CN105140939B - The multi-objective coordinated control method of active load based on energy-storage system - Google Patents

The multi-objective coordinated control method of active load based on energy-storage system Download PDF

Info

Publication number
CN105140939B
CN105140939B CN201510487376.4A CN201510487376A CN105140939B CN 105140939 B CN105140939 B CN 105140939B CN 201510487376 A CN201510487376 A CN 201510487376A CN 105140939 B CN105140939 B CN 105140939B
Authority
CN
China
Prior art keywords
mrow
msub
mtd
power
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510487376.4A
Other languages
Chinese (zh)
Other versions
CN105140939A (en
Inventor
杜先波
徐钢
陈斌
李辰龙
顾文
喻建
蒋琛
杨春
闫涛
徐泳淼
叶渊灵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Southeast University
State Grid Jiangsu Electric Power Co Ltd
Jiangsu Fangtian Power Technology Co Ltd
Original Assignee
State Grid Corp of China SGCC
Southeast University
State Grid Jiangsu Electric Power Co Ltd
Jiangsu Fangtian Power Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Southeast University, State Grid Jiangsu Electric Power Co Ltd, Jiangsu Fangtian Power Technology Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201510487376.4A priority Critical patent/CN105140939B/en
Publication of CN105140939A publication Critical patent/CN105140939A/en
Application granted granted Critical
Publication of CN105140939B publication Critical patent/CN105140939B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种基于储能系统的主动负荷多目标协调控制方法,所述多目标包括区域电网联络线功率和、用户经济效益和电力公司运营效益,由用户根据实际需求调整运行目标的权重,通过分析需求侧电源出力、储能系统荷电状态、用户用能需求、实时电价自动规划储能系统的实时出力,实现多目标运行整体结果最优。控制步骤包括:数据采集;参数设置;数据筛选;逐步寻优;指令执行。本发明所述的控制方法可以兼顾用户和电网的利益,显著提高智能需求侧的经济效益和社会效益,同时该策略可以用于智能需求侧建设初期的储能容量规划投资中,以得到最佳投入/产出比。

The invention discloses a multi-objective coordinated control method for active loads based on an energy storage system. The multi-objectives include the power sum of the tie line of the regional power grid, the user's economic benefits and the power company's operating benefits, and the user adjusts the weight of the operation target according to actual needs. , by analyzing the power output of the demand side, the state of charge of the energy storage system, the user's energy demand, and the real-time electricity price to automatically plan the real-time output of the energy storage system to achieve the optimal overall result of multi-objective operation. The control steps include: data collection; parameter setting; data screening; step-by-step optimization; instruction execution. The control method described in the present invention can take into account the interests of users and the power grid, and significantly improve the economic and social benefits of the smart demand side. Input-output ratio.

Description

基于储能系统的主动负荷多目标协调控制方法Active load multi-objective coordinated control method based on energy storage system

技术领域technical field

本发明涉及电力技术领域,尤其涉及一种基于储能系统的主动负荷多目标协调控制方法。The invention relates to the field of electric power technology, in particular to an active load multi-objective coordinated control method based on an energy storage system.

背景技术Background technique

智能需求侧是智能电网在用电侧的延伸,属于智能电网的重点和热点研究领域。与传统需求侧不同,智能需求侧中不仅出现了分布式可再生能源和储能装置,新能源发电的波动性带来的电能质量问题、潮流的双向流通特性都对原有的检测与控制方法都提出了极大地挑战;同时,得益于通信技术的高速发展,用电设备与电网之间存在信息交互的可能,使得需求侧的可观性和可控性得到极大加强,为智能需求侧的实现提供了坚实保障。The smart demand side is the extension of the smart grid on the power consumption side, and it belongs to the key and hot research field of the smart grid. Different from the traditional demand side, not only distributed renewable energy and energy storage devices appear in the intelligent demand side, but also the power quality problems brought about by the volatility of new energy generation and the two-way flow characteristics of the power flow all affect the original detection and control methods. At the same time, thanks to the rapid development of communication technology, there is the possibility of information interaction between electrical equipment and the grid, which greatly enhances the observability and controllability of the demand side. Realization provides a solid guarantee.

智能需求侧将通信技术与电力控制技术相结合,控制对象由传统的被动式负荷转变为具有主动性的分布式电源、储能,以及可控负荷。分布式可再生能源出力的随机性、间歇性和波动性对电能质量、系统稳定和电网调度提出了挑战,需要利用储能装置改善电能质量、抑制功率波动、提高电能利用效率。此外,储能系统还可为智能需求侧提供电压支撑和不间断电源供应(Uninterrupted Power Supply,UPS),缓解电网高峰阻塞以及分时电价管理等。The intelligent demand side combines communication technology with power control technology, and the control object is changed from traditional passive load to active distributed power supply, energy storage, and controllable load. The randomness, intermittence, and volatility of distributed renewable energy output pose challenges to power quality, system stability, and grid scheduling. It is necessary to use energy storage devices to improve power quality, suppress power fluctuations, and improve power utilization efficiency. In addition, the energy storage system can also provide voltage support and uninterrupted power supply (Uninterrupted Power Supply, UPS) for the intelligent demand side, alleviate peak grid congestion and time-of-use electricity price management.

因此,结合储能系统参与响应的特点,研究一种基于多目标优化来同时兼顾用户侧和电网侧利益的储能系统参与响应的主动负荷协调控制方法,在确保用户和电网安全的前提下,实现搜集、整理电价信息、气象信息和用户用能需求,规划、控制储能系统的出力。在不改变用户用能意愿的前提下,优化馈电和用电行为,提高经济效益。Therefore, combined with the characteristics of the energy storage system participating in the response, an active load coordination control method for the energy storage system participating in the response based on multi-objective optimization to take into account the interests of both the user side and the grid side is studied. On the premise of ensuring the safety of users and the grid, Realize the collection and sorting of electricity price information, weather information and user energy demand, and plan and control the output of the energy storage system. On the premise of not changing the user's willingness to use energy, optimize the power feeding and power consumption behavior to improve economic benefits.

目前,有关文献对于智能需求侧储能系统的协调控制研究仅限于理论阶段,现有控制策略主要缺陷在于:一方面,没有综合需求侧负荷的控制特性和供电信息,没能在最大限度满足用户用能需求的前提下制定合理的控制方案;另一方面,现有的优化策略没能同时兼顾电网运营商和用户的利益,没能同时实现经济效益和社会效益的提升。At present, the research on the coordinated control of intelligent demand-side energy storage systems in relevant literature is limited to the theoretical stage. The main defects of the existing control strategies are: on the one hand, there is no integrated control characteristics of demand-side loads and power supply information, and they cannot satisfy users to the maximum extent. On the premise of energy demand, make a reasonable control plan; on the other hand, the existing optimization strategy fails to take into account the interests of grid operators and users at the same time, and fails to achieve the improvement of economic and social benefits at the same time.

发明内容Contents of the invention

本发明所要解决的技术问题在于,克服现有智能需求侧控制策略的缺陷,从避免联络线功率过大以及提高用户和电力公司经济效益的角度出发,提出一种基于储能系统的主动负荷多目标协调控制方法,在保证用户和电网安全的前提下,通过收集整理电价信息、气象信息和用户用能需求,来规划、控制智能需求侧储能系统出力,实现经济效益和社会效益的提升。The technical problem to be solved by the present invention is to overcome the defects of the existing intelligent demand-side control strategy, and to propose an active load multi-level energy storage system based The target coordination control method, under the premise of ensuring the safety of users and the power grid, plans and controls the output of the intelligent demand-side energy storage system by collecting and sorting out electricity price information, weather information and user energy demand, so as to realize the improvement of economic and social benefits.

为了解决上述技术问题,本发明提供了一种基于储能系统的主动负荷多目标协调控制方法,包括:In order to solve the above technical problems, the present invention provides a multi-objective coordinated control method for active loads based on energy storage systems, including:

设置参数,所述参数包括:控制精度T,控制权重系数储能系统最大充放电转换次数Ncdmax,储能系统最小充/放电持续时间Tmin,储能系统充电截止荷电状态SOCmax,储能系统放电截止荷电状态SOCmin;其中,所述控制精度T=1440/N,表示将当日的1440分钟分成N个长度为T的时间段,表示联络线功率Ppcc的权重系数,表示用户经济效益Bue的权重系数,表示电力公司运营效益Bco的权重系数,且 Set parameters, the parameters include: control precision T, control weight coefficient and The maximum number of charge-discharge transitions N cdmax of the energy storage system, the minimum charge/discharge duration of the energy storage system T min , the state of charge SOC max at the end of charge of the energy storage system, and the state of charge SOC min of the end of discharge of the energy storage system; wherein, the control Accuracy T=1440/N, which means dividing 1440 minutes of the day into N time periods of length T, Represents the weight coefficient of tie line power P pcc , Represents the weight coefficient of the user's economic benefit B ue , Represents the weight coefficient of the power company's operating benefit B co , and

获取数据,所述数据包括基于气象预测的当日第n个时间段的需求侧电源出力Ppv(n)、储能系统荷电状态SOC(n)、用户用电需求L(n),以及电网高峰时间段tp、电网低谷时间段tv、电网高峰电价u11和电网低谷电价u12;其中,n=1,2,3…N;Obtaining data, the data includes demand-side power output P pv (n) for the nth time period of the day based on meteorological forecasts, the state of charge of the energy storage system SOC (n), user power demand L (n), and the power grid peak time period t p , power grid valley time period t v , power grid peak power price u 11 , and power grid low power price u 12 ; where, n=1,2,3...N;

从储能系统的出力控制曲线中筛选出符合约束条件的有效控制曲线组合C(n)={C1(n),C2(n),…,Ci(n),…,Cm(n)},其中,m为有效控制曲线数量;From the output control curve of the energy storage system, select the effective control curve combination C(n)={C 1 (n), C 2 (n), ..., C i (n), ..., C m ( n)}, where m is the number of effective control curves;

根据所述有效控制曲线组合和采集的所述数据计算得到联络线功率Ppcc、用户经济效益Bue和电力公司运营效益BcoAccording to the combination of the effective control curve and the collected data, the tie line power P pcc , user economic benefit B ue and power company operating benefit B co are obtained;

将联络线功率Ppcc、用户经济效益Bue和电力公司运营效益Bco进行归一化处理后,得到优化目标函数F,其中,After the tie line power P pcc , user economic benefit B ue and power company operating benefit B co are normalized, the optimization objective function F is obtained, where,

式中,表示归一化后的联络线功率,表示归一化后的用户经济效益,表示归一化后的电力公司运营效益,分别表示联络线功率Ppcc、用户经济效益Bue和电力公司运营效益Bco的归一化系数;In the formula, Indicates the normalized tie-line power, Indicates the normalized user economic benefits, Indicates the normalized operating benefits of the power company, and Respectively represent the normalization coefficients of tie line power P pcc , user economic benefit B ue and power company operating benefit B co ;

依次将所述有效控制曲线组合带入优化目标函数F,逐步计算并获取优化目标函数F为最小值时的有效控制曲线,作为最优出力曲线;Bring the effective control curve combination into the optimization objective function F in turn, gradually calculate and obtain the effective control curve when the optimization objective function F is the minimum value, as the optimal output curve;

储能系统按照所述最优出力曲线的控制指令进行额定功率充/放电。The energy storage system performs rated power charging/discharging according to the control instruction of the optimal output curve.

进一步的,所述根据所述有效控制曲线组合和采集的所述数据计算得到联络线功率Ppcc、用户经济效益Bue和电力公司运营效益Bco,具体包括:Further, the tie line power P pcc , user economic benefit B ue and power company operating benefit B co are calculated according to the combination of the effective control curve and the collected data, specifically including:

根据所述有效控制曲线组合和采集的所述数据,计算得到联络线功率Ppcc,其中,According to the combination of the effective control curves and the collected data, the tie line power P pcc is calculated, wherein,

式中,Ppcc(n)=Ppv(n)+C(n)·Pes-Pfix(n)-(Pac(n)-Pacr(n)),Ppcc(n)表示第n个时间段的联络线功率,Pes表示储能系统的额定充电/放电功率,Pac(n)为第n个时间段可转移用电时间的负荷总功率,Pacr(n)为第n个时间段参与响应的主动负荷功率和,Pfix(n)第n个时间段的用电时间固定的负荷总功率;In the formula, P pcc (n)=P pv (n)+C(n)·P es -P fix (n)-(P ac (n)-P acr (n)), P pcc (n) represents the The power of the tie line in n time periods, P es represents the rated charging/discharging power of the energy storage system, P ac (n) is the total power of loads that can be transferred in the nth time period, P acr (n) is the The sum of the active load power participating in the response in the n time period, P fix (n) the total power of the load with a fixed power consumption time in the nth time period;

根据所述有效控制曲线和采集的所述数据计算得到用户经济收益Bue,其中,According to the effective control curve and the collected data, the user economic benefit B ue is calculated, wherein,

式中,Bue(n)=Brc(n)+Bss(n)-Cbe(n),In the formula, B ue (n)=B rc (n)+B ss (n)-C be (n),

Bue(n)表示第n个时间段的用户经济收益,Pn(n)为第n个时间段的余电上网功率,Cbe(n)为第n个时间段的用户支出的购电费用,Brc(n)为第n个时间段的用户余电上网补贴的收益,Bss(n)为第n个时间段的用户自发自用补贴收益,u2为用户余电上网电价,u3为用户自发自用电价;B ue (n) represents the user's economic benefits in the nth time period, P n (n) is the surplus electricity grid power in the nth time period, and C be (n) is the electricity purchased by the user in the nth time period Cost, B rc (n) is the income of the user’s surplus electricity on-grid subsidy in the nth time period, B ss (n) is the user’s self-use subsidy income in the nth time period, u 2 is the user’s surplus electricity on-grid electricity price, u 3 is the user's self-use electricity price;

根据采集的所述数据计算得到电力公司运营效益BcoAccording to the collected data, the operating benefit B co of the power company is calculated,

其中,式中,in, In the formula,

Bco(n)=Cbt(n)-C′bt(n)+Cal(n)-C′al(n)+B′se(n)-Bse(n)+B′id(n)-Bid(n),B co (n)=C bt (n)-C′ bt (n)+C al (n)-C′ al (n)+B′ se (n)-B se (n)+B′ id (n )-B id (n),

Bco(n)表示第n个时间段的电力公司运营效益,Cbt(n)表示主动负荷响应前第n个时间段电力公司向电厂购电成本及输电成本,Cbt'(n)表示主动负荷响应后第n个时间段电力公司向电厂购电成本及输电成本,Cal(n)表示主动负荷响应前第n个时间段电力公司实施主动负荷补偿的成本,Cal'(n)表示主动负荷响应后第n个时间段电力公司实施主动负荷补偿的成本,Bse(n)表示主动负荷响应前第n个时间段电力公司卖电收益,Bse'(n)表示主动负荷响应后第n个时间段电力公司卖电收益,Bid(n)表示主动负荷响应前第n个时间段电力公司间接收益,Bid'(n)表示主动负荷响应后第n个时间段电力公司间接收益;u01和u02分别为电力公司有功功率和无功功率的购买电价,u10为主动负荷补偿电价,ku为单位视在功率收益单价,P(n)为每个时段用能总需求,保持不变,ΔP(n)为第n个时间段主动负荷响应功率,S(n)和Pl(n)+jQl(n)为主动负荷响应前第n个时间段电力公司购买功率和线路损耗功率,S'(n)和Pl'(n)+jQl'(n)为主动负荷响应后第n个时间段电力公司购买功率和线路损耗功率。B co (n) represents the operating benefit of the power company in the nth time period, C bt (n) represents the cost of electricity purchase and transmission from the power company to the power plant in the nth time period before the active load response, and C bt '(n) represents The power purchase cost and transmission cost of the power company from the power plant in the nth time period after the active load response, C al (n) represents the cost of the power company's implementation of active load compensation in the nth time period before the active load response, C al '(n) Indicates the cost of the power company implementing active load compensation in the nth time period after the active load response, B se (n) represents the power company’s electricity sales income in the nth time period before the active load response, B se '(n) represents the active load response The power company’s income from electricity sales in the next nth time period, B id (n) represents the indirect revenue of the power company in the nth time period before the active load response, and B id '(n) represents the power company’s nth time period after the active load response Indirect income; u 01 and u 02 are the purchase price of active power and reactive power of the power company respectively, u 10 is the active load compensation price, k u is the unit price of apparent power revenue, P(n) is the energy consumption of each time period The total demand remains unchanged, ΔP(n) is the active load response power in the nth time period, S(n) and P l (n)+jQ l (n) are the power companies in the nth time period before the active load response Purchased power and line loss power, S'(n) and P l '(n)+jQ l '(n) are the purchase power and line loss power of the power company in the nth time period after the active load response.

进一步的,所述约束条件具体为:Further, the constraints are specifically:

td0-tc≥Tmin,tc0-td≥Tmin,Ncd≤Ncdmax,L(n)=-(1-k(n))·Pl,0≤Pacr(n)≤Pac,-Pes-Ppv(n)<ΔP(n)≤P(n)+Pes,Pacr(n)=k(n)·Pl=ΔP(n)-C(n)·Pes-Ppv(n),0≤k(n)≤1,C(n)∈ΩC(n) t d0 -t c ≥T min , t c0 -t d ≥T min , N cd ≤N cdmax , L(n)=-(1-k(n))·P l , 0≤P acr (n)≤ P ac , -P es -P pv (n)<ΔP(n)≤P(n)+P es , P acr (n)=k(n)·P l =ΔP(n)-C(n)· P es -P pv (n), 0≤k(n)≤1, C(n)∈Ω C(n)

Nc和Nd分别为持续充电和放电时间段个数,Ncd为一天内充放电总次数,td0为储能系统从充电状态转变为放电或热备用状态的时间点,tc0为储能系统从放电状态转变为充电或热备用状态的时间点,td为储能系统从充电或热备用状态转变为放电状态的时间点,tc为储能系统从放电或热备用状态转变为充电状态的时间点,Pac为可转移用电时间的负荷总功率,ΩC(n)为C(n)的取值约束。N c and N d are the number of continuous charging and discharging time periods respectively, N cd is the total number of charging and discharging times in one day, t d0 is the time point when the energy storage system changes from charging state to discharging or hot standby state, t c0 is the storage time t d is the time point when the energy storage system changes from the charging or hot standby state to the discharging state, and tc is the time point when the energy storage system changes from the discharging or hot standby state to At the time point of the charging state, P ac is the total power of the load that can transfer the power consumption time, and Ω C(n) is the value constraint of C(n).

实施本发明,具有如下有益效果:Implement the present invention, have following beneficial effect:

1、引入了储能系统出力控制曲线的概念,储能系统作为双极性主动负荷,既能作为负载,又能作为电源,对它的控制主要以电网功率平抑为出发点,同时考虑储能系统本身的成本效益。基于气象预测和日前负荷量做出对应各时段需求侧发电功率曲线和负荷功率曲线;在得到上述参数之后,依次计算出储能系统不同出力控制曲线所对应多目标函数,再利用冒泡法所得F最小时所对应的出力控制曲线即为所需规划的目标控制曲线,最后将该曲线作为当日储能系统出力控制指令;1. The concept of energy storage system output control curve is introduced. As a bipolar active load, the energy storage system can be used as both a load and a power source. Its control is mainly based on the stability of the grid power, and the energy storage system is also considered cost-effective in itself. Based on the weather forecast and the day-ahead load, the demand-side generation power curve and load power curve corresponding to each period are made; after obtaining the above parameters, the multi-objective function corresponding to the different output control curves of the energy storage system is calculated in turn, and then obtained by using the bubbling method The output control curve corresponding to the minimum F is the target control curve to be planned, and finally this curve is used as the output control command of the energy storage system for the day;

2、在保证电网安全和不改变用户用能意愿的前提下,优化馈电和用电行为,建立了同时实现了区域电网联络线功率、用户经济效益和电力公司运营效益这三个目标的最优化模型,该模型的策略可以显著提高智能需求侧的经济效益和社会效益;2. On the premise of ensuring the safety of the power grid and not changing the user's willingness to use energy, optimize the power feeding and power consumption behavior, and establish the most optimal system that simultaneously realizes the three goals of regional power grid tie line power, user economic benefits and power company operating benefits. An optimization model whose strategies can significantly improve the economic and social benefits of the smart demand side;

3、该发明所提的多目标主动负荷协调控制技术还可应用到智能需求侧建设初期的储能容量规划投资中,以得到最佳投入/产出比。3. The multi-objective active load coordination control technology proposed in this invention can also be applied to the energy storage capacity planning investment in the initial stage of intelligent demand side construction to obtain the optimal input/output ratio.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.

图1是本发明实施例提供的基于储能系统的主动负荷多目标协调控制方法的流程示意图;Fig. 1 is a schematic flowchart of an active load multi-objective coordinated control method based on an energy storage system provided by an embodiment of the present invention;

图2是实现图1所示方法的系统结构图;Fig. 2 is a system structure diagram realizing the method shown in Fig. 1;

图3是图1中步骤S106的流程示意图;Fig. 3 is a schematic flow chart of step S106 in Fig. 1;

图4是主动负荷响应前线路传输功率图;Figure 4 is a diagram of line transmission power before active load response;

图5是主动负荷响应后线路传输功率图。Figure 5 is a diagram of line transmission power after active load response.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.

本发明实施例提供了一种基于储能系统的主动负荷多目标协调控制方法,如图1所示,实现本方法的系统结构如图2所示。An embodiment of the present invention provides a multi-objective coordinated control method for active loads based on an energy storage system, as shown in FIG. 1 , and a system structure for implementing the method is shown in FIG. 2 .

本发明实施例包括步骤:Embodiments of the present invention include steps:

S101、设置参数。S101, setting parameters.

所述参数包括:控制精度T,控制权重系数储能系统最大充放电转换次数Ncdmax,储能系统最小充/放电持续时间Tmin,储能系统充电截止荷电状态SOCmax,储能系统放电截止荷电状态SOCmin;其中,所述控制精度T=1440/N,表示将当日的1440分钟分成N个长度为T的时间段,表示联络线功率Ppcc的权重系数,表示用户经济效益Bue的权重系数,表示电力公司运营效益Bco的权重系数,且 The parameters include: control precision T, control weight coefficient and The maximum number of charge-discharge transitions N cdmax of the energy storage system, the minimum charge/discharge duration of the energy storage system T min , the state of charge SOC max at the end of charge of the energy storage system, and the state of charge SOC min of the end of discharge of the energy storage system; wherein, the control Accuracy T=1440/N, which means dividing 1440 minutes of the day into N time periods of length T, Represents the weight coefficient of tie line power P pcc , Represents the weight coefficient of the user's economic benefit B ue , Represents the weight coefficient of the power company's operating benefit B co , and

S102、获取数据。S102. Obtain data.

所述数据包括基于气象预测的当日第n个时间段的需求侧电源出力Ppv(n)、储能系统荷电状态SOC(n)、用户用电需求L(n),以及电网高峰时间段tp、电网低谷时间段tv、电网高峰电价u11和电网低谷电价u12;其中,n=1,2,3…N。The data includes the demand-side power output P pv (n) of the nth time period of the day based on the weather forecast, the state of charge of the energy storage system SOC(n), the user's electricity demand L(n), and the grid peak time period t p , grid valley time period t v , grid peak electricity price u 11 and grid valley electricity price u 12 ; where, n=1,2,3...N.

Ppv(n)是基于气象预测的需求侧全部电源出力,SOC(n)是基于储能系统实时检测的SOC状态,L(n)是规划前1日用户对应时刻的负荷,实时电价和电网峰谷时段由当地电力公司制定给出。P pv (n) is the total power output of the demand side based on the weather forecast, SOC (n) is the SOC state based on the real-time detection of the energy storage system, L (n) is the load at the corresponding time of the user one day before the planning, real-time electricity price and power grid The peak and valley hours are determined by the local power company.

S103、从储能系统的出力控制曲线中筛选出符合约束条件的有效控制曲线组合C(n)。S103. Select an effective control curve combination C(n) that meets the constraints from the output control curves of the energy storage system.

其中,整个过程中,假定储能系统SOC一直处在充电截止荷电状态SOCmax与放电截止荷电状态SOCmin之间,从储能系统的出力控制曲线中筛选出符合约束条件的有效控制曲线组合C(n)={{C1(n),C2(n),…,Ci(n),…,Cm(n)}。其中,m为有效控制曲线数量,理论上其最大值为3N,由于C(n)取值受其约束条件限制,实际有效组合数远小于3NAmong them, in the whole process, it is assumed that the SOC of the energy storage system is always between the charge cut-off state of charge SOC max and the discharge cut-off state of charge SOC min , and the effective control curve that meets the constraint conditions is selected from the output control curve of the energy storage system Combination C(n)={{C 1 (n), C 2 (n), . . . , C i (n), . . . , C m (n)}. Among them, m is the number of effective control curves, and its maximum value is 3 N in theory. Since the value of C(n) is limited by its constraints, the actual number of effective combinations is far less than 3 N .

S104、根据所述有效控制曲线组合和采集的所述数据计算得到联络线功率Ppcc、用户经济效益Bue和电力公司运营效益BcoS104. Calculate tie line power P pcc , user economic benefit B ue and power company operating benefit B co according to the effective control curve combination and the collected data.

步骤S104包括步骤:Step S104 comprises steps:

S1041、根据所述有效控制曲线组合和采集的所述数据计算得到联络线功率Ppcc,其中,S1041. Calculate tie line power P pcc according to the combination of the effective control curves and the collected data, wherein,

式中,Ppcc(n)=Ppv(n)+C(n)·Pes-Pfix(n)-(Pac(n)-Pacr(n))In the formula, P pcc (n)=P pv (n)+C(n)·P es -P fix (n)-(P ac (n)-P acr (n))

Ppcc(n)表示第n个时间段的联络线功率,Pes表示储能系统的额定充电/放电功率,由储能装置说明书读取,Pac(n)为第n个时间段可转移用电时间的负荷总功率,Pacr(n)为第n个时间段参与响应的主动负荷功率和,Pfix(n)第n个时间段的用电时间固定的负荷总功率。Pac(n)、Pacr(n)、Pfix(n)参数为前日的实际用电数据。P pcc (n) represents the power of the tie line in the nth time period, P es represents the rated charging/discharging power of the energy storage system, which is read from the manual of the energy storage device, and P ac (n) is the transferable power of the nth time period The total power of the load during the power consumption time, P acr (n) is the active load power participating in the response in the nth time period, and P fix (n) is the total power of the load with a fixed power consumption time in the nth time period. The parameters P ac (n), P acr (n), and P fix (n) are the actual power consumption data of the previous day.

S1042、根据所述有效控制曲线组合和采集的所述数据计算得到用户经济收益Bue,其中,S1042. According to the combination of the effective control curves and the collected data, calculate and obtain the user's economic benefit B ue , wherein,

式中,Bue(n)=Brc(n)+Bss(n)-Cbe(n),In the formula, B ue (n)=B rc (n)+B ss (n)-C be (n),

Bue(n)表示第n个时间段的用户经济收益,Pn(n)为第n个时间段的余电上网功率,Cbe(n)为第n个时间段的用户支出的购电费用,Brc(n)为第n个时间段的用户余电上网补贴的收益,Bss(n)为第n个时间段的用户自发自用补贴收益,u2为用户余电上网电价,u3为用户自发自用电价;B ue (n) represents the user's economic benefits in the nth time period, P n (n) is the surplus electricity grid power in the nth time period, and C be (n) is the electricity purchased by the user in the nth time period Cost, B rc (n) is the income of the user’s surplus electricity on-grid subsidy in the nth time period, B ss (n) is the user’s self-use subsidy income in the nth time period, u 2 is the user’s surplus electricity on-grid electricity price, u 3 is the user's self-use electricity price;

S1043、根据采集的所述数据计算得到电力公司运营效益BcoS1043. Calculate and obtain the operation benefit B co of the power company according to the collected data.

其中, in,

式中,Bco(n)=Cbt(n)-C′bt(n)+Cal(n)-C′al(n)+B′se(n)-Bse(n)+B′id(n)-Bid(n),In the formula, B co (n)=C bt (n)-C′ bt (n)+C al (n)-C′ al (n)+B′ se (n)-B se (n)+B′ id (n)-B id (n),

Bco(n)表示第n个时间段的电力公司运营效益,Cbt(n)表示主动负荷响应前第n个时间段电力公司向电厂购电成本及输电成本,Cbt'(n)表示主动负荷响应后第n个时间段电力公司向电厂购电成本及输电成本,Cal(n)表示主动负荷响应前第n个时间段电力公司实施主动负荷补偿的成本,Cal'(n)表示主动负荷响应后第n个时间段电力公司实施主动负荷补偿的成本,Bse(n)表示主动负荷响应前第n个时间段电力公司卖电收益,Bse'(n)表示主动负荷响应后第n个时间段电力公司卖电收益,Bid(n)表示主动负荷响应前第n个时间段电力公司间接收益,Bid'(n)表示主动负荷响应后第n个时间段电力公司间接收益;u01和u02分别为电力公司有功功率和无功功率的购买电价,u10为主动负荷补偿电价,ku为单位视在功率收益单价,P(n)为每个时段用能总需求,保持不变,ΔP(n)为第n个时间段主动负荷响应功率,S(n)和Pl(n)+jQl(n)为主动负荷响应前第n个时间段电力公司购买功率和线路损耗功率,S'(n)和Pl'(n)+jQl'(n)为主动负荷响应后第n个时间段电力公司购买功率和线路损耗功率,参考图4和图5。Cal(n)、Bid(n)、u01、u02、u10、ku由电力公司给出,其他功率参数为前日的实际用电数据。B co (n) represents the operating benefit of the power company in the nth time period, C bt (n) represents the cost of electricity purchase and transmission from the power company to the power plant in the nth time period before the active load response, and C bt '(n) represents The power purchase cost and transmission cost of the power company from the power plant in the nth time period after the active load response, C al (n) represents the cost of the power company's implementation of active load compensation in the nth time period before the active load response, C al '(n) Indicates the cost of the power company implementing active load compensation in the nth time period after the active load response, B se (n) represents the power company’s electricity sales income in the nth time period before the active load response, B se '(n) represents the active load response The power company’s income from electricity sales in the next nth time period, B id (n) represents the indirect revenue of the power company in the nth time period before the active load response, and B id '(n) represents the power company’s nth time period after the active load response Indirect income; u 01 and u 02 are the purchase price of active power and reactive power of the power company respectively, u 10 is the active load compensation price, k u is the unit price of apparent power revenue, P(n) is the energy consumption of each time period The total demand remains unchanged, ΔP(n) is the active load response power in the nth time period, S(n) and P l (n)+jQ l (n) are the power companies in the nth time period before the active load response Purchased power and line loss power, S'(n) and P l '(n)+jQ l '(n) are the purchased power and line loss power of the power company in the nth time period after the active load response, refer to Figure 4 and Figure 4 5. C al (n), B id (n), u 01 , u 02 , u 10 , and k u are given by the power company, and other power parameters are the actual power consumption data of the previous day.

S105、将联络线功率Ppcc、用户经济效益Bue和电力公司运营效益Bco进行归一化处理后,得到优化目标函数F。S105. After performing normalization processing on tie line power P pcc , user economic benefit B ue and power company operating benefit B co , an optimization objective function F is obtained.

具体的,智能需求侧电源并网改变了传统的电网-用户供用电模式,同时有效缓解了配电网高峰负荷压力。但是当双向潮流传输功率过大时,将对电网联络线造成不利影响。因此,将联络线功率Ppcc最小、用户经济效益Bue最大和电力公司运营效益Bco最大作为优化目标,得到优化目标函数F,其中,式中,表示归一化后的联络线功率,表示归一化后的用户经济效益,表示归一化后的电力公司运营效益,分别表示联络线功率Ppcc、用户经济效益Bue和电力公司运营效益Bco的归一化系数。Specifically, the grid-connection of intelligent demand-side power has changed the traditional grid-user power supply and consumption mode, and at the same time effectively alleviated the peak load pressure on the distribution network. However, when the bidirectional power flow transmission power is too large, it will have adverse effects on the grid tie line. Therefore, the minimum tie line power P pcc , the maximum user economic benefit B ue and the maximum operating benefit B co of the power company are taken as the optimization objectives, and the optimization objective function F is obtained, where, In the formula, Indicates the normalized tie-line power, Indicates the normalized user economic benefits, Indicates the normalized operating benefits of the power company, and Respectively represent the normalization coefficients of tie line power P pcc , user economic benefit B ue and power company operating benefit B co .

S106、依次将所述有效控制曲线组合中的有效控制曲线带入优化目标函数F,逐步计算并获取优化目标函数F为最小值时的有效控制曲线,作为目标控制曲线。S106. Bring the effective control curves in the combination of effective control curves into the optimization objective function F in sequence, gradually calculate and obtain the effective control curve when the optimization objective function F is the minimum value, as the target control curve.

具体的,步骤S106的处理就成参照图3所示。Specifically, the processing of step S106 is as shown with reference to FIG. 3 .

S107、储备系统按照所述目标控制曲线的控制进行额定功率充/放电。S107. The reserve system performs charging/discharging at rated power according to the control of the target control curve.

其中,当储能系统SOC不满足充/放电条件时,暂停执行,以保护储能系统为主。Among them, when the SOC of the energy storage system does not meet the charging/discharging conditions, the execution is suspended, mainly to protect the energy storage system.

其中,步骤S103中所述约束条件具体为:Wherein, the constraints described in step S103 are specifically:

td0-tc≥Tmin,tc0-td≥Tmin,Ncd≤Ncdmax,L(n)=-(1-k(n))·Pl,0≤Pacr(n)≤Pac,-Pes-Ppv(n)<ΔP(n)≤P(n)+Pes,Pacr(n)=k(n)·Pl=ΔP(n)-C(n)·Pes-Ppv(n),0≤k(n)≤1,C(n)∈ΩC(n) t d0 -t c ≥T min , t c0 -t d ≥T min , N cd ≤N cdmax , L(n)=-(1-k(n))·P l , 0≤P acr (n)≤ P ac , -P es -P pv (n)<ΔP(n)≤P(n)+P es , P acr (n)=k(n)·P l =ΔP(n)-C(n)· P es -P pv (n), 0≤k(n)≤1, C(n)∈Ω C(n) ;

Nc和Nd分别为持续充电和放电时间段个数,Ncd为一天内充放电总次数,td0为储能系统从充电状态转变为放电或热备用状态的时间点,tc0为储能系统从放电状态转变为充电或热备用状态的时间点,td为储能系统从充电或热备用状态转变为放电状态的时间点,tc为储能系统从放电或热备用状态转变为充电状态的时间点,Pac为可转移用电时间的负荷总功率,ΩC(n)为C(n)的取值约束。N c and N d are the number of continuous charging and discharging time periods respectively, N cd is the total number of charging and discharging times in one day, t d0 is the time point when the energy storage system changes from charging state to discharging or hot standby state, t c0 is the storage time t d is the time point when the energy storage system changes from the charging or hot standby state to the discharging state, and tc is the time point when the energy storage system changes from the discharging or hot standby state to At the time point of the charging state, P ac is the total power of the load that can transfer the power consumption time, and Ω C(n) is the value constraint of C(n).

实施本发明,具有如下有益效果:Implement the present invention, have following beneficial effect:

1、引入了储能系统出力控制曲线的概念,储能系统作为双极性主动负荷,既能作为负载,又能作为电源,对它的控制主要以电网功率平抑为出发点,同时考虑储能系统本身的成本效益。基于气象预测和日前负荷量做出对应各时段需求侧发电功率曲线和负荷功率曲线;在得到上述参数之后,依次计算出储能系统不同出力控制曲线所对应多目标函数,再利用冒泡法所得F最小时所对应的出力控制曲线即为所需规划的目标控制曲线,最后将该曲线作为当日储能系统出力控制指令;1. The concept of energy storage system output control curve is introduced. As a bipolar active load, the energy storage system can be used as both a load and a power source. Its control is mainly based on the stability of the grid power, and the energy storage system is also considered cost-effective in itself. Based on the weather forecast and the day-ahead load, the demand-side generation power curve and load power curve corresponding to each period are made; after obtaining the above parameters, the multi-objective function corresponding to the different output control curves of the energy storage system is calculated in turn, and then obtained by using the bubbling method The output control curve corresponding to the minimum F is the target control curve to be planned, and finally this curve is used as the output control command of the energy storage system for the day;

2、在保证电网安全和不改变用户用能意愿的前提下,优化馈电和用电行为,建立了同时实现了区域电网联络线功率、用户经济效益和电力公司运营效益这三个目标的最优化模型,该模型的策略可以显著提高智能需求侧的经济效益和社会效益;2. On the premise of ensuring the safety of the power grid and not changing the user's willingness to use energy, optimize the power feeding and power consumption behavior, and establish the most optimal system that simultaneously realizes the three goals of regional power grid tie line power, user economic benefits and power company operating benefits. An optimization model whose strategies can significantly improve the economic and social benefits of the smart demand side;

3、该发明所提的多目标主动负荷协调控制技术还可应用到智能需求侧建设初期的储能容量规划投资中,以得到最佳投入/产出比。3. The multi-objective active load coordination control technology proposed in this invention can also be applied to the energy storage capacity planning investment in the initial stage of intelligent demand side construction to obtain the optimal input/output ratio.

需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。It should be noted that, in this document, the term "comprising", "comprising" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase "comprising a ..." does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.

上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。The serial numbers of the above embodiments of the present invention are for description only, and do not represent the advantages and disadvantages of the embodiments.

在本申请所提供的几个实施例中,应该理解到,所揭露的系统和方法可以通过其它的方式实现。例如,以上所描述的系统实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided in this application, it should be understood that the disclosed system and method can be implemented in other ways. For example, the system embodiments described above are only illustrative. For example, the division of the units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented. In another point, the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.

专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。Professionals can further realize that the units and algorithm steps of the examples described in conjunction with the embodiments disclosed herein can be implemented by electronic hardware, computer software or a combination of the two. In order to clearly illustrate the possible For interchangeability, in the above description, the composition and steps of each example have been generally described according to their functions. Whether these functions are executed by hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present invention.

结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。The steps of the methods or algorithms described in connection with the embodiments disclosed herein may be directly implemented by hardware, software modules executed by a processor, or a combination of both. Software modules can be placed in random access memory (RAM), internal memory, read-only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or any other Any other known storage medium.

对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention will not be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (3)

1.一种基于储能系统的主动负荷多目标协调控制方法,其特征在于,包括:1. A multi-objective coordinated control method for active loads based on an energy storage system, characterized in that it comprises: 设置参数,所述参数包括:控制精度T,控制权重系数储能系统最大充放电转换次数Ncdmax,储能系统最小充/放电持续时间Tmin,储能系统充电截止荷电状态SOCmax,储能系统放电截止荷电状态SOCmin;其中,所述控制精度T=1440/N,表示将当日的1440分钟分成N个长度为T的时间段,表示联络线功率Ppcc的权重系数,表示用户经济效益Bue的权重系数,表示电力公司运营效益Bco的权重系数,且 Set parameters, the parameters include: control precision T, control weight coefficient and The maximum number of charge-discharge transitions N cdmax of the energy storage system, the minimum charge/discharge duration of the energy storage system T min , the state of charge SOC max at the end of charge of the energy storage system, and the state of charge SOC min of the end of discharge of the energy storage system; wherein, the control Accuracy T=1440/N, which means dividing 1440 minutes of the day into N time periods of length T, Represents the weight coefficient of tie line power P pcc , Represents the weight coefficient of the user's economic benefit B ue , Represents the weight coefficient of the power company's operating benefit B co , and 获取数据,所述数据包括基于气象预测的当日第n个时间段的需求侧电源出力Ppv(n)、储能系统荷电状态SOC(n)、用户用电需求L(n),以及电网高峰时间段tp、电网低谷时间段tv、电网高峰电价u11和电网低谷电价u12;其中,n=1,2,3…N;Obtaining data, the data includes demand-side power output P pv (n) for the nth time period of the day based on meteorological forecasts, the state of charge of the energy storage system SOC (n), user power demand L (n), and the power grid peak time period t p , power grid valley time period t v , power grid peak power price u 11 , and power grid low power price u 12 ; where, n=1,2,3...N; 从储能系统的出力控制曲线中筛选出符合约束条件的有效控制曲线组合C(n)={C1(n),C2(n),…,Ci(n),…,Cm(n)},其中,m为有效控制曲线数量;From the output control curve of the energy storage system, select the effective control curve combination C(n)={C 1 (n), C 2 (n), ..., C i (n), ..., C m ( n)}, where m is the number of effective control curves; 根据所述有效控制曲线组合和采集的所述数据计算得到联络线功率Ppcc、用户经济效益Bue和电力公司运营效益BcoAccording to the combination of the effective control curve and the collected data, the tie line power P pcc , user economic benefit B ue and power company operating benefit B co are obtained; 将联络线功率Ppcc、用户经济效益Bue和电力公司运营效益Bco进行归一化处理后,得到优化目标函数F,其中,After the tie line power P pcc , user economic benefit B ue and power company operating benefit B co are normalized, the optimization objective function F is obtained, where, <mrow> <mi>F</mi> <mo>=</mo> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>u</mi> </munder> <mo>&amp;Sigma;</mo> <mrow> <mo>(</mo> <msub> <mi>&amp;omega;</mi> <msub> <mi>P</mi> <mrow> <mi>p</mi> <mi>c</mi> <mi>c</mi> </mrow> </msub> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>I</mi> <msub> <mi>P</mi> <mrow> <mi>p</mi> <mi>c</mi> <mi>c</mi> </mrow> </msub> </msub> <mo>+</mo> <msub> <mi>&amp;omega;</mi> <msub> <mi>B</mi> <mrow> <mi>u</mi> <mi>e</mi> </mrow> </msub> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>I</mi> <msub> <mi>B</mi> <mrow> <mi>u</mi> <mi>e</mi> </mrow> </msub> </msub> <mo>+</mo> <msub> <mi>&amp;omega;</mi> <msub> <mi>B</mi> <mrow> <mi>c</mi> <mi>o</mi> </mrow> </msub> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>I</mi> <msub> <mi>B</mi> <mrow> <mi>c</mi> <mi>o</mi> </mrow> </msub> </msub> <mo>)</mo> </mrow> </mrow> <mrow><mi>F</mi><mo>=</mo><munder><mrow><mi>m</mi><mi>i</mi><mi>n</mi></mrow><mi>u</mi></munder><mo>&amp;Sigma;</mo><mrow><mo>(</mo><msub><mi>&amp;omega;</mi><msub><mi>P</mi><mrow><mi>p</mi><mi>c</mi><mi>c</mi></mrow></msub></msub><mo>&amp;CenterDot;</mo><msub><mi>I</mi><msub><mi>P</mi><mrow><mi>p</mi><mi>c</mi><mi>c</mi></mrow></msub></msub><mo>+</mo><msub><mi>&amp;omega;</mi><msub><mi>B</mi><mrow><mi>u</mi><mi>e</mi></mrow></msub></msub><mo>&amp;CenterDot;</mo><msub><mi>I</mi><msub><mi>B</mi><mrow><mi>u</mi><mi>e</mi></mrow></msub></msub><mo>+</mo><msub><mi>&amp;omega;</mi><msub><mi>B</mi><mrow><mi>c</mi><mi>o</mi></mrow></msub></msub><mo>&amp;CenterDot;</mo><msub><mi>I</mi><msub><mi>B</mi><mrow><mi>c</mi><mi>o</mi></mrow></msub></msub><mo>)</mo></mrow></mrow> 式中,表示归一化后的联络线功率,表示归一化后的用户经济效益,表示归一化后的电力公司运营效益,分别表示联络线功率Ppcc、用户经济效益Bue和电力公司运营效益Bco的归一化系数;In the formula, Indicates the normalized tie-line power, Indicates the normalized user economic benefits, Indicates the normalized operating benefits of the power company, and Respectively represent the normalization coefficients of tie line power P pcc , user economic benefit B ue and power company operating benefit B co ; 依次将所述有效控制曲线组合带入优化目标函数F,逐步计算并获取优化目标函数F为最小值时的有效控制曲线,作为最优出力曲线;Bring the effective control curve combination into the optimization objective function F in turn, gradually calculate and obtain the effective control curve when the optimization objective function F is the minimum value, as the optimal output curve; 储能系统按照所述最优出力曲线的控制指令进行额定功率充/放电。The energy storage system performs rated power charging/discharging according to the control instruction of the optimal output curve. 2.如权利要求1所述的基于储能系统的主动负荷多目标协调控制方法,其特征在于,所述根据所述有效控制曲线组合和采集的所述数据计算得到联络线功率Ppcc、用户经济效益Bue和电力公司运营效益Bco,具体包括:2. The active load multi-objective coordinated control method based on energy storage system according to claim 1, characterized in that the tie line power P pcc , user Economic benefits B ue and power company operating benefits B co , including: 根据所述有效控制曲线组合和采集的所述数据,计算得到联络线功率Ppcc,其中,According to the combination of the effective control curves and the collected data, the tie line power P pcc is calculated, wherein, 式中,Ppcc(n)=Ppv(n)+C(n)·Pes-Pfix(n)-(Pac(n)-Pacr(n)),Ppcc(n)表示第n个时间段的联络线功率,Pes表示储能系统的额定充电/放电功率,Pac(n)为第n个时间段可转移用电时间的负荷总功率,Pacr(n)为第n个时间段参与响应的主动负荷功率和,Pfix(n)第n个时间段的用电时间固定的负荷总功率; In the formula, P pcc (n)=P pv (n)+C(n)·P es -P fix (n)-(P ac (n)-P acr (n)), P pcc (n) represents the The power of the tie line in n time periods, P es represents the rated charging/discharging power of the energy storage system, P ac (n) is the total power of loads that can be transferred in the nth time period, P acr (n) is the The sum of the active load power participating in the response in the n time period, P fix (n) the total power of the load with a fixed power consumption time in the nth time period; 根据所述有效控制曲线和采集的所述数据计算得到用户经济收益Bue,其中,式中,Bue(n)=Brc(n)+Bss(n)-Cbe(n),According to the effective control curve and the collected data, the user economic benefit B ue is calculated, wherein, In the formula, B ue (n)=B rc (n)+B ss (n)-C be (n), <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>p</mi> <mi>c</mi> <mi>c</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>P</mi> <mrow> <mi>p</mi> <mi>v</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>C</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msub> <mi>P</mi> <mrow> <mi>e</mi> <mi>s</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>f</mi> <mi>i</mi> <mi>x</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>a</mi> <mi>c</mi> </mrow> </msub> <mo>(</mo> <mi>n</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>a</mi> <mi>c</mi> <mi>r</mi> </mrow> </msub> <mo>(</mo> <mi>n</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mrow> <mi>b</mi> <mi>e</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mn>11</mn> </msub> <mo>+</mo> <msub> <mi>u</mi> <mn>12</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msub> <mi>P</mi> <mrow> <mi>p</mi> <mi>c</mi> <mi>c</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>p</mi> <mi>c</mi> <mi>c</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>B</mi> <mrow> <mi>r</mi> <mi>c</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>u</mi> <mn>2</mn> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>P</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mn>0</mn> <mo>&lt;</mo> <msub> <mi>P</mi> <mrow> <mi>p</mi> <mi>c</mi> <mi>c</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>B</mi> <mrow> <mi>s</mi> <mi>s</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mn>3</mn> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>p</mi> <mi>v</mi> </mrow> </msub> <mo>(</mo> <mi>n</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>e</mi> <mi>s</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>p</mi> <mi>c</mi> <mi>c</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>B</mi> <mrow> <mi>s</mi> <mi>s</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>u</mi> <mn>3</mn> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>f</mi> <mi>i</mi> <mi>x</mi> </mrow> </msub> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>a</mi> <mi>c</mi> </mrow> </msub> <mo>(</mo> <mi>n</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>a</mi> <mi>c</mi> <mi>r</mi> </mrow> </msub> <mo>(</mo> <mi>n</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mn>0</mn> <mo>&lt;</mo> <msub> <mi>P</mi> <mrow> <mi>p</mi> <mi>c</mi> <mi>c</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> <mrow><mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><msub><mi>P</mi><mrow><mi>p</mi><mi>c</mi><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>P</mi><mrow><mi>p</mi><mi>v</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>+</mo><mi>C</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>&amp;CenterDot;</mo><msub><mi>P</mi><mrow><mi>e</mi><mi>s</mi></mrow></msub><mo>-</mo><msub><mi>P</mi><mrow><mi>f</mi><mi>i</mi><mi>x</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>-</mo><mrow><mo>(</mo><msub><mi>P</mi><mrow><mi>a</mi><mi>c</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>-</mo><msub><mi>P</mi><mrow><mi>a</mi><mi>c</mi><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mtable><mtr><mtd><mrow><msub><mi>C</mi><mrow><mi>b</mi><mi>e</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mo>-</mo><mrow><mo>(</mo><msub><mi>u</mi><mn>11</mn></msub><mo>+</mo><msub><mi>u</mi><mn>12</mn></msub><mo>)</mo></mrow><mo>&amp;CenterDot;</mo><msub><mi>P</mi><mrow><mi>p</mi><mi>c</mi><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>,</mo></mrow></mtd><mtd><mrow><msub><mi>P</mi><mrow><mi>p</mi><mi>c</mi><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>&lt;</mo><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>B</mi><mrow><mi>r</mi><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>u</mi><mn>2</mn></msub><mo>&amp;CenterDot;</mo><msub><mi>P</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>,</mo></mrow></mtd><mtd><mrow><mn>0</mn><mo>&lt;</mo><msub><mi>P</mi><mrow><mi>p</mi><mi>c</mi><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>B</mi><mrow><mi>s</mi><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><msub><mi>u</mi><mn>3</mn></msub><mo>&amp;CenterDot;</mo><mrow><mo>(</mo><msub><mi>P</mi><mrow><mi>p</mi><mi>v</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>+</mo><msub><mi>P</mi><mrow><mi>e</mi><mi>s</mi></mrow></msub><mo>)</mo></mrow><mo>,</mo></mrow></mtd><mtd><mrow><msub><mi>P</mi><mrow><mi>p</mi><mi>c</mi><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>&lt;</mo><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>B</mi><mrow><mi>s</mi><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>u</mi><mn>3</mn></msub><mo>&amp;CenterDot;</mo><mrow><mo>(</mo><msub><mi>P</mi><mrow><mi>f</mi><mi>i</mi><mi>x</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><msub><mi>P</mi><mrow><mi>a</mi><mi>c</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>-</mo><msub><mi>P</mi><mrow><mi>a</mi><mi>c</mi><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo></mrow><mo>,</mo></mrow></mtd><mtd><mrow><mn>0</mn><mo>&lt;</mo><msub><mi>P</mi><mrow><mi>p</mi><mi>c</mi><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></mtd></mtr></mtable></mtd></mtr></mtable></mfenced><mo>,</mo></mrow> Bue(n)表示第n个时间段的用户经济收益,Pn(n)为第n个时间段的余电上网功率,Cbe(n)为第n个时间段的用户支出的购电费用,Brc(n)为第n个时间段的用户余电上网补贴的收益,Bss(n)为第n个时间段的用户自发自用补贴收益,u2为用户余电上网电价,u3为用户自发自用电价;B ue (n) represents the user's economic benefits in the nth time period, P n (n) is the surplus electricity grid power in the nth time period, and C be (n) is the electricity purchased by the user in the nth time period Cost, B rc (n) is the income of the user’s surplus electricity on-grid subsidy in the nth time period, B ss (n) is the user’s self-use subsidy income in the nth time period, u 2 is the user’s surplus electricity on-grid electricity price, u 3 is the user's self-use electricity price; 根据采集的所述数据计算得到电力公司运营效益Bco,其中,式中,Bco(n)=Cbt(n)-Cbt(n)+Cal(n)-Cal(n)+Bse(n)-Bse(n)+Bid(n)-Bid(n),According to the collected data, the operating benefit B co of the power company is calculated, wherein, In the formula, B co (n)=C bt (n)-C bt (n)+C al (n)-C al (n)+B se (n)-B se (n) +B id (n)-B id (n), <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mrow> <mi>b</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>u</mi> <mn>01</mn> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mi>l</mi> </msub> <mo>(</mo> <mi>n</mi> <mo>)</mo> <mo>+</mo> <mi>P</mi> <mo>(</mo> <mi>n</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>u</mi> <mn>02</mn> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>Q</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>C</mi> <mrow> <mi>b</mi> <mi>t</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>u</mi> <mn>01</mn> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mi>l</mi> <mo>&amp;prime;</mo> </msubsup> <mo>(</mo> <mi>n</mi> <mo>)</mo> <mo>+</mo> <mi>P</mi> <mo>(</mo> <mi>n</mi> <mo>)</mo> <mo>-</mo> <mi>&amp;Delta;</mi> <mi>P</mi> <mo>(</mo> <mi>n</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>u</mi> <mn>02</mn> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mi>Q</mi> <mi>l</mi> <mo>&amp;prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>l</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>C</mi> <mrow> <mi>a</mi> <mi>l</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>u</mi> <mn>10</mn> </msub> <mo>&amp;CenterDot;</mo> <mi>&amp;Delta;</mi> <mi>P</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>B</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mn>11</mn> </msub> <mo>+</mo> <msub> <mi>u</mi> <mn>12</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mi>P</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>B</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mn>11</mn> </msub> <mo>+</mo> <msub> <mi>u</mi> <mn>12</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mi>P</mi> <mo>(</mo> <mi>n</mi> <mo>)</mo> <mo>-</mo> <mi>&amp;Delta;</mi> <mi>P</mi> <mo>(</mo> <mi>n</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>B</mi> <mrow> <mi>i</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>B</mi> <mrow> <mi>i</mi> <mi>d</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>k</mi> <mi>u</mi> </msub> <mrow> <mo>(</mo> <mi>S</mi> <mo>(</mo> <mi>n</mi> <mo>)</mo> <mo>-</mo> <msup> <mi>S</mi> <mo>&amp;prime;</mo> </msup> <mo>(</mo> <mi>n</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> <mrow><mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><msub><mi>C</mi><mrow><mi>b</mi><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>u</mi><mn>01</mn></msub><mo>&amp;CenterDot;</mo><mrow><mo>(</mo><msub><mi>P</mi><mi>l</mi></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>+</mo><mi>P</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo></mrow><mo>+</mo><msub><mi>u</mi><mn>02</mn></msub><mo>&amp;CenterDot;</mo><msub><mi>Q</mi><mi>l</mi></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><msubsup><mi>C</mi><mrow><mi>b</mi><mi>t</mi></mrow><mo>&amp;prime;</mo></msubsup><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>u</mi><mn>01</mn></msub><mo>&amp;CenterDot;</mo><mrow><mo>(</mo><msubsup><mi>P</mi><mi>l</mi><mo>&amp;prime;</mo></msubsup><mo>(</mo><mi>n</mi><mo>)</mo><mo>+</mo><mi>P</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>-</mo><mi>&amp;Delta;</mi><mi>P</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo></mrow><mo>+</mo><msub><mi>u</mi><mn>02</mn></msub><mo>&amp;CenterDot;</mo><msubsup><mi>Q</mi><mi>l</mi><mo>&amp;prime;</mo></msubsup><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>C</mi><mrow><mi>a</mi><mi>l</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><msubsup><mi>C</mi><mrow><mi>a</mi><mi>l</mi></mrow><mo>&amp;prime;</mo></msubsup><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>u</mi><mn>10</mn></msub><mo>&amp;CenterDot;</mo><mi>&amp;Delta;</mi><mi>P</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>B</mi><mrow><mi>s</mi><mi>e</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><msub><mi>u</mi><mn>11</mn></msub><mo>+</mo><msub><mi>u</mi><mn>12</mn></msub><mo>)</mo></mrow><mo>&amp;CenterDot;</mo><mi>P</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><msubsup><mi>B</mi><mrow><mi>s</mi><mi>e</mi></mrow><mo>&amp;prime;</mo></msubsup><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><msub><mi>u</mi><mn>11</mn></msub><mo>+</mo><msub><mi>u</mi><mn>12</mn></msub><mo>)</mo></mrow><mo>&amp;CenterDot;</mo><mrow><mo>(</mo><mi>P</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>-</mo><mi>&amp;Delta;</mi><mi>P</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>B</mi><mrow><mi>i</mi><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><msubsup><mi>B</mi><mrow><mi>i</mi><mi>d</mi></mrow><mo>&amp;prime;</mo></msubsup><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>k</mi><mi>u</mi></msub><mrow><mo>(</mo><mi>S</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>-</mo><msup><mi>S</mi><mo>&amp;prime;</mo></msup><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo></mrow></mrow></mtd></mtr></mtable></mfenced><mo>,</mo></mrow> Bco(n)表示第n个时间段的电力公司运营效益,Cbt(n)表示主动负荷响应前第n个时间段电力公司向电厂购电成本及输电成本,Cbt'(n)表示主动负荷响应后第n个时间段电力公司向电厂购电成本及输电成本,Cal(n)表示主动负荷响应前第n个时间段电力公司实施主动负荷补偿的成本,Cal'(n)表示主动负荷响应后第n个时间段电力公司实施主动负荷补偿的成本,Bse(n)表示主动负荷响应前第n个时间段电力公司卖电收益,Bse'(n)表示主动负荷响应后第n个时间段电力公司卖电收益,Bid(n)表示主动负荷响应前第n个时间段电力公司间接收益,Bid'(n)表示主动负荷响应后第n个时间段电力公司间接收益;u01和u02分别为电力公司有功功率和无功功率的购买电价,u10为主动负荷补偿电价,ku为单位视在功率收益单价,P(n)为每个时段用能总需求,保持不变,ΔP(n)为第n个时间段主动负荷响应功率,S(n)和Pl(n)+jQl(n)为主动负荷响应前第n个时间段电力公司购买功率和线路损耗功率,S'(n)和Pl'(n)+jQl'(n)为主动负荷响应后第n个时间段电力公司购买功率和线路损耗功率。B co (n) represents the operating benefit of the power company in the nth time period, C bt (n) represents the cost of electricity purchase and transmission from the power company to the power plant in the nth time period before the active load response, and C bt '(n) represents The power purchase cost and transmission cost of the power company from the power plant in the nth time period after the active load response, C al (n) represents the cost of the power company's implementation of active load compensation in the nth time period before the active load response, C al '(n) Indicates the cost of the power company implementing active load compensation in the nth time period after the active load response, B se (n) represents the power company’s electricity sales income in the nth time period before the active load response, B se '(n) represents the active load response The power company’s income from electricity sales in the next nth time period, B id (n) represents the indirect revenue of the power company in the nth time period before the active load response, and B id '(n) represents the power company’s nth time period after the active load response Indirect income; u 01 and u 02 are the purchase price of active power and reactive power of the power company respectively, u 10 is the active load compensation price, k u is the unit price of apparent power revenue, P(n) is the energy consumption of each time period The total demand remains unchanged, ΔP(n) is the active load response power in the nth time period, S(n) and P l (n)+jQ l (n) are the power companies in the nth time period before the active load response Purchased power and line loss power, S'(n) and P l '(n)+jQ l '(n) are the purchase power and line loss power of the power company in the nth time period after the active load response. 3.如权利要求2所述的基于储能系统的主动负荷多目标协调控制方法,其特征在于,所述约束条件具体为:3. The energy storage system-based multi-objective coordinated control method for active loads according to claim 2, wherein the constraint conditions are specifically: <mrow> <mi>C</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mo>-</mo> <mn>1</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>t</mi> <mo>&amp;Element;</mo> <msub> <mi>t</mi> <mi>v</mi> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>&amp;le;</mo> <msub> <mi>SOC</mi> <mi>max</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mrow></mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>1</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>t</mi> <mo>&amp;Element;</mo> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>SOC</mi> <mi>min</mi> </msub> <mo>&amp;le;</mo> <mi>S</mi> <mi>O</mi> <mi>C</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> <mrow><mi>C</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><mo>-</mo><mn>1</mn><mo>,</mo></mrow></mtd><mtd><mrow><mi>t</mi><mo>&amp;Element;</mo><msub><mi>t</mi><mi>v</mi></msub><mo>,</mo></mrow></mtd><mtd><mrow><mi>S</mi><mi>O</mi><mi>C</mi><mo>&amp;le;</mo><msub><mi>SOC</mi><mi>max</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mn>0</mn><mo>,</mo></mrow></mtd><mtd><mrow></mrow></mtd><mtd><mrow></mrow></mtd></mtr><mtr><mtd><mrow><mn>1</mn><mo>,</mo></mrow></mtd><mtd><mrow><mi>t</mi><mo>&amp;Element;</mo><msub><mi>t</mi><mi>p</mi></msub><mo>,</mo></mrow></mtd><mtd><mrow><msub><mi>SOC</mi><mi>min</mi></msub><mo>&amp;le;</mo><mi>S</mi><mi>O</mi><mi>C</mi></mrow></mtd></mtr></mtable></mfenced><mo>,</mo></mrow> <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mn>12</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>t</mi> <mo>&amp;Element;</mo> <msub> <mi>t</mi> <mi>p</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mn>11</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>t</mi> <mo>&amp;Element;</mo> <msub> <mi>t</mi> <mi>v</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> <mrow><mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><msub><mi>u</mi><mn>12</mn></msub><mo>=</mo><mn>0</mn><mo>,</mo></mrow></mtd><mtd><mrow><mi>t</mi><mo>&amp;Element;</mo><msub><mi>t</mi><mi>p</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>u</mi><mn>11</mn></msub><mo>=</mo><mn>0</mn><mo>,</mo></mrow></mtd><mtd><mrow><mi>t</mi><mo>&amp;Element;</mo><msub><mi>t</mi><mi>v</mi></msub></mrow></mtd></mtr></mtable></mfenced><mo>,</mo></mrow> td0-tc≥Tmin,tc0-td≥Tmin,Ncd≤Ncdmax,L(n)=-(1-k(n))·Pl,0≤Pacr(n)≤Pac,-Pes-Ppv(n)<ΔP(n)≤P(n)+Pes,Pacr(n)=k(n)·Pl=ΔP(n)-C(n)·Pes-Ppv(n),0≤k(n)≤1,C(n)∈ΩC(n) t d0 -t c ≥T min , t c0 -t d ≥T min , N cd ≤N cdmax , L(n)=-(1-k(n))·P l , 0≤P acr (n)≤ P ac , -P es -P pv (n)<ΔP(n)≤P(n)+P es , P acr (n)=k(n)·P l =ΔP(n)-C(n)· P es -P pv (n), 0≤k(n)≤1, C(n)∈Ω C(n) Nc和Nd分别为持续充电和放电时间段个数,Ncd为一天内充放电总次数,td0为储能系统从充电状态转变为放电或热备用状态的时间点,tc0为储能系统从放电状态转变为充电或热备用状态的时间点,td为储能系统从充电或热备用状态转变为放电状态的时间点,tc为储能系统从放电或热备用状态转变为充电状态的时间点,Pac为可转移用电时间的负荷总功率,ΩC(n)为C(n)的取值约束。N c and N d are the number of continuous charging and discharging time periods respectively, N cd is the total number of charging and discharging times in one day, t d0 is the time point when the energy storage system changes from charging state to discharging or hot standby state, t c0 is the storage time t d is the time point when the energy storage system changes from the charging or hot standby state to the discharging state, and tc is the time point when the energy storage system changes from the discharging or hot standby state to At the time point of the charging state, P ac is the total power of the load that can transfer the power consumption time, and Ω C(n) is the value constraint of C(n).
CN201510487376.4A 2015-08-10 2015-08-10 The multi-objective coordinated control method of active load based on energy-storage system Active CN105140939B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510487376.4A CN105140939B (en) 2015-08-10 2015-08-10 The multi-objective coordinated control method of active load based on energy-storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510487376.4A CN105140939B (en) 2015-08-10 2015-08-10 The multi-objective coordinated control method of active load based on energy-storage system

Publications (2)

Publication Number Publication Date
CN105140939A CN105140939A (en) 2015-12-09
CN105140939B true CN105140939B (en) 2018-04-03

Family

ID=54726197

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510487376.4A Active CN105140939B (en) 2015-08-10 2015-08-10 The multi-objective coordinated control method of active load based on energy-storage system

Country Status (1)

Country Link
CN (1) CN105140939B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI667560B (en) 2018-08-17 2019-08-01 友達光電股份有限公司 Renewable energy management system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058855A (en) * 2016-06-16 2016-10-26 南京工程学院 Active power distribution network multi-target optimization scheduling method of coordinating stored energy and flexible load
CN106972525A (en) * 2017-03-20 2017-07-21 国网浙江省电力公司嘉兴供电公司 Virtual plant is according to the power supply method for automatically regulating of power network power load
WO2020103046A1 (en) * 2018-11-21 2020-05-28 亿可能源科技(上海)有限公司 Energy storage management and control methods, systems, computer device, and storage medium
CN110233486B (en) * 2018-12-17 2021-03-02 万克能源科技有限公司 Energy storage auxiliary fuzzy PID control method based on active prediction SOC
CN110518611B (en) * 2019-08-30 2020-11-06 珠海格力电器股份有限公司 Charging and discharging autonomous control method and device of energy storage module and energy storage equipment
CN110854904B (en) * 2019-10-30 2021-05-11 深圳供电局有限公司 Operation strategy planning method of energy storage device in power distribution system
CN115276053A (en) * 2022-08-03 2022-11-01 清华大学 Conservative collaborative control method, device, electronic device and storage medium for energy storage resources

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274334A (en) * 1987-04-30 1988-11-11 Nippon Steel Corp A method for controlling the combination of superconducting energy storage devices, power plants, and existing power systems
JP3801910B2 (en) * 2001-11-27 2006-07-26 日本電信電話株式会社 Fuel cell system control method
CN102354974B (en) * 2011-10-13 2014-12-10 山东大学 Micro-grid multi-objective optimized operation control method
CN102684313B (en) * 2012-05-25 2015-03-04 许继电气股份有限公司 Coordination control method of large-scale energy storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI667560B (en) 2018-08-17 2019-08-01 友達光電股份有限公司 Renewable energy management system

Also Published As

Publication number Publication date
CN105140939A (en) 2015-12-09

Similar Documents

Publication Publication Date Title
CN105140939B (en) The multi-objective coordinated control method of active load based on energy-storage system
Das et al. Optimal placement of distributed energy storage systems in distribution networks using artificial bee colony algorithm
CN105591406B (en) A kind of optimized algorithm of the microgrid energy management system based on non-cooperative game
Hassan et al. Optimization modeling for dynamic price based demand response in microgrids
Kalantar-Neyestanaki et al. Coordinating distributed energy resources and utility-scale battery energy storage system for power flexibility provision under uncertainty
CN105262129B (en) The Multi objective optimization system and method for a kind of micro-capacitance sensor containing composite energy storage
CN108470239A (en) The active distribution network multi objective layered programming method of meter and demand side management and energy storage
CN108446796A (en) Consider net-source-lotus coordinated planning method of electric automobile load demand response
CN107528345A (en) A kind of net source lotus storage control method for coordinating of Multiple Time Scales
CN111400641A (en) Day-ahead optimal scheduling method for comprehensive energy system containing heat accumulation type electric heating
CN103490410A (en) Micro-grid planning and capacity allocation method based on multi-objective optimization
CN109740786A (en) A multi-terminal flexible interconnection distribution network planning method and system
CN112186755B (en) Flexible load energy storage modeling method for regional comprehensive energy system
CN103151797A (en) Multi-objective dispatching model-based microgrid energy control method under grid-connected operation mode
CN102402725B (en) For the Multi-target optimized energy management information processing method of virtual plant
CN112821397B (en) Source-load-storage coordinated low-carbon economic dispatching method and device
CN108306288A (en) A kind of microgrid community distributed energy distribution method based on Demand Side Response
CN114597969B (en) Power distribution network double-layer optimization method considering intelligent soft switch and virtual power plant technology
CN110739690A (en) Optimal scheduling method and system of distribution network considering energy storage facilities of electric vehicle fast charging station
CN109462258A (en) A kind of home energy Optimization Scheduling based on chance constrained programming
CN107767086A (en) New energy station output lower limit rolling amendment method based on generated power forecasting
WO2019223279A1 (en) Method of constructing translatable load model on basis of environmental cost and real-time electricity prices
CN106777586A (en) A kind of operation domain method for solving for calculating Distributed Generation in Distribution System and microgrid
CN109494813A (en) A kind of power dispatching method, electronic equipment and storage medium
CN205212447U (en) Multiple target optimizing system who contains little electric wire netting of compound energy storage

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant