CN105160195A - 一种高炉炉温预测模型及其应用 - Google Patents

一种高炉炉温预测模型及其应用 Download PDF

Info

Publication number
CN105160195A
CN105160195A CN201510606924.0A CN201510606924A CN105160195A CN 105160195 A CN105160195 A CN 105160195A CN 201510606924 A CN201510606924 A CN 201510606924A CN 105160195 A CN105160195 A CN 105160195A
Authority
CN
China
Prior art keywords
beta
overbar
predicating
blast furnace
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510606924.0A
Other languages
English (en)
Inventor
石琳
李明昕
曹富军
张景
赵娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia University of Science and Technology
Original Assignee
Inner Mongolia University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia University of Science and Technology filed Critical Inner Mongolia University of Science and Technology
Priority to CN201510606924.0A priority Critical patent/CN105160195A/zh
Publication of CN105160195A publication Critical patent/CN105160195A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

本发明公开了一种高炉炉温预测模型及其应用,该模型由三个公式组成,其应用方法包括如下步骤:获得输入时间序列T(t-1,t-2)和P,得出预测系数beta;使用预测系数beta估计出残差ζ;对残差进行调整,重新估计Beta,预测T(t)。本发明与传统的TGARCH模型相比,增加了扰动项pt-1,pt-2,提高了预测命中率。

Description

一种高炉炉温预测模型及其应用
技术领域
本发明涉及信息预测技术领域,具体涉及一种高炉炉温预测模型及其应用。
背景技术
在复杂的高炉炼铁过程中,控制合理的炉温是高炉生产稳定、高效、顺行的关键因素。然而,影响高炉炉温的参数众多且各个参数之间有较强的相关性,更重要的是大多数参数有较大的时间滞后性等,这些都是造成高炉炉温很难预测。
现有一种高炉炉温预测方法,是通过TGARCH模型来进行预测的,用户根据历史数值,即各个历史时刻高炉中的铁水温度值以及通过公式 d T t ‾ = β 1 + β 2 d T t - 1 ‾ + β 3 d T t - 2 ‾ + β 4 d P t - 1 ‾ + β 5 d P t - 2 ‾ + ξ t , 计算可得预测的现在时刻的铁水温度值这种预测方法受原有时间序列(即历史数值)影响,预测命中率较低。
发明内容
为解决上述问题,本发明提供了一种高炉炉温预测模型及其应用,可以提高预测命中率。
为实现上述目的,本发明采取的技术方案为:
一种高炉炉温预测模型,所述模型由以下三个公式组成:
d T t ‾ = β 1 + β 2 d T t - 1 ‾ + β 3 d T t - 2 ‾ + β 4 d P t - 1 ‾ + β 5 d P t - 2 ‾ + ξ t
ξ t = αξ t - 1 2 + δN 1 - 1 ξ t - 1 2
式中,T(t),T(t-1),T(t-2)表示不同时间铁水温度序列;pt-1,pt-2表示扰动项,即使用的喷煤量;ξ表示残差序列;ξ(t,t-1)是不同的残差序列;N(t-1)是一个指示ξt大于等于0时,N取0;ξt小于0时,N取1;其他的变量α,β,δ都是估计出来的参数。
上述高炉炉温预测模型的应用,包括如下步骤:
S1、获得输入时间序列T(t-1,t-2)和P,得出预测系数beta;
S2、使用预测系数beta估计出残差ξ;
S3、对残差进行调整,重新估计Beta,预测T(t)。
本发明具有以下有益效果:
与传统的TGARCH模型相比,增加了扰动项pt-1,pt-2,提高了预测命中率。
具体实施方式
为了使本发明的目的及优点更加清楚明白,以下结合实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施提供了一种高炉炉温预测模型,所述模型由以下三个公式组成:
d T t ‾ = β 1 + β 2 d T t - 1 ‾ + β 3 d T t - 2 ‾ + β 4 d P t - 1 ‾ + β 5 d P t - 2 ‾ + ξ t
ξ t = αξ t - 1 2 + δN t - 1 ξ t - 1 2
式中,T(t),T(t-1),T(t-2)表示不同时间铁水温度序列;pt-1,pt-2表示扰动项,即使用的喷煤量;ξ表示残差序列;ξ(t,t-1)是不同的残差序列;N(t-1)是一个指示ξt大于等于0时,N取0;ξt小于0时,N取1;其他的变量α,β,δ都是估计出来的参数。与以往的tgarch模型相比,本发明增加了扰动项,重新编写了程序。
本发明实施例提供了上述高炉炉温预测模型的应用方法,包括如下步骤:
S1、获得输入时间序列T(t-1,t-2)和P,得出预测系数beta;
S2、使用预测系数beta估计出残差ξ;
S3、对残差进行调整,重新估计Beta,预测T(t)
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (2)

1.一种高炉炉温预测模型,其特征在于,所述模型由以下三个公式组成:
d T t ‾ = β 1 + β 2 d T t - 1 ‾ + β 3 d T t - 2 ‾ + β 4 d P t - 1 ‾ + β 5 d P t - 2 ‾ + ξ t
ξ t = αξ t - 1 2 + δN t - 1 ξ t - 1 2
式中,T(t),T(t-1),T(t-2)表示不同时间铁水温度序列;pt-1,pt-2表示扰动项,即使用的喷煤量;ξ表示残差序列;ξ(t,t-1)是不同的残差序列;N(t-1)是一个指示ξt大于等于0时,N取0;ξt小于0时,N取1。
2.如权利要求1所述的高炉炉温预测模型的应用,其特征在于,包括如下步骤:
S1、获得输入时间序列T(t-1,t-2)和P,得出预测系数beta;
S2、使用预测系数beta估计出残差ξ;
S3、对残差进行调整,重新估计Beta,预测T(t)。
CN201510606924.0A 2015-09-12 2015-09-12 一种高炉炉温预测模型及其应用 Pending CN105160195A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510606924.0A CN105160195A (zh) 2015-09-12 2015-09-12 一种高炉炉温预测模型及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510606924.0A CN105160195A (zh) 2015-09-12 2015-09-12 一种高炉炉温预测模型及其应用

Publications (1)

Publication Number Publication Date
CN105160195A true CN105160195A (zh) 2015-12-16

Family

ID=54801051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510606924.0A Pending CN105160195A (zh) 2015-09-12 2015-09-12 一种高炉炉温预测模型及其应用

Country Status (1)

Country Link
CN (1) CN105160195A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101211383A (zh) * 2007-12-21 2008-07-02 浙江大学 一种高炉铁水硅含量的特征分析预报方法
CN103514338A (zh) * 2012-06-15 2014-01-15 上海宝信软件股份有限公司 热风炉高炉煤气使用流量预测方法
WO2014034964A2 (en) * 2012-08-31 2014-03-06 Kabushiki Kaisha Toshiba Method and system for predicting material structure
CN104498654A (zh) * 2014-12-29 2015-04-08 燕山大学 一种高炉炉温变化趋势确定方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101211383A (zh) * 2007-12-21 2008-07-02 浙江大学 一种高炉铁水硅含量的特征分析预报方法
CN103514338A (zh) * 2012-06-15 2014-01-15 上海宝信软件股份有限公司 热风炉高炉煤气使用流量预测方法
WO2014034964A2 (en) * 2012-08-31 2014-03-06 Kabushiki Kaisha Toshiba Method and system for predicting material structure
CN104498654A (zh) * 2014-12-29 2015-04-08 燕山大学 一种高炉炉温变化趋势确定方法及装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
任超凡: "基于影响因素与时间序列组合预测铁水温度的TGARCH混合模型", 《万方数据》 *
潘伟 等: "TGARCH 模型预测高炉铁水硅质量分数", 《浙江大学学报》 *
石琳 等: "预测铁水硅含量的TGARCH 模型研究", 《内蒙古科技大学学报》 *
贺诗波 等: "高炉硅含量预测控制的时间序列混合建模", 《浙江大学学报》 *

Similar Documents

Publication Publication Date Title
Collard-Wexler et al. Reallocation and technology: Evidence from the US steel industry
CN102031319B (zh) 一种高炉铁水含硅量的预报方法
CN103260061A (zh) 一种上下文感知的iptv节目推荐方法
WO2013077906A3 (en) Method for predicting chloride-induced corrosion
CN103320559B (zh) 一种高炉铁水硫含量预报方法
CN105160195A (zh) 一种高炉炉温预测模型及其应用
Fan et al. Constitutive relationship and hot deformation behavior of Armco-type pure iron for a wide range of temperature
CN104376367B (zh) 一种基于气温因素和非线性自回归时序模型的短期负荷预测方法
Li et al. A novel multiple-input–multiple-output random vector functional-link networks for predicting molten iron quality indexes in blast furnace
Yin et al. Combination weighting method based on maximizing deviations and normalized constraint condition
Ren A time-enhanced collaborative filtering approach
CN103981433A (zh) 一种耐磨铸球及其制作工艺
Romero-Duque et al. Estimation of the Effects of Regional Climate Change Scenarios on the Water Balance of a Basin in the Middle Magdalena Valley
Lakshmanan et al. A Hybrid Modelling Approach Based on Deep Learning for the Prediction of the Silicon Content in the Blast Furnace
Liu et al. Weight coefficient determination for case feature based on attribute importance
Seguinot et al. A database of Last Glacial Maximum transfluences and crosswise divides based on sub-kilometer Alpine ice flow modelling
Schwarz et al. Beyond Temperatures: An Econometrically-Estimated Damage Function of 21st Century Climate Impacts using Extreme Climate Indicators
Kaplan et al. A Novel Method for Quantifying Human-Induced Changes in Riverine Hydrology under Nonstationary Climate Conditions using Incomplete Data
Herman et al. Quantification of glacial erosion in the Alps using OSL-thermochronology
Jurado et al. Estimating the impact of seasonal extremal dependence with a Max-Stable process for modeling extreme precipitation events over Berlin-Brandenburg
Armstrong et al. The Effect of Pressure on Iron Speciation in Silicate Melts at a Fixed Oxygen Fugacity: The Possibility of a Redox Profile Through a Terrestrial Magma Ocean
Devoie et al. Understanding the hydrological response of groundwater discharge from freezing soils to a warming climate
Kivenzor et al. Luxury consumption in brics: Rationale behind ‘irrational’consumption patterns
Wang et al. Principal component regression approach for forecasting silicon content in hot metal
Diabe Ndiaye et al. Forced modulations of Sahel rainfall at decadal timescale over the 20th Century.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20151216