CN105136035B - 非接触式测量圆桶圆心坐标的装置及其方法 - Google Patents

非接触式测量圆桶圆心坐标的装置及其方法 Download PDF

Info

Publication number
CN105136035B
CN105136035B CN201510587173.2A CN201510587173A CN105136035B CN 105136035 B CN105136035 B CN 105136035B CN 201510587173 A CN201510587173 A CN 201510587173A CN 105136035 B CN105136035 B CN 105136035B
Authority
CN
China
Prior art keywords
coordinate
circle
robot
range sensor
drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510587173.2A
Other languages
English (en)
Other versions
CN105136035A (zh
Inventor
曲东升
刘泸
何廷珍
栾亮
洪帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baite Fujian Intelligent Equipment Technology Co Ltd
Original Assignee
Changzhou Mingseal Robotic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Mingseal Robotic Technology Co Ltd filed Critical Changzhou Mingseal Robotic Technology Co Ltd
Priority to CN201510587173.2A priority Critical patent/CN105136035B/zh
Publication of CN105136035A publication Critical patent/CN105136035A/zh
Application granted granted Critical
Publication of CN105136035B publication Critical patent/CN105136035B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明提供一种非接触式测量圆桶圆心坐标的装置,包括设置在机器人末端法兰盘上的延长支架和设置在延长支架下端的安装板,所述安装板上设有距离传感器,且所述距离传感器的测量方向与所述延长支架的轴线垂直。采用该装置的非接触式测量圆桶圆心坐标的方法。本发明提供的非接触式测量圆桶圆心坐标的装置及其方法,具有结构简单、操作携带方便、测量精度高的优点。

Description

非接触式测量圆桶圆心坐标的装置及其方法
技术领域
本发明涉及一种非接触式测量圆桶圆心坐标的装置及其方法。
背景技术
在机器人装甑工艺中,机器人在甑桶内完成铺料都是以走圆的形式,这就需要机器人能很好的找到圆心点,才能保证铺料的均匀。目前,找圆心的方法非常粗犷,利用激光笔大致的找到一个圆心,然后再通过人工试校机器人,通过观察,逐步调整机器人,最终找到圆心的位置,这种方法找到的圆心其实是不准确的,在现场调试找圆心也特别耗时费力。
发明内容
本发明所要解决的技术问题是:为了克服现有技术中的不足,本发明提供一种非接触式测量圆桶圆心坐标的装置及其方法,解决了确定圆心不准确的技术问题。
本发明解决其技术问题所要采用的技术方案是:一种非接触式测量圆桶圆心坐标的装置,包括设置在机器人末端法兰盘上的延长支架和设置在延长支架下端的安装板,所述安装板上设有距离传感器,且所述距离传感器的测量方向与所述延长支架的轴线垂直。通过延长支架与距离传感器可以方便的测量出机器人末端到圆桶侧壁的距离,该套装置体积小便于携带,结构简单,测量精度高。
优选的,为了提高测量精度、保证测量的准确性,所述距离传感器为激光距离传感器。
进一步,为了实现自动采集和处理数据,还包括数据采集卡、机器人控制柜和电脑,所述激光距离传感器、数据采集卡、机器人控制柜和电脑依次线路连接。激光距离传感器采集的距离数据通过信号线传送至数据采集卡进行数据处理,数据处理的结果再由机器人控制柜通过网络发送至电脑,由电脑上的软件计算出圆心的坐标值。
进一步,为了数据传输方便以及采集操作方便,还包括信号线和网线,所述距离传感器通过所述信号线与所述数据采集卡连接,所述机器人控制柜通过所述网线与所述电脑连接。
一种利用上述装置的非接触式测量圆桶圆心坐标的方法,包括以下步骤:
(1)安装并调整距离传感器的初始位置,使机器人末端的零点位置与距离传感器的测量方向保持一致;
(2)将机器人末端的延长支架和距离传感器运动到圆桶内的任意旋转安全位置;
(3)调整机器人末端的位置P,确定一个起始测量位置,并从机器人上获取机器人末端的位置坐标P,然后得出距离传感器安装位置的基准点坐标T,并设起始测量方向上圆桶上的点为Q,通过距离传感器获取TQ距离d,根据公式计算出Q点的坐标值;
(4)使机器人末端连续旋转,旋转过程中使距离传感器采集距离传感器安装位置的基准点坐标T到圆桶同一圆周上至少不同的三个点的距离值以及旋转角度,并根据公式计算出对应点的坐标值;
(5)取不同的三个点的坐标,通过三个点的坐标计算出圆桶该深度的圆周的圆心坐标值。
优选的,为了减小测量误差,测量范围选择在整个圆周上均匀的取点,步骤(4)中的机器人末端连续旋转角度为360°。通过旋转延长支架360°可以测得一个圆周内的多个点的坐标,以准确确定圆心坐标,减小因取值范围小而增大测量误差。
进一步,为了计算方便,可以每间隔相同的角度采集一个点,步骤(4)中每间隔相同的角度α由距离传感器采集一次点到距离传感器安装位置的基准点的距离,同时记录该点与起始位置的夹角,连续旋转的角度应大于等于两倍的间隔采集角度α。由于不在同一直线上的三点确定一个圆,因此为了保证能够至少采集三个点,连续旋转角度应该大于等于间隔采集角度的两倍。
进一步,根据测量的参数不同以及选取的坐标系不同,步骤(3)和(4)中计算坐标的公式具体如下:
建立两个坐标系,一个是机器人基坐标系,另一个是工具坐标系,取机器人末端P为工具坐标系的原点,则机器人末端即工具坐标系原点在机器人坐标系中的坐标为P(Px,Py,Pz,PA),PA为机器人末端的旋转角度值,以X轴方向为基准,距离传感器安装位置的基准点在工具坐标系中的坐标T(Tx,Ty,Tz),距离传感器测量距离为d,最终需要求出所测点Q(Qx,Qy,Qz),机器人末端旋转轴为Z轴,利用Z轴旋转矩阵进行计算,由于激光发射朝向是X方向,则激光测量点Q在工具坐标系中坐标为(TQx=Tx+d,TQy=Ty,TQz=Tz),则
Qx=TQx*COS(PA)-TQy*SIN(PA)+Px;
Qy=TQx*SIN(PA)+TQy*COS(PA)+Py;
Qz=TQz+Pz。
由于设计或者安装时候的偏差,导致激光传感器的射出方向与安装的工具坐标系的X轴方向不再一致,则还可以通过先测量出实际的射出方向向量(Tx’,Ty’Tz’),根据下面公式计算出(TQx,TQy,TQZ)的值,然后根据计算结果将(TQx,TQy,TQZ)的值带入上述公式中,即可求得Q(Qx,Qy,Qz)的坐标值,计算公式如下:
TQx=Tx’/Sqrt(Tx’^2+Ty’^2+Tz’^2)*d+Tx;
TQy=Ty’/Sqrt(Tx’^2+Ty’^2+Tz’^2)*d+Ty;
TQz=Tz’/Sqrt(Tx’^2+Ty’^2+Tz’^2)*d+Tz。
进一步,为了提高圆心坐标的准确度,步骤(5)中圆心的坐标计算采用多次测量求平均值的方法,取至少两组点的坐标,每组包括三个点,任意两组间至少包括一个不同的点,计算公式如下:
设第一个圆心坐标为M1,第二个圆心坐标M2,第m个圆心坐标为Mm,则最终圆心坐标为:
M=(M1+M2+......+Mm)/m。
进一步,为了选取数据方便,将距离传感器采集的同一圆周上的所有点分成多个区间,每组的三个点取自不同区间内。
优选的,为了提高准确度和精度,所述区间为三个,相邻区间的夹角为120°。
进一步,还包括步骤(6),调整所述距离传感器在圆桶内的测量高度,计算出圆桶内不同高度的圆周的圆心坐标。通过计算不同高度的圆心坐标,可以确定圆桶的中心轴线的位置以及圆桶的垂直度。
本发明的有益效果是:本发明提供的一种非接触式测量圆桶圆心坐标的装置及其方法,具有以下优点:
(1)测试方便、节省时间,利用测试系统将机器人伸进甑桶的任意旋转安全的位置,将机器人末端旋转360°就可以准确的找到圆心坐标;
(2)安装简单,整个装置只要安装在机器人法兰盘上;
(3)测量精度高,如果传感器的精度够高,测试误差可以控制在1mm以内;
(4)该装置占用体积小,易于携带;
(5)该装置可以在圆桶内不同高度点测试,可以通过数据分析出圆桶的垂直度;
(6)在软件中可以很直观的看到测量点所绘制的圆。
附图说明
下面结合附图和实施例对本发明作进一步说明。
图1是本发明的非接触式测量圆桶圆心坐标的装置的结构示意图;
图2是非接触式测量圆桶圆心坐标的装置的应用系统图;
图3是采用两个坐标系时各点的位置关系示意图;
图4是采集软件中模拟采集点和圆心示意图。
图中:1、距离传感器,2、机器人,3、法兰盘,4、延长支架,5、螺钉,6、第一定向键,7、安装板,8、第二定向键,9、固定压板,10、圆桶。
具体实施方式
现在结合附图对本发明作详细的说明。此图为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
如图1-4所示,本发明的一种非接触式测量圆桶圆心坐标的装置,包括激光距离传感器1、数据采集卡、机器人控制柜、电脑、信号线、网线以及设置在机器人2末端法兰盘3上的延长支架4。
法兰盘3通过螺钉5与机器人2末端连接,法兰盘3下端面上设有第一定向键6,延长支架4通过第一定向键6与法兰盘3固定连接,延长支架4的延伸方向与法兰盘3所在平面垂直,延长支架4下端设有安装板7,安装板7一端设有第二定向键8,安装板7通过第二定向键8套接在延长支架4的下端,第二定向键8下端设有固定压板9,通过内六角螺钉5将固定压板9固定在延长支架4的下端,从而将第二定向键8固定在延长支架4下端。
激光距离传感器1通过螺钉5固定在安装板7上,且激光距离传感器1的激光束发射方向与延长支架4的轴线垂直,激光距离传感器1、数据采集卡、机器人控制柜和电脑依次信号连接,其中,激光距离传感器1通过信号线与数据采集卡连接,机器人控制柜通过网线与电脑连接。
一种利用上述装置的非接触式测量圆桶圆心坐标的方法,包括以下步骤:
(1)安装并调整距离传感器1的初始位置,使机器人2末端的零点位置与激光距离传感器1的测量方向保持一致;
(2)将机器人2末端的延长支架4和距离传感器1运动到桶内的任意旋转安全位置;
(3)以X轴方向为基准,调整机器人2末端的位置P,确定一个起始测量位置,并从机器人2上获取机器人2末端的位置坐标P,然后得出距离传感器1安装位置的基准点坐标T,并设起始测量方向上圆桶10上的点为Q,通过距离传感器1获取TQ距离d,根据公式计算出Q点的坐标值;
(4)使机器人2末端连续旋转,旋转过程中使距离传感器1采集距离传感器1安装位置的基准点坐标T到圆桶10同一圆周上至少不同的三个点的距离值以及旋转角度,并根据公式计算出对应点的坐标值;
(5)取不同的三个点的坐标,通过三个点的坐标计算出圆桶10该深度的圆周的圆心坐标值。
优选的,为了减小测量误差,测量范围选择在圆桶10同一高度的整个圆周上均匀的取点,步骤4中的机器人2末端连续旋转角度为360°。通过延长支架4旋转360°可以测得一个圆周内的多个点的坐标,以准确确定圆心坐标,减小因取值范围小而增大测量误差。
进一步,为了计算方便,可以每间隔相同的角度采集一个点,步骤(4)中每间隔设定角度α由距离传感器1采集一次点到距离传感器1安装位置的基准点的距离,同时记录该点与起始位置的夹角,连续旋转的角度应大于等于两倍的设定间隔采集角度α。由于不在同一直线上的三点确定一个圆,因此为了保证能够至少采集三个点,连续旋转角度应该大于等于间隔采集角度的两倍。
根据测量的参数不同以及选取的坐标系不同,步骤(3)和(4)中计算坐标的公式具体如下:
如图3所示,建立两个坐标系,一个是机器人2基坐标系,另一个是工具坐标系,取机器人2末端P为工具坐标系的原点,则机器人2末端即工具坐标系原点在机器人2坐标系中的坐标为P(Px,Py,Pz,PA),PA为机器人2末端的旋转角度值,以X轴方向为基准,距离传感器1安装位置的基准点在工具坐标系中的坐标T(Tx,Ty,Tz),距离传感器1测量距离为d,最终需要求出所测点Q(Qx,Qy,Qz),机器人2末端旋转轴为Z轴,利用Z轴旋转矩阵进行计算,由于激光发射朝向是X方向,则激光测量点Q在工具坐标系中坐标为(TQx=Tx+d,TQy=Ty,TQz=Tz),则
Qx=TQx*COS(PA)-TQy*SIN(PA)+Px;
Qy=TQx*SIN(PA)+TQy*COS(PA)+Py;
Qz=TQz+Pz。
由于设计或者安装时候的偏差,导致激光距离传感器1的射出方向与安装的工具坐标系的X轴方向不再一致,则还可以通过先测量出实际的射出方向向量(Tx’,Ty’Tz’),根据下面公式计算出(TQx,TQy,TQZ)的值,然后根据计算结果将(TQx,TQy,TQZ)的值带入上述公式中,即可求得Q(Qx,Qy,Qz)的坐标值,计算公式如下:
TQx=Tx’/Sqrt(Tx’^2+Ty’^2+Tz’^2)*d+Tx;
TQy=Ty’/Sqrt(Tx’^2+Ty’^2+Tz’^2)*d+Ty;
TQz=Tz’/Sqrt(Tx’^2+Ty’^2+Tz’^2)*d+Tz。
进一步,为了提高圆心坐标的准确度,步骤(5)中圆心的坐标计算采用多次测量求平均值的方法,取至少两组点的坐标,每组包括三个点,任意两组间至少包括一个不同的点,计算公式如下:
设第一个圆心坐标为M1,第二个圆心坐标M2,第m个圆心坐标为Mm,则最终圆心坐标为:
M=(M1+M2+......+Mm)/m。
进一步,为了选取数据方便,将距离传感器1采集的同一圆周上的所有点分成多个区间,每组的三个点取自不同区间内。
优选的,为了提高准确度和精度,所述区间为三个,相邻区间的夹角为120°。
进一步,还包括步骤(6),调整所述距离传感器1在圆桶10内的测量高度,计算出圆桶10内不同高度的圆周的圆心坐标。通过计算不同高度的圆心坐标,可以确定圆桶10的中心轴线的位置以及圆桶10的垂直度。
具体操作时,为了计算方便,步骤3中的起始测量位置选取X轴方向与基准位置相同,可以把采集的所有点沿圆周分成三个区间,相邻区间的夹角为120°,每次在每个区间取各一个点,可以计算获得一个圆心坐标值,以此类推获得多个圆心坐标,然后再求平均值。采用该装置和方法还可以对圆桶10轴线的垂直度进行分析评价,同时,通过配套的采集软件可以方便的进行坐标值的读取以及圆心坐标的计算,如图4所示,在软件中可以很直观的看到测量点所绘制的圆。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关的工作人员完全可以在不偏离本发明的范围内,进行多样的变更以及修改。本项发明的技术范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (6)

1.一种利用非接触式测量圆桶圆心坐标装置的方法,其特征在于:所述装置包括设置在机器人(2)末端法兰盘(3)上的延长支架(4)和设置在延长支架(4)下端的安装板(7),所述安装板(7)上设有距离传感器(1),且所述距离传感器(1)的测量方向与所述延长支架(4)的轴线垂直;
所述方法包括以下步骤:
(1)安装并调整距离传感器(1)的初始位置,使机器人(2)末端的零点位置与距离传感器(1)的测量方向保持一致;
(2)将机器人(2)末端的延长支架(4)和距离传感器(1)运动到圆桶(10)内的任意旋转安全位置;
(3)调整机器人(2)末端的位置P,选取任意位置为起始测量位置,并从机器人(2)上获取机器人(2)末端的位置坐标P,然后得出距离传感器(1)安装位置的基准点坐标T,并设起始测量方向上圆桶(10)上的点为Q,通过距离传感器(1)获取TQ距离d,根据公式计算出Q点的坐标值;
(4)使机器人(2)末端连续旋转,旋转过程中使距离传感器(1)采集距离传感器(1)安装位置的基准点坐标T到圆桶(10)同一圆周上至少不同的三个点的距离值以及旋转角度,并根据公式计算出对应点的坐标值;
(5)取不同的三个点的坐标,通过三个点的坐标计算出圆桶(10)该深度的圆周的圆心坐标值;
圆心坐标的计算采用多次测量求平均值的方法,取至少两组点的坐标,每组包括三个点,任意两组间至少包括一个不同的点,计算公式如下:
设第一个圆心坐标为M1,第二个圆心坐标M2,第m个圆心坐标为Mm,则最终圆心坐标为:M=(M1+M2+......+Mm)/m;
将距离传感器(1)采集的同一圆周上的所有点分成多个区间,每组的三个点取自不同区间内。
2.如权利要求1所述的利用非接触式测量圆桶圆心坐标装置的方法,其特征在于:步骤(4)中的机器人(2)末端连续旋转角度为360°。
3.如权利要求1所述的利用非接触式测量圆桶圆心坐标装置的方法,其特征在于:步骤(4)中每间隔相同角度α由距离传感器(1)采集一次点到距离传感器(1)安装位置的基准点的距离,连续旋转的角度应大于等于两倍的间隔采集角度α。
4.如权利要求1所述的利用非接触式测量圆桶圆心坐标装置的方法,其特征在于:步骤(3)和(4)中计算坐标的公式具体如下:
建立两个坐标系,一个是机器人基坐标系,另一个是工具坐标系,取机器人(2)末端P为工具坐标系的原点,则机器人(2)末端即工具坐标系原点在机器人(2)坐标系中的坐标为P(Px,Py,Pz,PA),PA为机器人(2)末端的旋转角度值,以X轴方向为基准,距离传感器(1)安装位置的基准点在工具坐标系中的坐标T(Tx,Ty,Tz),距离传感器(1)测量距离为d,最终需要求出所测点Q(Qx,Qy,Qz),机器人(2)末端旋转轴为Z轴,利用Z轴旋转矩阵进行计算,由于激光发射朝向是X方向,则激光测量点Q在工具坐标系中坐标为(TQx=Tx+d,TQy=Ty,TQz=Tz),则
Qx=TQx*COS(PA)‐TQy*SIN(PA)+Px;
Qy=TQx*SIN(PA)+TQy*COS(PA)+Py;
Qz=TQz+Pz。
5.如权利要求1所述的利用非接触式测量圆桶圆心坐标装置的方法,其特征在于:所述区间为三个,相邻区间的夹角为120°。
6.如权利要求1所述的利用非接触式测量圆桶圆心坐标装置的方法,其特征在于:还包括步骤(6),调整所述距离传感器(1)在圆桶内的测量高度,计算出圆桶(10)内不同高度的圆周的圆心坐标。
CN201510587173.2A 2015-09-15 2015-09-15 非接触式测量圆桶圆心坐标的装置及其方法 Active CN105136035B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510587173.2A CN105136035B (zh) 2015-09-15 2015-09-15 非接触式测量圆桶圆心坐标的装置及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510587173.2A CN105136035B (zh) 2015-09-15 2015-09-15 非接触式测量圆桶圆心坐标的装置及其方法

Publications (2)

Publication Number Publication Date
CN105136035A CN105136035A (zh) 2015-12-09
CN105136035B true CN105136035B (zh) 2018-10-12

Family

ID=54721476

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510587173.2A Active CN105136035B (zh) 2015-09-15 2015-09-15 非接触式测量圆桶圆心坐标的装置及其方法

Country Status (1)

Country Link
CN (1) CN105136035B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106429494B (zh) * 2016-09-23 2019-03-29 常州铭赛机器人科技股份有限公司 装甑系统和其甑桶的圆心的检测方法
CN106994692A (zh) * 2017-03-17 2017-08-01 苏州和丰工业设备有限公司 一种利用机械臂找圆柱品中心的方法
CN109324116A (zh) * 2018-10-25 2019-02-12 上海复合材料科技有限公司 非接触检测的自动调整探头方位的方法
CN109696135B (zh) * 2018-12-20 2020-11-27 安徽工程大学 一种铸管承口圆度非接触式自动检测方法
CN112146612A (zh) * 2020-09-22 2020-12-29 安徽艾可豪生物科技有限公司 一种白酒装甑监控系统
CN114383507A (zh) * 2022-01-14 2022-04-22 山西双环重工集团有限公司 测量划线方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101733680A (zh) * 2009-12-29 2010-06-16 上海交通大学 大型轴承滚道的非接触式在线测量装置及方法
CN103033144A (zh) * 2012-12-22 2013-04-10 上海市隧道工程轨道交通设计研究院 一种激光测圆装置及其应用方法
CN103206939A (zh) * 2013-04-12 2013-07-17 索特传动设备有限公司 一种回转支承滚道检测装置及其检测方法
CN104816954A (zh) * 2015-03-17 2015-08-05 江苏食品药品职业技术学院 一种龙门式酒醅自动装甑机及装甑方法
CN205014948U (zh) * 2015-09-15 2016-02-03 常州铭赛机器人科技股份有限公司 非接触式测量圆桶圆心坐标的装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099646A1 (ja) * 2006-02-28 2007-09-07 Canon Kabushiki Kaisha 円形状の測定方法、円筒形状の測定方法及び円筒形状の測定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101733680A (zh) * 2009-12-29 2010-06-16 上海交通大学 大型轴承滚道的非接触式在线测量装置及方法
CN103033144A (zh) * 2012-12-22 2013-04-10 上海市隧道工程轨道交通设计研究院 一种激光测圆装置及其应用方法
CN103206939A (zh) * 2013-04-12 2013-07-17 索特传动设备有限公司 一种回转支承滚道检测装置及其检测方法
CN104816954A (zh) * 2015-03-17 2015-08-05 江苏食品药品职业技术学院 一种龙门式酒醅自动装甑机及装甑方法
CN205014948U (zh) * 2015-09-15 2016-02-03 常州铭赛机器人科技股份有限公司 非接触式测量圆桶圆心坐标的装置

Also Published As

Publication number Publication date
CN105136035A (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
CN105136035B (zh) 非接触式测量圆桶圆心坐标的装置及其方法
CN101957175B (zh) 基于三点微平面式法向检测方法
CN106092059B (zh) 一种基于多点拟合的结构物平面位移监测方法
CN104713491B (zh) 可获取边坡变形三维数据的边坡监测系统及其获取边坡变形三维数据的方法
CN102564393A (zh) 隧道全断面三维激光监控量测方法
CN110861091A (zh) 基于交叉激光束的工业机器人尖点型回转体工具标定方法
CN104563459B (zh) 一种抹墙机及其找平方法
CN102661699A (zh) 一种大半径短圆弧零件精密测量方法
CN106842229A (zh) 一种激光云台智能空间定位系统及空间定位方法
CN104101296A (zh) 一种大型结构件精密装配中的数字定位检测方法及系统
CN109682356B (zh) 基于激光基准面的自动化测量装置
CN104359436A (zh) 关节臂式三坐标测量机、多测量模型系统及工件测量方法
CN105737791A (zh) 一种大倾角综采工作面液压支架位姿检测方法
CN109764805A (zh) 一种基于激光扫描的机械臂定位装置与方法
CN106646498B (zh) 一种掘进机横向偏移测量方法
JP5255643B2 (ja) 液圧作動ブームの調整方法、装置およびコンピュータプログラム
CN104535974A (zh) 一种飞机雷达系统校靶装置及其使用方法
CN205014948U (zh) 非接触式测量圆桶圆心坐标的装置
CN110596715A (zh) 一种水线智能识别系统及定位方法
CN107388979B (zh) 一种隧道表面形变监测系统及计算机
CN108917711A (zh) 一种隧道工程三维激光扫描分段测量方法及系统
CN108180355B (zh) 一种测绘辅助工具及其使用方法
CN104180791B (zh) 一种飞机水平测量方法
CN107990881B (zh) 一种基于测量机器人的桩机施工定位方法
CN115560936A (zh) 一种杆塔螺栓松动激光自动检测装置及检测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20190627

Address after: 365000 No. 6 Xincheng Avenue, Xiaojiao Industrial Park, Meili District, Sanming City, Fujian Province

Patentee after: Baxter (Fujian) Intelligent Equipment Technology Co. Ltd.

Address before: 213164 Changzhou science and Education City, 18 Wujin Changwu Road, Wujin, China

Patentee before: Changzhou Science and Technology Co., Ltd. of Ming Sai robot

TR01 Transfer of patent right