CN105162236A - Composite energy power distribution system - Google Patents
Composite energy power distribution system Download PDFInfo
- Publication number
- CN105162236A CN105162236A CN201510627138.9A CN201510627138A CN105162236A CN 105162236 A CN105162236 A CN 105162236A CN 201510627138 A CN201510627138 A CN 201510627138A CN 105162236 A CN105162236 A CN 105162236A
- Authority
- CN
- China
- Prior art keywords
- lithium battery
- battery pack
- power
- supercapacitor module
- charge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 73
- 238000009826 distribution Methods 0.000 title claims abstract description 40
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 129
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 129
- 238000004891 communication Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 description 10
- 238000004590 computer program Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
本发明提供了一种复合能源功率分配系统,包括:复合能源及控制装置;复合能源由锂电池组及超级电容器模组组成,控制装置由控制单元、第一DC/DC转换器及第二DC/DC转换器组成;锂电池组连接第一DC/DC转换器,超级电容器模组连接第二DC/DC转换器,第一DC/DC转换器与第二DC/DC转换器相连接后共同连接至一负载;控制单元通过CAN通信网络与锂电池组、超级电容器模组、第一DC/DC转换器、第二DC/DC转换器及负载分别连接;控制单元通过CAN通信网络获取负载的功率需求、第一DC/DC转换器的状态数据、第二DC/DC转换器的状态数据及复合能源的状态数据,计算锂电池组及超级电容器模组各自需要承担的功率分配,控制锂电池组及超级电容器模组各自承受相应的功率。
The invention provides a composite energy power distribution system, including: a composite energy source and a control device; the composite energy source is composed of a lithium battery pack and a supercapacitor module, and the control device is composed of a control unit, a first DC/DC converter and a second DC /DC converter; the lithium battery pack is connected to the first DC/DC converter, the supercapacitor module is connected to the second DC/DC converter, and the first DC/DC converter and the second DC/DC converter are connected together Connected to a load; the control unit is connected to the lithium battery pack, the supercapacitor module, the first DC/DC converter, the second DC/DC converter and the load respectively through the CAN communication network; the control unit obtains the information of the load through the CAN communication network Power demand, state data of the first DC/DC converter, state data of the second DC/DC converter, and state data of the composite energy source, calculate the power distribution that the lithium battery pack and the supercapacitor module need to undertake respectively, and control the lithium battery The battery pack and the supercapacitor module each bear corresponding power.
Description
技术领域technical field
本发明涉及复合能源管理技术,尤其涉及一种复合能源功率分配系统。The invention relates to composite energy management technology, in particular to a composite energy power distribution system.
背景技术Background technique
现有的复合能源管理系统,一般都是以简单并联为主,并通过一些电子开关来控制通断,从而达到复合能源的控制。这样的复合能源系统并不能调控超级电容与及锂电池之间的功率分配,不能够充分利用超级电容与及锂电池的优势互补特性组成一个更高效、更实用的能源管理系统。The existing composite energy management system is generally based on simple parallel connection, and some electronic switches are used to control on-off, so as to achieve the control of composite energy. Such a composite energy system cannot regulate the power distribution between supercapacitors and lithium batteries, and cannot make full use of the complementary characteristics of supercapacitors and lithium batteries to form a more efficient and practical energy management system.
中华人民共和国国家知识产权局于2014年2月26日公开了公开号为203456930U,发明名称为复合能源系统的专利申请。该复合能源系统由复合能源和控制系统构成,复合能源的锂电池组和超级电容器模组两者通过一些电子开关并联在一起,然后控制系统通过控制电子开关通断来控制两者的能量的输入输出。该专利申请中复合能源的锂电池组和超级电容器模组两者工作电压要一致,由于两者的特性不一样,容易造成两者的电压偏差,影响寿命;并且不能进行功率分配,效率无法提高,会增加能量的损耗;另外,超级电容利用不充分,电子元器件多,构造复杂。The State Intellectual Property Office of the People's Republic of China published on February 26, 2014 a patent application with a publication number of 203456930U and an invention name of a composite energy system. The composite energy system is composed of composite energy and a control system. The lithium battery pack and the supercapacitor module of the composite energy are connected in parallel through some electronic switches, and then the control system controls the energy input of the two by controlling the electronic switch on and off. output. In this patent application, the working voltage of the lithium battery pack and the supercapacitor module of the composite energy source must be the same. Due to the different characteristics of the two, it is easy to cause a voltage deviation between the two and affect the life; and power distribution cannot be performed, and the efficiency cannot be improved. , will increase energy loss; in addition, supercapacitors are not fully utilized, there are many electronic components, and the structure is complex.
发明内容Contents of the invention
本发明提供一种复合能源功率分配系统,以实现对锂电池组与超级电容器模组功率分配的精细控制,保护锂电池组与超级电容器模组的正常工作,提高工作效率,减少损耗,提高使用寿命。The invention provides a composite energy power distribution system to realize fine control of the power distribution of the lithium battery pack and the supercapacitor module, protect the normal operation of the lithium battery pack and the supercapacitor module, improve work efficiency, reduce loss, and improve usage life.
为了实现上述目的,本发明实施例提供了一种复合能源功率分配系统,所述复合能源功率分配系统包括:复合能源及控制装置;所述复合能源由锂电池组及超级电容器模组组成,所述的控制装置由控制单元、第一DC/DC转换器及第二DC/DC转换器组成;其中,In order to achieve the above object, an embodiment of the present invention provides a composite energy power distribution system, the composite energy power distribution system includes: a composite energy source and a control device; the composite energy source is composed of a lithium battery pack and a supercapacitor module, the The control device described above is composed of a control unit, a first DC/DC converter and a second DC/DC converter; wherein,
所述锂电池组连接所述第一DC/DC转换器,所述超级电容器模组连接所述第二DC/DC转换器,所述第一DC/DC转换器与第二DC/DC转换器相连接后共同连接至一负载;所述控制单元通过CAN通信网络与锂电池组、超级电容器模组、所述第一DC/DC转换器、第二DC/DC转换器及所述负载分别连接;The lithium battery pack is connected to the first DC/DC converter, the supercapacitor module is connected to the second DC/DC converter, and the first DC/DC converter and the second DC/DC converter connected to a load; the control unit is connected to the lithium battery pack, the supercapacitor module, the first DC/DC converter, the second DC/DC converter and the load respectively through the CAN communication network ;
所述控制单元通过CAN通信网络获取所述负载的功率需求、第一DC/DC转换器的状态数据、第二DC/DC转换器的状态数据及复合能源的状态数据,根据所述负载的功率需求、第一DC/DC转换器的状态数据、第二DC/DC转换器的状态数据及复合能源的状态数据计算所述锂电池组及超级电容器模组各自需要承担的功率分配,然后根据所述功率分配控制所述第一DC/DC转换器及第二DC/DC转换器分别输出相应的功率,控制所述锂电池组及超级电容器模组各自承受相应的功率。The control unit obtains the power demand of the load, the state data of the first DC/DC converter, the state data of the second DC/DC converter and the state data of the composite energy source through the CAN communication network, and according to the power of the load The demand, the state data of the first DC/DC converter, the state data of the second DC/DC converter, and the state data of the composite energy source calculate the power distribution that the lithium battery pack and the supercapacitor module need to undertake respectively, and then according to the The power distribution controls the first DC/DC converter and the second DC/DC converter to output corresponding power respectively, and controls the lithium battery pack and the supercapacitor module to bear corresponding power respectively.
一实施例中,当所述复合能源处于放电模式时,并且负载需求功率一定时,所述控制单元控制所述超级电容器模组及锂电池组分别以第一放电功率及第二放电功率进行放电;其中所述第一放电功率大于所述第二放电功率,并且所述第一放电功率与所述第二放电功率之和等于所述负载需求功率。In one embodiment, when the composite energy source is in the discharge mode and the load demand power is constant, the control unit controls the supercapacitor module and the lithium battery pack to discharge at the first discharge power and the second discharge power respectively ; wherein the first discharge power is greater than the second discharge power, and the sum of the first discharge power and the second discharge power is equal to the load demand power.
一实施例中,当所述超级电容器模组的荷电状态低于一第一放电设定值,且所述锂电池组的荷电状态不低于一第二放电设定值时,所述控制单元控制所述超级电容器模组减小放电功率,并控制所述锂电池组增大放电功率。In one embodiment, when the state of charge of the supercapacitor module is lower than a first discharge setting value and the state of charge of the lithium battery pack is not lower than a second discharge setting value, the The control unit controls the supercapacitor module to reduce the discharge power, and controls the lithium battery pack to increase the discharge power.
一实施例中,当所述锂电池组的荷电状态低于一第二放电设定值,且所述超级电容器模组的荷电状态不低于一第一放电设定值时,所述控制单元控制所述超级电容器模组增大放电功率,并控制所述锂电池组减小放电功率。In one embodiment, when the state of charge of the lithium battery pack is lower than a second discharge setting value and the state of charge of the supercapacitor module is not lower than a first discharge setting value, the The control unit controls the supercapacitor module to increase the discharge power, and controls the lithium battery pack to reduce the discharge power.
一实施例中,当所述超级电容器模组的荷电状态低于一第一放电设定值,并且所述锂电池组的荷电状态低于一第二放电设定值时,所述控制单元控制所述超级电容器模组及锂电池组分别减小放电功率。In one embodiment, when the state of charge of the supercapacitor module is lower than a first discharge setting value, and the state of charge of the lithium battery pack is lower than a second discharge setting value, the control The unit controls the supercapacitor module and the lithium battery pack to reduce the discharge power respectively.
一实施例中,当所述复合能源处于充电模式时,并且负载需求功率一定时,所述控制单元控制所述超级电容器模组及锂电池组分别以第一充电功率及第二充电功率进行充电;其中所述第一充电功率大于所述第二充电功率。In one embodiment, when the composite energy source is in the charging mode and the load demand power is constant, the control unit controls the supercapacitor module and the lithium battery pack to charge with the first charging power and the second charging power respectively ; wherein the first charging power is greater than the second charging power.
一实施例中,当所述超级电容器模组的荷电状态高于一第一充电设定值,且所述锂电池组的荷电状态不高于一第二充电设定值时,所述控制单元控制所述超级电容器模组减小充电功率,并控制所述锂电池组增大充电功率。In one embodiment, when the state of charge of the supercapacitor module is higher than a first charge setting value and the state of charge of the lithium battery pack is not higher than a second charge setting value, the The control unit controls the supercapacitor module to reduce the charging power, and controls the lithium battery pack to increase the charging power.
一实施例中,当所述锂电池组的荷电状态高于一第二充电设定值,且所述超级电容器模组的荷电状态不高于一第一充电设定值时,所述控制单元控制所述超级电容器模组增大充电功率,并控制所述锂电池组减小充电功率。In one embodiment, when the state of charge of the lithium battery pack is higher than a second charge setting value and the state of charge of the supercapacitor module is not higher than a first charge setting value, the The control unit controls the supercapacitor module to increase the charging power, and controls the lithium battery pack to reduce the charging power.
一实施例中,当所述超级电容器模组的荷电状态高于一第一充电设定值,并且所述锂电池组的荷电状态高于一第二充电设定值时,所述控制单元控制所述超级电容器模组及锂电池组分别减小充电功率。In one embodiment, when the state of charge of the supercapacitor module is higher than a first charge setting value, and the state of charge of the lithium battery pack is higher than a second charge setting value, the control The unit controls the supercapacitor module and the lithium battery pack to reduce charging power respectively.
一实施例中,所述负载处于空闲时,当所述超级电容器模组的荷电状态低于一第一预设最低临界值时,所述控制单元控制所述锂电池组对所述超级电容器模组进行充电。In one embodiment, when the load is idle, when the state of charge of the supercapacitor module is lower than a first preset minimum critical value, the control unit controls the lithium battery pack to charge the supercapacitor The module is charging.
一实施例中,所述负载处于空闲时,当所述超级电容器模组的荷电状态高于一第一预设最高临界值时,所述控制单元控制所述超级电容器模组对所述锂电池组进行充电。In one embodiment, when the load is idle, when the state of charge of the supercapacitor module is higher than a first preset maximum threshold, the control unit controls the supercapacitor module to charge the lithium The battery pack is charged.
一实施例中,所述负载处于空闲时,当所述锂电池组的荷电状态低于一第二预设最低临界值时,所述控制单元控制所述超级电容器模组对所述锂电池组进行充电。In one embodiment, when the load is idle, when the state of charge of the lithium battery pack is lower than a second preset minimum critical value, the control unit controls the supercapacitor module to charge the lithium battery group to charge.
一实施例中,所述负载处于空闲时,当所述锂电池组的荷电状态高于一第二预设最高临界值时,控制单元控制所述锂电池组对所述超级电容器模组进行充电。In one embodiment, when the load is idle, when the state of charge of the lithium battery pack is higher than a second preset maximum critical value, the control unit controls the lithium battery pack to charge the supercapacitor module Charge.
本发明实施例的有益效果在于:The beneficial effects of the embodiments of the present invention are:
复合能源中的锂电池组和超级电容器模组通过DC/DC转换器进行连接,可以避免了锂电池组和超级电容器模组两者直接连接在一起而影响使用寿命。The lithium battery pack and the supercapacitor module in the composite energy are connected through a DC/DC converter, which can avoid the direct connection of the lithium battery pack and the supercapacitor module to affect the service life.
根据不同复合能源功率分配系统的不同需求,可以搭配不同电压等级的锂电池组和超级电容器模组,从而适应各自不同的工作环境。According to the different needs of different hybrid energy power distribution systems, lithium battery packs and super capacitor modules of different voltage levels can be matched to adapt to different working environments.
复合能源的放电模式中,在不同的情况下对超级电容器模组的放电功率与锂电池组放电功率进行调控,可以充分利用超级电容器模组的快速放电性能,并且保护复合能源,避免过放电。In the discharge mode of the composite energy, the discharge power of the supercapacitor module and the discharge power of the lithium battery pack are regulated under different circumstances, which can make full use of the fast discharge performance of the supercapacitor module, and protect the composite energy and avoid over-discharge.
复合能源的充电模式中,在不同的情况下对超级电容器模组的充电功率与锂电池组充电功率进行调控,可以充分利用超级电容器模组的快速充电性能,并且保护复合能源,避免过充电。In the charging mode of the composite energy, the charging power of the supercapacitor module and the charging power of the lithium battery pack are regulated under different circumstances, which can make full use of the fast charging performance of the supercapacitor module, and protect the composite energy and avoid overcharging.
控制单元优先将大功率分配给超级电容器模组,从而利用超级电容器模组的高功率密度,提高整体的工作效率,减少损耗。并且还可以避免大电流对锂电池组的冲击,从而达到保护复合能源,提高使用寿命的目的。The control unit prioritizes the distribution of high power to the supercapacitor module, so that the high power density of the supercapacitor module can be used to improve the overall working efficiency and reduce loss. And it can also avoid the impact of high current on the lithium battery pack, so as to achieve the purpose of protecting the composite energy and improving the service life.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1为本发明实施例的复合能源功率分配系统的结构示意图。Fig. 1 is a schematic structural diagram of a composite energy power distribution system according to an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
需要注意的是,说明书中多次出现“第一”、“第二”等表述,仅为区别不同的术语,并非用于限定不同术语之间的顺序。It should be noted that expressions such as "first" and "second" appearing multiple times in the specification are only used to distinguish different terms, and are not used to limit the order of different terms.
现有技术中,单一电池能源一直存在功率密度低、循环寿命有限、低温性能差等问题。十年来,超级电容价格下降99%,电池下降30%-40%。另外,现有技术的复合能源系统存在功率无法分配,超级电容的高功率密度和快速放电性能利用不充分,电池组不能得到充分的保护,并且构造复杂等问题。针对上述问题,本发明提供了一种可控功率分配的复合能源管理系统。In the prior art, a single battery energy source has always had problems such as low power density, limited cycle life, and poor low-temperature performance. In the past ten years, the price of supercapacitors has dropped by 99%, and the price of batteries has dropped by 30%-40%. In addition, the hybrid energy system in the prior art has problems such as power cannot be distributed, high power density and fast discharge performance of supercapacitors are not fully utilized, battery packs cannot be fully protected, and the structure is complex. In view of the above problems, the present invention provides a composite energy management system with controllable power distribution.
如图1所示,本发明实施例提供一种复合能源功率分配系统,所述复合能源功率分配系统包括:复合能源及控制装置,复合能源由锂电池组及超级电容器模组组成,控制装置由控制单元、第一DC/DC转换器及第二DC/DC转换器组成。As shown in Figure 1, an embodiment of the present invention provides a composite energy power distribution system, the composite energy power distribution system includes: a composite energy source and a control device, the composite energy source is composed of a lithium battery pack and a supercapacitor module, and the control device consists of It consists of a control unit, a first DC/DC converter and a second DC/DC converter.
如图1所示,锂电池组连接第一DC/DC转换器,超级电容器模组连接第二DC/DC转换器,第一DC/DC转换器与第二DC/DC转换器相连接后共同连接至一负载。第一DC/DC转换器与第二DC/DC转换器的型号可以不同,具体型号可以根据与其连接的复合能源(超级电容器模组或锂电池组)的电压及负载的电压确定。锂电池组、超级电容器模组、第一DC/DC转换器、第二DC/DC转换器与负载之间的相互连接为硬件连接。As shown in Figure 1, the lithium battery pack is connected to the first DC/DC converter, the supercapacitor module is connected to the second DC/DC converter, and the first DC/DC converter and the second DC/DC converter are connected together connected to a load. The models of the first DC/DC converter and the second DC/DC converter can be different, and the specific models can be determined according to the voltage of the composite energy source (supercapacitor module or lithium battery pack) connected to it and the voltage of the load. The interconnection between the lithium battery pack, the supercapacitor module, the first DC/DC converter, the second DC/DC converter and the load is a hardware connection.
复合能源中的锂电池组和超级电容器模组通过DC/DC转换器进行连接,可以避免了锂电池组和超级电容器模组两者直接连接在一起而影响使用寿命。The lithium battery pack and the supercapacitor module in the composite energy are connected through a DC/DC converter, which can avoid the direct connection of the lithium battery pack and the supercapacitor module to affect the service life.
控制单元通过CAN通信网络与锂电池组、超级电容器模组、第一DC/DC转换器、第二DC/DC转换器及负载分别连接。控制单元可以为CPU、MCU、FPGA等,本发明不以此为限。The control unit is respectively connected with the lithium battery pack, the supercapacitor module, the first DC/DC converter, the second DC/DC converter and the load through the CAN communication network. The control unit may be CPU, MCU, FPGA, etc., and the present invention is not limited thereto.
具体实施时,复合能源中的锂电池组和超级电容器模组的电压等级可以不同,锂电池组和超级电容器模组各自电压可以根据各自需要的容量进行自由搭配,电压可调范围较宽。根据不同复合能源功率分配系统的不同需求,可以搭配不同电压等级的锂电池组和超级电容器模组,从而适应各自不同的工作环境。During specific implementation, the voltage levels of lithium battery packs and supercapacitor modules in composite energy can be different, and the respective voltages of lithium battery packs and supercapacitor modules can be freely matched according to their respective required capacities, and the voltage adjustable range is wide. According to the different needs of different hybrid energy power distribution systems, lithium battery packs and super capacitor modules of different voltage levels can be matched to adapt to different working environments.
控制单元通过CAN通信网络可以获取负载的功率需求、第一DC/DC转换器的状态数据、第二DC/DC转换器的状态数据及复合能源的状态数据等信息。根据负载的功率需求、第一DC/DC转换器的状态数据、第二DC/DC转换器的状态数据及复合能源的状态数据,控制单元可以计算锂电池组及超级电容器模组各自需要承担的功率分配,然后根据功率分配控制第一DC/DC转换器及第二DC/DC转换器分别输出相应的功率,进而控制锂电池组及超级电容器模组各自承受相应的功率。换言之,根据负载的功率需求、第一DC/DC转换器的状态数据、第二DC/DC转换器的状态数据及复合能源的状态数据,控制单元可以生成锂电池组及超级电容器模组各自需要承担的功率分配指令,通过该功率分配指令控制第一DC/DC转换器及第二DC/DC转换器分别输出相应的功率,进而控制锂电池组及超级电容器模组各自承受相应的功率。The control unit can obtain information such as the power demand of the load, the state data of the first DC/DC converter, the state data of the second DC/DC converter, and the state data of the composite energy source through the CAN communication network. According to the power demand of the load, the status data of the first DC/DC converter, the status data of the second DC/DC converter and the status data of the composite energy source, the control unit can calculate the respective burden of the lithium battery pack and the super capacitor module. Power distribution, and then control the first DC/DC converter and the second DC/DC converter to output corresponding power according to the power distribution, and then control the lithium battery pack and the supercapacitor module to bear corresponding power respectively. In other words, according to the power demand of the load, the state data of the first DC/DC converter, the state data of the second DC/DC converter, and the state data of the composite energy source, the control unit can generate the respective requirements of the lithium battery pack and the supercapacitor module. The assumed power distribution command controls the first DC/DC converter and the second DC/DC converter to output corresponding power through the power distribution command, and then controls the lithium battery pack and the supercapacitor module to bear corresponding power respectively.
本发明所述的负载,可以为汽车,其功率需求可以进行臆测,根据经验确定。第一DC/DC转换器及第二DC/DC转换器的状态数据可以包括是否故障、是否过热等。复合能源中锂电池组及超级电容器模组的状态数据包括锂电池组及超级电容器模组的荷电状态等,本发明不以此为限。The load described in the present invention can be a car, and its power demand can be guessed and determined based on experience. The status data of the first DC/DC converter and the second DC/DC converter may include whether it is faulty, whether it is overheated, and the like. The state data of the lithium battery pack and the supercapacitor module in the composite energy source includes the state of charge of the lithium battery pack and the supercapacitor module, etc., and the present invention is not limited thereto.
在不同工作模式下,控制单元控制策略有所不同,不同工作模式包括复合能源的放电模式,复合能源的充电模式及负载空闲模式。该控制单元可以对复合能源在各种不同模式下工作时的充放电功率进行合理的分配并对复合能源系统的各部件工作状态进行监控。下面具体描述控制单元在不同工作模式下对第一DC/DC转换器、第二DC/DC转换器、锂电池组及超级电容器模组的控制及监控情况。In different working modes, the control strategy of the control unit is different, and the different working modes include the discharging mode of the composite energy, the charging mode of the composite energy and the load idle mode. The control unit can reasonably allocate the charge and discharge power of the composite energy source when it works in various modes and monitor the working status of each component of the composite energy system. The following describes in detail how the control unit controls and monitors the first DC/DC converter, the second DC/DC converter, the lithium battery pack and the supercapacitor module under different working modes.
复合能源的放电模式:Discharge mode of composite energy:
第一种情况:当复合能源处于放电模式时,并且负载需求功率一定时,控制单元控制超级电容器模组以第一放电功率进行放电,控制锂电池组以第二放电功率进行放电;其中第一放电功率大于第二放电功率,并且第一放电功率与第二放电功率之和等于负载需求功率。The first case: when the composite energy source is in the discharge mode and the load demand power is constant, the control unit controls the supercapacitor module to discharge with the first discharge power, and controls the lithium battery pack to discharge with the second discharge power; where the first The discharge power is greater than the second discharge power, and the sum of the first discharge power and the second discharge power is equal to the load demand power.
第一放电功率大于第二放电功率,控制单元优先将大功率分配给超级电容器模组,从而利用超级电容器模组的高功率密度,提高整体的工作效率,减少损耗。并且还可以避免大电流对锂电池组的冲击,从而达到保护复合能源,提高使用寿命的目的。The first discharge power is greater than the second discharge power, and the control unit preferentially distributes high power to the supercapacitor module, so as to utilize the high power density of the supercapacitor module to improve the overall working efficiency and reduce loss. And it can also avoid the impact of high current on the lithium battery pack, so as to achieve the purpose of protecting the composite energy and improving the service life.
举例说明,例如,负载需求功率为1,控制单元可以控制超级电容器模组的输出功率为负载需求功率的70%,控制锂电池组的输出功率为负载需求功率的30%。For example, if the load demand power is 1, the control unit can control the output power of the supercapacitor module to be 70% of the load demand power, and control the output power of the lithium battery pack to be 30% of the load demand power.
需要说明的是,在该第一种情况下,超级电容器模组的荷电状态需要不低于一第一放电设定值,锂电池组的荷电状态需要不低于一第二放电设定值。一实施例中,该第一放电设定值代表超级电容器模组的剩余电量为40%,第二放电设定值代表锂电池组的剩余电量为30%。It should be noted that, in the first case, the state of charge of the supercapacitor module must not be lower than a first discharge setting value, and the state of charge of the lithium battery pack must not be lower than a second discharge setting value. value. In one embodiment, the first discharge setting value represents 40% of the remaining power of the supercapacitor module, and the second discharge setting value represents 30% of the remaining power of the lithium battery pack.
复合能源处于放电模式下,控制单元可以周期性的获取锂电池组及超级电容器模组的工作荷电状态。When the composite energy is in the discharge mode, the control unit can periodically obtain the working state of charge of the lithium battery pack and the supercapacitor module.
第二种情况:当控制单元获知超级电容器模组的荷电状态低于上述第一放电设定值,且锂电池组的荷电状态不低于上述第二放电设定值时,控制单元可以控制超级电容器模组减小放电功率,并控制锂电池组增大放电功率。例如,将控制超级电容器模组的放电功率减小为60%,将锂电池组放电功率增大为40%或30%,本发明不以此为限。此时,超级电容器模组的放电功率与锂电池组增大放电功率之和小于或等于负载需求功率。The second situation: when the control unit learns that the state of charge of the supercapacitor module is lower than the above-mentioned first discharge set value, and the state of charge of the lithium battery pack is not lower than the above-mentioned second discharge set value, the control unit can Control the supercapacitor module to reduce the discharge power, and control the lithium battery pack to increase the discharge power. For example, the discharge power of the supercapacitor module is controlled to be reduced to 60%, and the discharge power of the lithium battery pack is increased to 40% or 30%, and the present invention is not limited thereto. At this time, the sum of the discharge power of the supercapacitor module and the increased discharge power of the lithium battery pack is less than or equal to the power required by the load.
第三种情况:当所述锂电池组的荷电状态低于上述第二放电设定值,且所述超级电容器模组的荷电状态不低于上述第一放电设定值时,控制单元可以控制超级电容器模组增大放电功率,并控制锂电池组减小放电功率。例如,将控制超级电容器模组的放电功率增大为80%,将锂电池组放电功率减小为20%或10%,本发明不以此为限。此时,超级电容器模组的放电功率与锂电池组增大放电功率之和小于或等于负载需求功率。The third case: when the state of charge of the lithium battery pack is lower than the above-mentioned second discharge set value, and the state of charge of the supercapacitor module is not lower than the above-mentioned first discharge set value, the control unit It can control the supercapacitor module to increase the discharge power, and control the lithium battery pack to reduce the discharge power. For example, increase the discharge power of the controlled supercapacitor module to 80%, and reduce the discharge power of the lithium battery pack to 20% or 10%, and the present invention is not limited thereto. At this time, the sum of the discharge power of the supercapacitor module and the increased discharge power of the lithium battery pack is less than or equal to the power required by the load.
第四种情况:当超级电容器模组的荷电状态低于上述第一放电设定值,并且锂电池组的荷电状态低于上述第二放电设定值时,控制单元可以控制超级电容器模组及锂电池组分别减小放电功率。例如,将控制超级电容器模组的放电功率减小为60%,将锂电池组放电功率减小为20%,本发明不以此为限。此时,超级电容器模组的放电功率与锂电池组增大放电功率之和小于负载需求功率。The fourth situation: when the state of charge of the supercapacitor module is lower than the above-mentioned first discharge set value, and the state of charge of the lithium battery pack is lower than the above-mentioned second discharge set value, the control unit can control the supercapacitor module Group and lithium battery pack respectively reduce the discharge power. For example, the discharge power of the supercapacitor module is controlled to be reduced to 60%, and the discharge power of the lithium battery pack is reduced to 20%, and the present invention is not limited thereto. At this time, the sum of the discharge power of the supercapacitor module and the increased discharge power of the lithium battery pack is less than the power required by the load.
上述复合能源的放电模式中,在不同的情况下对超级电容器模组的放电功率与锂电池组增大放电功率进行调控,可以充分利用超级电容器模组的快速放电性能,并且保护复合能源,避免过放电。In the discharge mode of the above composite energy, the discharge power of the supercapacitor module and the increased discharge power of the lithium battery pack are regulated under different circumstances, which can make full use of the fast discharge performance of the supercapacitor module, and protect the composite energy to avoid Overdischarge.
复合能源的充电模式:Composite energy charging mode:
第一种情况:当所述复合能源处于充电模式时,并且负载需求功率一定时,控制单元可以控制超级电容器模组及锂电池组分别以第一充电功率及第二充电功率进行充电;其中第一充电功率大于所述第二充电功率,第一充电功率与第二充电功率之和等于负载需求功率。The first situation: when the composite energy source is in the charging mode and the load demand power is constant, the control unit can control the supercapacitor module and the lithium battery pack to charge with the first charging power and the second charging power respectively; A charging power is greater than the second charging power, and the sum of the first charging power and the second charging power is equal to the power required by the load.
第一充电功率大于第二充电功率,控制单元优先将大功率分配给超级电容器模组,从而利用超级电容器模组的高功率密度,提高整体的工作效率,减少损耗。并且还可以避免大电流对锂电池组的冲击,从而达到保护复合能源,提高使用寿命的目的。The first charging power is greater than the second charging power, and the control unit preferentially distributes high power to the supercapacitor module, so as to utilize the high power density of the supercapacitor module to improve overall working efficiency and reduce loss. And it can also avoid the impact of high current on the lithium battery pack, so as to achieve the purpose of protecting the composite energy and improving the service life.
举例说明,例如,负载需求功率为1,控制单元可以控制超级电容器模组的充电功率为负载需求功率的70%,控制锂电池组的充电功率为负载需求功率的30%,本发明不以此为限。Illustrate, for example, if the load demand power is 1, the control unit can control the charging power of the supercapacitor module to be 70% of the load demand power, and control the charging power of the lithium battery pack to be 30% of the load demand power. limit.
需要说明的是,在该第一种情况下,超级电容器模组的荷电状态需要不低于一第一充电设定值,锂电池组的荷电状态需要不低于一第二充电设定值。一实施例中,该第一充电设定值代表超级电容器模组的剩余电量为80%,第二充电设定值代表锂电池组的剩余电量为80%,本发明不以此为限。It should be noted that, in the first case, the state of charge of the supercapacitor module must not be lower than a first charge setting value, and the state of charge of the lithium battery pack must not be lower than a second charge setting value. value. In one embodiment, the first charging setting value represents 80% of the remaining power of the supercapacitor module, and the second charging setting value represents 80% of the remaining power of the lithium battery pack, and the present invention is not limited thereto.
复合能源处于充电模式下,控制单元可以周期性的获取锂电池组及超级电容器模组的工作荷电状态。When the composite energy is in the charging mode, the control unit can periodically obtain the working state of charge of the lithium battery pack and the supercapacitor module.
第二种情况:当控制单元获知超级电容器模组的荷电状态高于上述第一充电设定值,且所述锂电池组的荷电状态不高于上述第二充电设定值时,控制单元可以控制超级电容器模组减小充电功率,并控制锂电池组增大充电功率。例如,控制单元可以控制超级电容器模组的充电功率为60%,并控制锂电池组充电功率为40%或35%,本发明不以此为限。此时,超级电容器模组的充电功率与锂电池组增大充电功率之和小于或等于负载需求功率。The second situation: when the control unit learns that the state of charge of the supercapacitor module is higher than the above-mentioned first charge set value, and the state of charge of the lithium battery pack is not higher than the above-mentioned second charge set value, control The unit can control the supercapacitor module to reduce the charging power, and control the lithium battery pack to increase the charging power. For example, the control unit may control the charging power of the supercapacitor module to 60%, and control the charging power of the lithium battery pack to 40% or 35%, and the present invention is not limited thereto. At this time, the sum of the charging power of the supercapacitor module and the increased charging power of the lithium battery pack is less than or equal to the power required by the load.
第三种情况:当锂电池组的荷电状态高于上述第二充电设定值,且超级电容器模组的荷电状态不高于上述第一充电设定值时,控制单元可以控制超级电容器模组增大充电功率,并控制锂电池组减小充电功率。例如,将控制超级电容器模组的充电功率增大为75%,将锂电池组充电功率减小为20%或25%,本发明不以此为限。此时,超级电容器模组的充电功率与锂电池组增大充电功率之和小于或等于负载需求功率。The third case: when the state of charge of the lithium battery pack is higher than the above-mentioned second charging set value, and the state of charge of the supercapacitor module is not higher than the above-mentioned first charge set value, the control unit can control the supercapacitor The module increases the charging power, and controls the lithium battery pack to reduce the charging power. For example, the charging power of the supercapacitor module is controlled to be increased to 75%, and the charging power of the lithium battery pack is reduced to 20% or 25%, and the present invention is not limited thereto. At this time, the sum of the charging power of the supercapacitor module and the increased charging power of the lithium battery pack is less than or equal to the power required by the load.
第四种情况:当超级电容器模组的荷电状态高于上述第一充电设定值,并且锂电池组的荷电状态高于上述第二充电设定值时,控制单元可以控制超级电容器模组及锂电池组分别减小充电功率。例如,将控制超级电容器模组的充电功率减小为60%,将锂电池组充电功率减小为20%,本发明不以此为限。此时,超级电容器模组的充电功率与锂电池组增大充电功率之和小于负载需求功率。The fourth situation: when the state of charge of the supercapacitor module is higher than the above-mentioned first charging setting value, and the charging state of the lithium battery pack is higher than the above-mentioned second charging setting value, the control unit can control the supercapacitor module The battery pack and the lithium battery pack respectively reduce the charging power. For example, the charging power of the supercapacitor module is controlled to be reduced to 60%, and the charging power of the lithium battery pack is reduced to 20%, and the present invention is not limited thereto. At this time, the sum of the charging power of the supercapacitor module and the increased charging power of the lithium battery pack is less than the power required by the load.
上述复合能源的充电模式中,在不同的情况下对超级电容器模组的充电功率与锂电池组增大充电功率进行调控,可以充分利用超级电容器模组的快速充电性能,并且保护复合能源,避免过充电。In the charging mode of the above composite energy, the charging power of the supercapacitor module and the increased charging power of the lithium battery pack are regulated under different circumstances, which can make full use of the fast charging performance of the supercapacitor module, protect the composite energy, and avoid Overcharged.
负载空闲模式:Load idle mode:
第一种情况:负载处于空闲时,如果超级电容器模组的荷电状态低于一第一预设最低临界值时(即超级电容器模组的荷电状态过低),控制单元可以控制锂电池组对超级电容器模组进行充电。一实施例中,该第一预设最低临界值可以设为20%,本发明不以此为限。The first case: when the load is idle, if the state of charge of the supercapacitor module is lower than a first preset minimum critical value (that is, the state of charge of the supercapacitor module is too low), the control unit can control the lithium battery group to charge the supercapacitor module. In an embodiment, the first preset minimum threshold may be set at 20%, which is not limited in the present invention.
第二种情况:负载处于空闲时,当超级电容器模组的荷电状态高于一第一预设最高临界值时,控制单元可以控制超级电容器模组对锂电池组进行充电。一实施例中,该第一预设最低临界值可以设为90%,本发明不以此为限。The second situation: when the load is idle, when the state of charge of the supercapacitor module is higher than a first preset maximum threshold, the control unit can control the supercapacitor module to charge the lithium battery pack. In an embodiment, the first preset minimum threshold may be set to 90%, which is not limited in the present invention.
第三种情况:负载处于空闲时,当锂电池组的荷电状态低于一第二预设最低临界值时,控制单元可以控制超级电容器模组对锂电池组进行充电。一实施例中,该第二预设最低临界值可以设为15%,本发明不以此为限。The third situation: when the load is idle, when the state of charge of the lithium battery pack is lower than a second preset minimum critical value, the control unit can control the supercapacitor module to charge the lithium battery pack. In one embodiment, the second preset minimum threshold may be set at 15%, but the present invention is not limited thereto.
第四种情况:负载处于空闲时,当锂电池组的荷电状态高于一第二预设最高临界值时,控制单元可以控制锂电池组对超级电容器模组进行充电。一实施例中,该第二预设最低临界值可以设为85%,本发明不以此为限。Fourth situation: when the load is idle, when the state of charge of the lithium battery pack is higher than a second preset maximum critical value, the control unit can control the lithium battery pack to charge the supercapacitor module. In an embodiment, the second preset minimum threshold may be set to 85%, which is not limited in the present invention.
本发明利用了超级电容的低温性、高功率密度、超长循环使用次数等优势去弥补锂电池的劣势,形成了一个更高效,更环保的复合能源管理系统。The present invention makes use of the advantages of supercapacitors such as low temperature performance, high power density, and ultra-long cycle times to make up for the disadvantages of lithium batteries, forming a more efficient and more environmentally friendly composite energy management system.
本发明的复合能源功率分配系统可用于电动大巴、电动轿车、储能等场合,还可用于改善现有燃油车启动性能及提高燃油经济性。国家《节能与新能源汽车产业发展规划》中明确指出“以纯电驱动为新能源汽车发展和汽车工业转型的主要战略取向,当前重点推进纯电动汽车和插电式混合动力汽车产业化,推广普及非插电式混合动力汽车、节能内燃机汽车,提升我国汽车产业整体技术水平。到2015年,纯电动汽车和插电式混合动力汽车累计产销量力争达到50万辆;到2020年,纯电动汽车和插电式混合动力汽车生产能力达200万辆、累计产销量超过500万辆,燃料电池汽车、车用氢能源产业与国际同步发展”。此外,《2013-2018年中国电池管理系统(BMS)市场行情态势与发展前景研究报告》中指出2020年BMS的市场容量将达到360亿。由此可见,电动汽车能源管理产业前景广阔,令人期待。本发明的实施符合政策需求,利用先进的混合能源管理技术,在电动汽车能源管理领域将逐渐形成规范化、标准化的研发体系及产业化体系,并大规模推广应用。The composite energy power distribution system of the present invention can be used in electric buses, electric cars, energy storage and other occasions, and can also be used to improve the starting performance and fuel economy of existing fuel vehicles. The national "Energy Conservation and New Energy Automobile Industry Development Plan" clearly pointed out that "pure electric drive is the main strategic orientation for the development of new energy vehicles and the transformation of the automobile industry, and the current focus is on promoting the industrialization of pure electric vehicles and plug-in hybrid electric Non-plug-in hybrid vehicles, energy-saving internal combustion engine vehicles, and improve the overall technical level of my country's auto industry. By 2015, the cumulative production and sales of pure electric vehicles and plug-in hybrid vehicles will reach 500,000; by 2020, pure electric vehicles The production capacity of plug-in hybrid electric vehicles and plug-in hybrid vehicles will reach 2 million, and the cumulative production and sales will exceed 5 million. In addition, the "2013-2018 China Battery Management System (BMS) Market Situation and Development Prospect Research Report" pointed out that the market capacity of BMS will reach 36 billion in 2020. It can be seen that the electric vehicle energy management industry has broad prospects and is exciting. The implementation of the present invention complies with policy requirements, and by utilizing advanced mixed energy management technology, a standardized and standardized research and development system and industrialization system will gradually be formed in the field of electric vehicle energy management, and will be popularized and applied on a large scale.
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art should understand that the embodiments of the present invention may be provided as methods, systems, or computer program products. Accordingly, the present invention can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present invention is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It should be understood that each procedure and/or block in the flowchart and/or block diagram, and a combination of procedures and/or blocks in the flowchart and/or block diagram can be realized by computer program instructions. These computer program instructions may be provided to a general purpose computer, special purpose computer, embedded processor, or processor of other programmable data processing equipment to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing equipment produce a An apparatus for realizing the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions The device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process, thereby The instructions provide steps for implementing the functions specified in the flow chart or blocks of the flowchart and/or the block or blocks of the block diagrams.
本发明中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。In the present invention, specific examples have been applied to explain the principles and implementation methods of the present invention, and the descriptions of the above examples are only used to help understand the method of the present invention and its core idea; meanwhile, for those of ordinary skill in the art, according to this The idea of the invention will have changes in the specific implementation and scope of application. To sum up, the contents of this specification should not be construed as limiting the present invention.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510627138.9A CN105162236A (en) | 2015-09-28 | 2015-09-28 | Composite energy power distribution system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510627138.9A CN105162236A (en) | 2015-09-28 | 2015-09-28 | Composite energy power distribution system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105162236A true CN105162236A (en) | 2015-12-16 |
Family
ID=54803027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510627138.9A Pending CN105162236A (en) | 2015-09-28 | 2015-09-28 | Composite energy power distribution system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105162236A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105703452A (en) * | 2016-04-25 | 2016-06-22 | 中物院成都科学技术发展中心 | Power supply system provided with power supply battery and super capacitor and power supply method |
CN109760522A (en) * | 2018-12-25 | 2019-05-17 | 江苏理工学院 | Power distribution method of vehicle composite power supply based on multiple inference rules |
CN109835199A (en) * | 2018-12-25 | 2019-06-04 | 江苏理工学院 | Vehicle-mounted composite power source power distribution optimization method |
CN110336355A (en) * | 2019-07-11 | 2019-10-15 | Oppo广东移动通信有限公司 | A kind of charging method, charging unit and terminal device |
CN113263920A (en) * | 2021-04-27 | 2021-08-17 | 西南交通大学 | Vehicle-mounted hybrid energy storage system of electrified railway and energy management method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101170205A (en) * | 2007-12-06 | 2008-04-30 | 中国科学院电工研究所 | Lithium-ion battery-supercapacitor hybrid energy storage photovoltaic system |
CN102570951A (en) * | 2012-02-23 | 2012-07-11 | 苏州市职业大学 | Method for implementing variable speed and constant frequency of wind power generator by using supercapacitor |
CN102700422A (en) * | 2012-06-26 | 2012-10-03 | 唐山轨道客车有限责任公司 | Power supply device and power supply system of hybrid railway vehicle, and railway vehicle |
CN103501022A (en) * | 2013-09-22 | 2014-01-08 | 广西电网公司 | Hybrid energy storage system power distribution method based on states of charge |
CN103701144A (en) * | 2013-12-11 | 2014-04-02 | 清华大学 | Power distribution method for hybrid energy storage system |
-
2015
- 2015-09-28 CN CN201510627138.9A patent/CN105162236A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101170205A (en) * | 2007-12-06 | 2008-04-30 | 中国科学院电工研究所 | Lithium-ion battery-supercapacitor hybrid energy storage photovoltaic system |
CN102570951A (en) * | 2012-02-23 | 2012-07-11 | 苏州市职业大学 | Method for implementing variable speed and constant frequency of wind power generator by using supercapacitor |
CN102700422A (en) * | 2012-06-26 | 2012-10-03 | 唐山轨道客车有限责任公司 | Power supply device and power supply system of hybrid railway vehicle, and railway vehicle |
CN103501022A (en) * | 2013-09-22 | 2014-01-08 | 广西电网公司 | Hybrid energy storage system power distribution method based on states of charge |
CN103701144A (en) * | 2013-12-11 | 2014-04-02 | 清华大学 | Power distribution method for hybrid energy storage system |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105703452A (en) * | 2016-04-25 | 2016-06-22 | 中物院成都科学技术发展中心 | Power supply system provided with power supply battery and super capacitor and power supply method |
CN109760522A (en) * | 2018-12-25 | 2019-05-17 | 江苏理工学院 | Power distribution method of vehicle composite power supply based on multiple inference rules |
CN109835199A (en) * | 2018-12-25 | 2019-06-04 | 江苏理工学院 | Vehicle-mounted composite power source power distribution optimization method |
CN109835199B (en) * | 2018-12-25 | 2020-10-30 | 江苏理工学院 | Power distribution optimization method for vehicle-mounted composite power supply |
CN110336355A (en) * | 2019-07-11 | 2019-10-15 | Oppo广东移动通信有限公司 | A kind of charging method, charging unit and terminal device |
CN110336355B (en) * | 2019-07-11 | 2022-04-22 | Oppo广东移动通信有限公司 | Charging method, charging device and terminal equipment |
CN113263920A (en) * | 2021-04-27 | 2021-08-17 | 西南交通大学 | Vehicle-mounted hybrid energy storage system of electrified railway and energy management method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11374508B2 (en) | Electric drive system and energy management method | |
Cao et al. | A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles | |
CN203984052U (en) | AC-battery power source | |
CN105162236A (en) | Composite energy power distribution system | |
CN105667330A (en) | Control method and system for DCDC (direct current direct current) | |
WO2013038763A1 (en) | Secondary battery system and method for charging/discharging same | |
CN104505926B (en) | Power battery pack charging system and method | |
CN205686199U (en) | The composite power source of power-type and accumulation energy type lithium electricity composition and electric automobile composite power source | |
CN104163116B (en) | The energy management method of automobile-used composite energy storage system | |
Kim et al. | A multicell battery system design for electric and plug-in hybrid electric vehicles | |
CN105553057A (en) | Power grid protection based electric vehicle charging station control system | |
CN106218440A (en) | The power intelligent regulation circuit of a kind of charger and method | |
Liu et al. | A MPC based energy management strategy for battery-supercapacitor combined energy storage system of HEV | |
CN107565638A (en) | The integrated service system of electrokinetic cell bag | |
CN102931694B (en) | Charging management method for parallel multi-module lithium ion storage battery power supply | |
CN109655753A (en) | A kind of evaluation method of battery pack SOC | |
CN109017351A (en) | Battery charge equalization system timer | |
De Freige et al. | Power & energy ratings optimization in a fast-charging station for PHEV batteries | |
CN109466381B (en) | Power supply system | |
Somnatha et al. | Review paper on electric vehicle charging and battery management system | |
CN114435341B (en) | Power generation method and device of hybrid electric vehicle and vehicle | |
CN104354600A (en) | Storage battery and fuel cell hybrid power supply system | |
CN105620296B (en) | Brake of electric vehicle Poewr control method, apparatus and system | |
CN204947685U (en) | A kind of quick charge device | |
US20170136915A1 (en) | Power System Using Switched Reluctance Motor as Power Transformer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20151216 |