | |
CN104568351B (en) | Damping-structure-optimized blade testing experiment table and experimental method thereof | |
CN108120592A (en) | A kind of test method of helicopter blade static strength | |
CN202582832U (en) | Couple type torque standardizing machine | |
CN102589989A (en) | Single-shaped pulling-pressing double-function creepmeter | |
CN104019967B (en) | A kind of pilot system testing Helicopter Main oar crossbeam fatigue behaviour | |
CN103592091A (en) | System and method for flutter ground test of aircraft control surface | |
CN105184005B (en) | A kind of rudder face transmission mechanism optimization of Overall Parameters of Muffler method | |
CN104648688B (en) | A kind of blade foil gauge is arranged and decoupling method | |
CN112129503A (en) | Fan blade torsional fatigue test device and test method thereof | |
CN103592018A (en) | High-low cycle compound fatigue test high-cycle amplitude measuring equipment and method | |
CN104155092B (en) | Wind turbine blade static analysis method | |
CN111929062A (en) | Load frequency determination method for torsional impact fatigue test of electric automobile differential | |
CN104749031B (en) | Measurement jig and measurement method for rotary blade | |
CN204694553U (en) | A kind of oil clearance cushion block compressibility measurement mechanism | |
CN100535912C (en) | Method for determining stayd-cable bridge construction intermediate state utilizing unit original size | |
CN109507040B (en) | Honeycomb sandwich structure panel compression stress assessment method | |
CN204988904U (en) | Device of panel bending property test | |
CN107701379A (en) | Sensor calibration method and device for wind generating set blade | |
CN204924561U (en) | Lever balance mechanism of moment of torsion standard machine | |
CN105928644B (en) | A kind of strain gauge for pavement structure monitoring | |
CN104123458A (en) | Transection type oblique crack rotor variable stiffness characteristic calculation method based on strain energy theory | |
CN113504027B (en) | Method for manufacturing aeroelastic wind tunnel test model of wind turbine blade | |
CN205719585U (en) | Large fan tower frame strength assay device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180810 Termination date: 20210923 |
|
CF01 | Termination of patent right due to non-payment of annual fee |