CN105133574B - 挤入式地下连续墙终点封闭成墙装置和使用方法 - Google Patents

挤入式地下连续墙终点封闭成墙装置和使用方法 Download PDF

Info

Publication number
CN105133574B
CN105133574B CN201510437993.3A CN201510437993A CN105133574B CN 105133574 B CN105133574 B CN 105133574B CN 201510437993 A CN201510437993 A CN 201510437993A CN 105133574 B CN105133574 B CN 105133574B
Authority
CN
China
Prior art keywords
wall
little
forming device
ratchet
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510437993.3A
Other languages
English (en)
Other versions
CN105133574A (zh
Inventor
欧阳甘霖
路世豹
欧阳牧虎
冯晶
赵婉宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QINGDAO JINGLI ENGINEERING Co Ltd
Original Assignee
QINGDAO JINGLI ENGINEERING Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QINGDAO JINGLI ENGINEERING Co Ltd filed Critical QINGDAO JINGLI ENGINEERING Co Ltd
Priority to CN201510437993.3A priority Critical patent/CN105133574B/zh
Priority to US15/747,148 priority patent/US10407858B2/en
Priority to PCT/CN2015/088115 priority patent/WO2017012169A1/zh
Publication of CN105133574A publication Critical patent/CN105133574A/zh
Application granted granted Critical
Publication of CN105133574B publication Critical patent/CN105133574B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/20Bulkheads or similar walls made of prefabricated parts and concrete, including reinforced concrete, in situ
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/02Retaining or protecting walls
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/02Retaining or protecting walls
    • E02D29/0225Retaining or protecting walls comprising retention means in the backfill
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/18Bulkheads or similar walls made solely of concrete in situ
    • E02D5/185Bulkheads or similar walls made solely of concrete in situ with flexible joint members between sections
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/66Mould-pipes or other moulds
    • E02D5/68Mould-pipes or other moulds for making bulkheads or elements thereof
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/20Placing by pressure or pulling power
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D15/00Handling building or like materials for hydraulic engineering or foundations
    • E02D15/02Handling of bulk concrete specially for foundation or hydraulic engineering purposes
    • E02D15/04Placing concrete in mould-pipes, pile tubes, bore-holes or narrow shafts
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2600/00Miscellaneous
    • E02D2600/20Miscellaneous comprising details of connection between elements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/046Improving by compacting by tamping or vibrating, e.g. with auxiliary watering of the soil
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/26Placing by using several means simultaneously

Abstract

本发明涉及挤入式地下连续墙终点封闭成墙装置和使用方法,属于地下空间开发静力挤入技术领域。本发明用于解决地下连续墙终点合围处新旧混凝土墙段的无隙对接问题。本发明包括主体、振动喷水装置和分离装置,振动喷水装置固定设置于主体内部,分离装置仅活动套接于主体其中一短边外侧。本发明通过组装和单向运动的应用,首先创造了挤入式地下连续墙终点合围处成墙装置间的机械连接封闭条件,必要时将分离轨道、翅翼和防护罩与主体分离,进而达到新旧的混凝土墙段的无隙对接。

Description

挤入式地下连续墙终点封闭成墙装置和使用方法
技术领域
本发明涉及挤入式地下连续墙终点封闭成墙装置和使用方法,属于地下空间开发静力挤入技术领域。
背景技术
目前国内外挤入式地下连续墙(以下简称地下连续墙)单元墙段之间的正常对接是靠机械式套接器逐个铰接依次排序而成,终点合围实则为一个新混凝土单元墙段与另一个已凝固硬化的旧混凝土单元墙段的对接。已经硬化的旧混凝土单元墙段,其短边套接部位不可能与具有机械精度的套接器套入而形成连贯的不渗水的有强度的合围节点。现有方法是通过在终点合围接缝处实施内外多层重叠直线地下连续墙,籍以封闭接口达到防水抗渗目的。实践证明:重叠封闭法不但止水效果很差,且其结合部也非整体式结构,属于强度薄弱点,基本达不到防水挡土承重之技术要求。因此,解决地下连续墙终点合围处新旧混凝土墙段的无隙对接,是一项保障地下连续墙不失去挡土、截水、抗渗和承重等功能的关键技术。
发明内容
本发明的目的在于提供一种挤入式地下连续墙终点封闭成墙装置和使用方法,增加分离装置,首先创造了地下连续墙终点合围处成墙装置间的机械连接封闭条件,必要时将分离轨道、翅翼和防护罩与主体分离,进而达到新旧的混凝土墙段的无隙对接。
本发明是采用以下的技术方案实现的:挤入式地下连续墙终点封闭成墙装置,包括主体、振动喷水装置和分离装置,振动喷水装置固定设置于主体内部,分离装置活动套接于主体一短边外侧。
所述主体包括内腔、外墙体、小外墙体和双瓣阀门,内腔设为整体式中空矩形腔体,两块截面为“7”字形的、沿内腔两长边竖向间断设置的、两个“7”字头部于内腔短边侧壁中心处相对构成的凹形燕尾槽称作外墙体;凹形燕尾槽将与相邻的自动成墙装置凸形燕尾轨道相套接;外墙体于上下段内腔契口接缝位置采用长外墙体兼加强板形式跨越对接契口各较长长度用沉头螺栓固定;契口一侧设置有密封槽;“7”字头部相对的另一短边外侧壁固定两块于中心构成竖向通长小凹形燕尾槽的小外墙体,沿固定在内腔的短边外侧壁上的小凹形燕尾槽中心竖向间隔设置有上部为斜面下部为平直面的凸台肩;底端制有双瓣阀门的主体称为基本段;与基本段竖向对接的底端不设置双瓣阀门的主体统称辅助段,双瓣阀门正立面为三角形,沿内腔长边中心分成两瓣,每瓣于内腔短边底端相接处设置有轴销孔,与内腔短边底端设置的轴销孔错位嵌入形成同心轴孔,通过轴销串通轴孔形成铰接状;基本段底端阀门还可以制成平板式阀门,平板式阀门由两块平直板相对合拢于内腔长边中心,平直板相应于内墙短边底端设置有轴销孔,与短边底端轴销孔错位嵌入形成同心轴孔,其铰接方法同双瓣阀门,其中有一块平直板沿合拢中心接缝处通长焊接有密封梁,密封梁两端搭接在相应短边的底端,起到增强合拢处缝隙的密封和抗挤压强度;内腔底端设置有磁性装置。
需要注意的是,内腔的形状是多样的,也可将内腔设为圆形或椭圆形状等,如果内腔制成圆形或椭圆形等,则外墙体内侧壁应制成相应弧度,但外形仍为矩形。
所述分离装置包括分离轨道、棘爪和翅翼,分离轨道截面为双凸形燕尾形,与自动成墙装置凹形燕尾槽相套接的凸形燕尾称大燕尾,与小外墙体小凹形燕尾槽相套接的凸形燕尾称小燕尾;将小燕尾自主体顶端插入小凹形燕尾槽形成沿内腔短边竖向通长设置的分离轨道;在大燕尾和小燕尾相交最狭处两侧设置有平板状翅翼,翅翼通过塑性铆钉设置于小外墙体的外壁,翅翼两边设置有“∟”折翼,折翼完全遮蔽了小外墙体和翅翼的竖向缝隙;防护罩设置于分离轨道和小外墙体的底端并通过塑性铆钉固定;分离轨道内侧竖向与凸台肩相应位置水平设置有棘爪和棘爪室,棘爪下部为斜面上部为平直状,整体呈房门碰锁舌头状,棘爪后台肩直径大于棘爪轴孔径,支撑弹簧一端设置于棘爪后台肩的弹簧座内,另一端设置于棘爪室的内壁对应的带导向轴的弹簧座内,棘爪下部斜面和凸台肩上部斜面相吻合。
所述振动喷水装置包括进水管、出水管、循环水管、电缆管、风管、冷却水管、电动振动器或气源振动器、振动仓、喷水阀,各种管路自主体顶端沿内腔长边的外壁通长设置;每边设置进水管、出水管各1根,而冷却水管根据电动振动器和喷水阀数量设置,如采用气源振动器则将配备电动振动器的电缆管改成风管供气源振动器所用,此时冷却水管成为喷水阀专用。在外墙体内侧设置有适应管路通行的穹拱,管路经穹拱进入振动仓内并固定在内腔外壁上;在振动壁上安装有喷水阀,喷水阀的出水孔设置朝振动壁外侧,喷水阀与冷却水管连通,在出水孔内设有球阀,通常限压弹簧始终将球阀顶住出水孔,循环水不能流出,如果关闭出水管阀门,循环水压力迅即提高且超过限压弹簧张力时,球阀被顶开,水经出水孔流出浸润主体周围土体使之强度降低,此时如果启动振动器,在激振力、振幅和浸润三重作用下,主体挤入或拔出困难迎刃而解。
基本段最下部振动仓和辅助段最上部振动仓均增设与冷却水管串联的循环水管,冷却水经水泵压入进水管至上而下流入下循环水管并进入第一根冷却水管,然后沿第一根冷却水管上行经上循环水管进入第二根冷却水管,再下行经下循环水管进入第三根冷却水管…在水泵压力作用下如此循环最终流入静力桩机上的水箱,经散热后再经水泵压入进水管重新循环。
振动壁竖向用沉头螺栓固定于上下两段外墙体的凹台肩上且横向用沉头螺栓固定于振动框架上形成振动仓;电动振动器或气源振动器安装在振动壁内侧;进水管和出水管连接静力桩机上的水箱。
一种挤入式地下连续墙终点封闭成墙的使用方法,包括以下工艺步骤:
工艺步骤一、组装:根据设计地下连续墙深度和厚度,选择适当型号的基本段和辅助段依次在地面对接好,竖向总长度通过增减不同长度的辅助段达到符合设计标高和施工工艺条件为限。上下段连接时,除将上下段契口对准套入防止渗水外,还应将竖向设置在外墙体上的螺纹孔对齐,外墙体在此时兼有法兰功能,用螺栓拧紧起到非常稳固的对接作用。防护罩用塑性铆钉设置于分离轨道和小外墙体之底端,将分离轨道和小外墙体之间的缝隙封闭,以防止泥水杂质挤入阻塞;
工艺步骤二、单向运动应用:当固定主体不产生位移时,将分离轨道的小燕尾自主体顶部套入小凹形燕尾槽实施装配,此时,小燕尾只能从上往下作单体单向运动,进而使棘爪与凸台肩碰触,此时棘爪下部斜面沿固定在内腔短边侧壁上的小凹形燕尾槽中心的凸台肩上部的斜面继续爬行,进而迫使棘爪将垂直运动能量经斜面力学原理转化为棘爪轴推动棘爪后台肩压迫支撑弹簧沿导向轴作水平位移的动能,于是,棘爪被迫退入棘爪室,小燕尾通过凸台肩得以到达基本段底部预定位置;当分离装置被混凝土粘接不产生位移时:主体需提升拔出形成从下往上的单体单向运动,凸台肩上部斜面与棘爪下部斜面相碰触,由于前述斜面力学原理,棘爪被迫退入棘爪室,使凸台肩顺利通过棘爪,主体得以继续上行直至拔出地面;当主体和分离装置需同时挤入地下时,既形成从上往下的双体单向运动,这时,固定在短边侧壁小凹形燕尾槽中心的凸台肩下部平直面与分离轨道内腔安设的棘爪上部平直面相顶触,失去了斜面运动条件,且由于小凹形燕尾槽对分离轨道小燕尾的制约,使分离轨道小燕尾除上下垂直运动外不能作径向运动或脱离小凹形燕尾槽作独立运动,除非顶触面被剪切破坏,否则,凸台肩下部平直面带动棘爪上部平直面进而带动整体分离装置只能同步下行直至共同到达地下预定位置而不会产生相向运动或被分离;
工艺步骤三、终点分离封闭:先将封闭成墙装置沿地下连续墙轴线挤入地下后暂停;再将第一只自动成墙装置凹形燕尾槽套入封闭成墙装置分离轨道大燕尾内并挤入地下,及时灌满混凝土,然后静力桩机沿地下连续墙轴线行进一步,将第二只自动成墙装置凹形燕尾槽套入第一只自动成墙装置凸形燕尾轨道中并挤入地下,及时灌满混凝土,缓慢提升第一只自动成墙装置,双瓣阀门在重力作用下开启,内腔混凝土迅即流出填充主体上行让出的土体空间而形成第一段地下单元墙段,由于单向运动原理,分离装置跟随自动成墙装置上行的条件不成立,仍附着在封闭成墙装置身上,而自动成墙装置流出的混凝土迅即粘附在分离轨道和翅翼的外侧,至凝固后产生粘黏力;当地下连续墙施工到达终点合围处时,将最后一只自动成墙装置凸形燕尾轨道套入封闭成墙装置后端凹形燕尾槽中挤入地下同样深度,既完成地下连续墙终点合围处装置间的机械式封闭连接;将最先挤入的封闭成墙装置和最后一只自动成墙装置均灌满混凝土,启动电动振动器或者气源振动器逐渐提升封闭成墙装置,由于最早灌注的混凝土早已硬化并将靠近混凝土的分离装置粘黏牢,其粘黏力远远大于支撑弹簧张力加翅翼塑性铆钉拉力总和加小凹形燕尾槽与小燕尾之间的侧摩阻力,于是,满足主体上行单体单向运动条件,最先挤入的封闭成墙装置主体被拔出,而分离轨道加翅翼加防护罩被留在新形成的混凝土地下连续墙内;随后再将最后一只自动成墙装置边振动边提升,因该装置前后套接部位混凝土都没有凝固不产生大的粘黏力,于是最后一只自动成墙装置拔出;分离轨道、翅翼和两边折翼留在混凝土墙段中形成良好抗渗结构。
本发明的有益效果是:
本发明设置有分离装置,利用单向运动,首先创造成墙装置间的机械连接封闭条件,然后将分离轨道、翅翼和防护罩实施分离并留在混凝土地下连续墙内,形成地下连续墙终点合围处的新旧混凝土墙段的无隙对接,从而保障了地下连续墙成型的连续性和功能性,工艺方法新颖,墙体质量可靠,安装使用方便,节省资源。
附图说明
图1为封闭成墙装置正立面图。
图2为图1A-A截面图。
图3为图1B-B截面图。
图4为分离装置和折翼大样图。
图5为防护罩大样图。
图6为双瓣阀门C-C剖视图。
图7为双瓣阀门侧板J-J剖视图。
图8为图1契口对接大样图。
图9为图1右视图合并阀瓣D-D剖视图。
图10为图1左视图。
图11为图1棘爪大样图。
图12为底部平板式阀门示意图。
图13为图12开启示意图。
图14为多种套接形状示意图。
图15为使用工艺步骤示意图。
图中:1主体;2内腔;3外墙体;3'小外墙体;3"长外墙体;4双瓣阀门;4'阀门侧板;5分离轨道;6凸台肩;7凹形燕尾槽;7-1“T”形槽;7-2圆形槽;7-3菱形槽;7-4斜边形槽;7-5椭圆形槽;7'凸形燕尾轨道;8契口;8'密封槽;9加强板;10基本段;10'辅助段;11短边;11'短边;12长边;12'长边;13轴销孔;13'轴销孔;14轴销;15磁性装置;16平板式阀门;16'密封梁;17小凹形燕尾槽;18棘爪;19翅翼;19'折翼;20凹形燕尾槽;21大燕尾;21'小燕尾;22塑性铆钉;23后台肩;23'棘爪轴;24棘爪室;24'内壁;25支撑弹簧;26弹簧座;27导向轴;28进水管;28'出水管;29循环水管;30电缆管;31风管;31'冷却水管;32电动振动器;32'气源振动器;32"“Ω”卡;33振动仓;34喷水阀;35螺栓;35'沉头螺栓;35"螺纹孔;36振动壁;37出水孔;38球阀;39限压弹簧;40凹台肩;41框架;42穹拱;43法兰;44防护罩;45封闭成墙装置;46自动成墙装置;46'第二只自动成墙装置;46"最后一只自动成墙装置。
具体实施方式
下面结合附图对本发明作进一步说明。
实施例1:
如图1所示的封闭成墙装置正立面图,本发明装置包括主体1、分离装置和振动喷水装置。振动喷水装置设置于主体1内部与主体1固定连接,还包括分离装置,分离装置设置于主体1外侧,分离装置与主体1活动套接。
如图2、图3、图4所示,本发明装置主体1包括内腔2、外墙体3、小外墙体3'和双瓣阀门4。内腔2为整体式中空矩形腔体,长边12'内径300~1100mm、外径400~1200mm;短边11、11'内径200~1000mm、外径300~1100mm;沿内腔2短边11'外侧壁之小凹形燕尾槽17中心竖向每隔一定距离设置有一道上部为斜面下部为平直面的凸台肩6。
需要注意的是,内腔2的形状可以是多种多样的,也可将内腔2设为圆形或椭圆形状等,如果内腔2制成圆形或椭圆形等,则外墙体3内侧应制成相应弧度,但外形仍为矩形。
如图2和图3所示,两块截面为“7”字形的沿内腔2的长边12'竖向间断设置的、两个“7”字头部于内腔2短边11侧壁中心处相对构成的凹形燕尾槽7又称作外墙体3。凹形燕尾槽7将用于与相邻的自动成墙装置46的凸形燕尾轨道7'插入套接;套接后的自动成墙装置46与封闭成墙装置45仅可相对于凹形燕尾槽7或凸形燕尾轨道7'竖向滑动而不能脱离或作径向移动;内腔2短边11'外侧壁采用焊接或沉头螺栓35'固定两块于中心构成竖向通长小凹形燕尾槽17的小外墙体3'。如图1所示,在上下段内腔2的契口8对接处采用较长的长外墙体3"兼加强板9。具体做法是将长外墙体3"跨越上下段内腔2契口8对接缝位置各1/2长度,采用沉头螺栓35'将其固定,起到连接和增强双作用。
同样,如图14,凹形燕尾槽7形状是多种多样的,也可构成“T”形槽7-1、圆形槽7-2、菱形槽7-3、斜边形槽7-4、椭圆形槽7-5等形式,与之对应的凸形燕尾轨道7'的形状也相应配合变化;例如采用“T”形槽7-1,相邻两个自动成墙装置46仅能作直线轴向位移,而采用圆形槽7-2则相邻自动成墙装置46不仅能作直线轴向位移,也可以在一定范围作弧形位移。
实施例2:
如图8所示,契口8一侧设置有密封槽8',便于安装密封圈防止渗透。
如图1所示,底端设置有双瓣阀门4的主体1称为基本段10,基本段10长度制成≤50m范围;与基本段10竖向对接的底端不设有双瓣阀门4的主体1统称辅助段10',各辅助段10'单长在1500~15000mm之间不等,主体1短边11、11'边长既为地下连续墙厚度随工程对支护结构强度和防水要求设置有300~1300mm多种规格。
实施例3:
如图1、图6、图7、图9所示,双瓣阀门4正视图为三角形,与内腔2侧壁竖向垂直且上端面制成刃状的阀门侧板4';沿内腔2长边12'中心分成两瓣,如图6和图9所示,每瓣于内腔2短边11、11'底端相接处设置有至少两个轴销孔13,与内腔2短边11、11'底端设置的至少两个轴销孔13'错位嵌入形成同心轴孔,通过轴销14串通轴孔形成铰接状。如图12、图13所示,双瓣阀门4还可以制成平板式阀门16,平板式阀门16由两块有一定厚度的平直板相对合拢于内腔长边12'中心,平直板相应于内腔2短边11、11'底端设置有轴销孔13,与短边底端轴销孔13'错位嵌入形成同心轴孔,其铰接方法同双瓣阀门4,其中有一块平直板沿合拢中心接缝处通长焊接有密封梁16',密封梁16'两端搭载在相应短边的底端,密封梁16'截面的一半通长搭载在相对应的另一块平直板底端,起到增强合拢处缝隙的密封和抗挤压强度。如图12所示,内腔2无填充物时,内腔2底端埋设的两个磁性装置15吸力大于平板式阀门16自重而被吸引关闭;当处于关闭状态的平板式阀门16被挤入地下时被土体反力进一步压紧关闭,泥水或杂质不能进入内腔2;如图13所示,提升主体1时,作用在平板式阀门16上的土体反力迅即消失,此时内腔2混凝土含钢筋或其它混合物等重力大于磁性装置15吸力,使平板式阀门16被重力推动沿轴销14旋转像门一样,迅即向内腔2短边11、11'两侧开启与侧壁成垂直状,内腔2盛装混凝土迅速流出填充主体1上行让出的土体空间而形成与主体1外形尺寸相同的混凝土单元墙体。双瓣阀门4开闭原理同平板式阀门16。
实施例4:
分离装置包括分离轨道5、棘爪18和翅翼19。如图2、图3和图15所示,其中与自动成墙装置46凹形燕尾槽20套入铰接的凸形燕尾称大燕尾21,与小凹形燕尾槽17套接的凸形燕尾称小燕尾21'。如图1所示,将小燕尾21'自主体1顶端插入小凹形燕尾槽17内直至底端,既形成沿内腔2的短边11'竖向通长设置的分离轨道5;如图5所示,“∟”形防护罩44设置于分离轨道5和小凹形燕尾槽17的底端并通过塑性铆钉22固定,用于封闭分离轨道5和小外墙体3'之间缝隙,防止泥水挤入阻塞。如图4所示,在大燕尾21和小燕尾21'相交最狭处两侧设置有平板状翅翼19,其竖向长度同分离轨道5,宽度同主体1厚度;翅翼19应在分离轨道5安装妥当后再用塑性铆钉22沿小外墙体3'外壁锚定,其铆钉合力以保障挤入时不脱离而拔出时不阻碍分离为限。如图2、图3和图4所示,翅翼19两边设置有“∟”折翼19',折翼19'将小外墙体3'与翅翼19之间竖向间隙完全遮蔽。
如图11所示,分离轨道5内侧竖向与凸台肩6相应位置水平设置有棘爪18和棘爪室24。棘爪18下部为斜面上部为平直状,似房门的碰锁舌头状;棘爪18后台肩23直径大于棘爪轴23'孔径,支撑弹簧25一端安放在棘爪18后台肩23的弹簧座26内,一端安放在棘爪室24的内壁24'对应位置带导向轴27的弹簧座26内;在没有外力作用下,支撑弹簧25沿导向轴27将棘爪18始终顶出棘爪室24一小段。棘爪18下部斜面和凸台肩6上部斜面协调,均为引导棘爪18将竖向位移转换为水平位移,籍以控制棘爪18的伸出或缩回。上述内容基于单向运动,下面实施例6进行详细解释。
需要指出的是,如图14所示,分离轨道5,其截面形状根据需要也可以制成如图14所示的双“T”形、双圆形、双菱形、双斜边形和双椭圆形等形式,都可以实现很好的效果。
实施例5:
如图1和图3所示,振动喷水装置包括进水管28、出水管28'、循环水管29、电缆管30、风管31、冷却水管31'、电动振动器32或气源振动器32'、振动仓33、喷水阀34。各种管路自主体1顶端沿内腔2的长边12'外壁竖向设置,如图2和图3所示,在外墙体3内侧位置设置有适应各管路通行的穹拱42,各种管路经穹拱42进入振动仓33内,并用“Ω”卡32"通过螺栓35固定在内腔2外壁上。各种管路的对接也选择在振动仓33内实施。沿主体1两长边12竖向各设一排各种管道,但进水管28、出水管28'每排仅各设一根,电缆管30、风管31和冷却水管31'根据电动振动器32或气源振动器32'和喷水阀34数量设置,如采用气源振动器32'则将电缆管30变成风管31,冷却水管31'就成为专供喷水阀34所用。基本段10最下部振动仓33和辅助段10'最顶部振动仓33均增设有与冷却水管31'串联的循环水管29,循环水经水泵压入进水管28至上而下流入下循环水管29并进入第一根冷却水管31',然后沿第一根冷却水管31'上行经上循环水管29进入第二根冷却水管31',再下行经下循环水管29进入第三根冷却水管31'等,在水泵压力作用下如此循环最终流入静力桩机上的水箱,经散热后再经水泵压入进水管28重新循环。在振动壁36上安装有喷水阀34,喷水阀34的出水孔37朝振动壁36外侧设置,喷水阀34与冷却水管31'连通;在出水孔37内设置有球阀38,通常限压弹簧39始终将球阀38顶住出水孔37,水不能流出,遇坚硬土体挤入困难时,关闭出水管28'阀门,管内水压迅即提高且超过限压弹簧39张力时,球阀38被打开水经出水孔37流出浸润主体1周围土体使土体的强度降低,启动电动振动器32或气源振动器32',在激振力、振幅和浸润三重作用下,主体1挤入和拔出困难迎刃而解。电动振动器32工作时属于高热元件,需要大量冷却水,而气源振动器32'既不需要直供电力也无须水冷却,可作为优选应用。振动仓33由振动壁36竖向搭载于上下两段外墙体3凹台肩40上,用沉头螺栓35'固定,横向搭载于振动框架41上,同样用沉头螺栓35'固定,形成相应空间;电动振动器32通过“Ω”卡32"、气源振动器32'通过法兰43均被螺栓35安装在振动壁36内侧。启动电动振动器32或气源振动器32',即在振动壁36上产生较大激振力和振幅,对减少主体1的挤入和拔出摩阻以及增加混凝土的振捣密实有很大帮助。
实施例6:
如图15所示,本发明的使用方法包括组装、单向运动应用和终点分离封闭三个工艺步骤。
工艺步骤一、组装:根据设计地下连续墙深度和厚度,选择适当型号的基本段10和辅助段10'依次在地面对接好,竖向总长度通过增减不同长度的辅助段10'达到符合设计标高和施工工艺条件为限。上下段连接时,应注意除将上下段契口8对准套入防止渗水外,还应将竖向设置在外墙体3上的螺纹孔35"对齐,外墙体3在此时兼有法兰43功能,用螺栓35拧紧起到非常稳固的对接作用。如图5所示,防护罩44用塑性铆钉22设置于分离轨道5和小外墙体3'之底端,将分离轨道5和小外墙体3'之间的缝隙封闭,以防止泥水杂质挤入阻塞。
工艺步骤二、单向运动应用:当固定主体1不产生位移时,将分离轨道5的小燕尾21'自主体1顶部套入小凹形燕尾槽17实施装配:小燕尾21只能从上往下作单体单向运动,进而使棘爪18与凸台肩6碰触,此时棘爪18下部斜面沿固定在内腔短边11'侧壁上的小凹形燕尾槽17中心的凸台肩6上部的斜面继续爬行,迫使棘爪18将垂直运动能量经斜面力学原理转化为棘爪轴23'推动棘爪后台肩23压迫支撑弹簧25沿导向轴27作水平位移的动能,于是,棘爪18被迫退入棘爪室24,小燕尾21'通过凸台肩6得以到达基本段10底部预定位置;当分离装置被混凝土粘接不产生位移时:主体1需提升拔出形成从下往上的单体单向运动,凸台肩6上部斜面与棘爪18下部斜面相碰触,由于前述斜面力学原理,棘爪18被迫退入棘爪室24,使凸台肩6顺利通过棘爪18,主体1得以继续上行直至拔出地面;当主体1和分离装置需同时挤入地下时,既形成从上往下的双体单向运动,这时,固定在短边11'侧壁小凹形燕尾槽17中心的凸台肩6下部平直面与分离轨道5内腔安设的棘爪18上部平直面相抵触,失去了斜面运动条件,且由于小凹形燕尾槽17对分离轨道小燕尾21'的制约,使分离轨道小燕尾21'除沿小凹形燕尾槽17上下垂直运动外不能作径向运动或脱离小凹形燕尾槽17作独立运动,除非抵触面被剪切破坏,否则,凸台肩6下部平直面带动棘爪18上部平直面进而带动分离装置整体只能同步下行直至共同到达地下预定位置而不会产生相向运动或被分离。
工艺步骤三、终点分离封闭:先将封闭成墙装置45沿地下连续墙轴线挤入地下后暂停;再将第一只自动成墙装置46凹形燕尾槽7套入封闭成墙装置45分离轨道大燕尾21内并挤入地下,及时灌满混凝土,然后静力桩机沿地下连续墙轴线行进一步,将第二只自动成墙装置46'凹形燕尾槽7套入第一只自动成墙装置46凸形燕尾轨道7'中并挤入地下,及时灌满混凝土,缓慢提升第一只自动成墙装置46,双瓣阀门4在重力作用下开启,内腔2混凝土迅即流出填充主体1上行让出的土体空间而形成第一段地下单元墙段,由于单向运动原理,不会出现分离轨道5跟随自动成墙装置46上行的条件,于是,分离装置仍附着在封闭成墙装置45身上,而自动成墙装置46流出的混凝土迅即粘附在分离轨道5和翅翼19的外侧,至凝固后产生粘黏力;当地下连续墙施工到达终点合围处时,将最后一只自动成墙装置46"凸形燕尾轨道7'套入封闭成墙装置45后端凹形燕尾槽7中挤入地下同样深度,既完成地下连续墙终点合围处装置间的机械式封闭;将最先挤入的封闭成墙装置45和最后一只自动成墙装置46"均灌满混凝土,启动电动振动器32或者气源振动器32'逐渐提升封闭成墙装置45,由于最早灌注的混凝土早已硬化并将靠近混凝土的分离轨道5和翅翼19粘黏牢,其粘黏力远远大于支撑弹簧25张力加翅翼19塑性铆钉22拉力总和加小凹形燕尾槽17与小燕尾21'之间的侧摩阻力,于是,满足主体1上行单体单向运动条件,最先挤入的封闭成墙装置45主体1被拔出,而分离轨道5加翅翼19加防护罩44被留在新形成的混凝土地下连续墙内;随后再将最后一只自动成墙装置46"边振动边提升,因该装置前后套接部位混凝土都没有凝固不产生大的粘黏力,于是最后一只自动成墙装置46"拔出;分离轨道5、翅翼19和两边折翼19'留在混凝土墙段中形成良好抗渗结构。
当然,上述内容仅为发明的较佳实施例,不能被认为用于限定对发明的实施例范围。发明也并不仅限于举例,本技术领域的普通技术人员在发明的等实质范围内所做出的均等变化与改进等,均应归属于发明的专利涵盖范围内。

Claims (4)

1.一种挤入式地下连续墙终点封闭成墙装置,包括主体(1)和振动喷水装置,振动喷水装置固定设置于主体(1)内部,其特征在于:还包括分离装置,分离装置活动套接于主体(1)短边(11')外侧;主体(1)包括内腔(2)、外墙体(3)、小外墙体(3')和双瓣阀门(4),内腔(2)设为整体式中空矩形腔体,两块截面为“7”字形的、沿内腔(2)两长边(12')竖向间断设置的、两个“7”字头部于内腔(2)短边(11)侧壁中心处、相对构成的凹形燕尾槽(7)称作外墙体(3);凹形燕尾槽(7)将与相邻的自动成墙装置(46)凸形燕尾轨道(7')相套接;于上下段内腔(2)契口(8)接缝位置制有长外墙体(3")又兼加强板(9),跨越搭接缝处上下段内腔(2)各较长距离,用螺栓(35')固定;契口(8)一侧设置有密封槽(8');短边(11')外侧壁固定两块于中心构成竖向通长小凹形燕尾槽(17)的小外墙体(3'),沿小凹形燕尾槽(17)中心于短边(11')外侧壁竖向间隔设置有上部为斜面下部为平直面的凸台肩(6);主体(1)底端设置双瓣阀门(4);底端制有双瓣阀门(4)的主体(1)称为基本段(10);与基本段(10)竖向对接的底端不设有双瓣阀门(4)的主体(1)统称辅助段(10'),双瓣阀门(4)正立面为三角形,沿内腔(2)长边(12')中心分成两瓣,每瓣于内腔(2)短边(11)、(11')底端相接处设置有轴销孔(13),与内腔(2)短边(11)、(11')底端设置的轴销孔(13')错位嵌入形成同心轴孔,通过轴销(14)串通轴孔形成铰接状;内腔(2)底端设置有磁性装置(15),基本段(10)底部阀门又可制成平板式阀门(16),其铰接和开闭原理同双瓣阀门(4)。
2.根据权利要求1的挤入式地下连续墙终点封闭成墙装置,其特征在于:分离装置包括分离轨道(5)、棘爪(18)和翅翼(19),分离轨道(5)截面为双凸形燕尾形,与自动成墙装置(46)凹形燕尾槽(20)相套接的凸形燕尾称大燕尾(21),与小外墙体(3')小凹形燕尾槽(17)相套接的凸形燕尾称小燕尾(21');将小燕尾(21')自主体(1)顶端插入小凹形燕尾槽(17)形成沿内腔(2)短边(11')竖向通长设置的分离轨道(5);在大燕尾(21)和小燕尾(21')相交最狭处两侧设置有平板状翅翼(19),翅翼(19)通过塑性铆钉(22)设置于小外墙体(3')的外壁,翅翼(19)两边设置有“∟”折翼(19'),折翼(19')完全遮蔽了小外墙体(3')与翅翼(19)竖向缝隙,防护罩(44)设置于分离轨道(5)和小外墙体(3')的底端并通过塑性铆钉(22)固定;分离轨道(5)内侧竖向于凸台肩(6)相应位置水平设置有棘爪(18)和棘爪室(24),棘爪(18)下部为斜面上部为平直状,整体呈房门碰锁舌头状,棘爪(18)后台肩(23)直径大于棘爪轴(23')孔径,支撑弹簧(25)一端设置于棘爪(18)后台肩(23)的弹簧座(26)内,另一端设置于棘爪室(24)的内壁(24')对应的导向轴(27)的弹簧座(26)内,棘爪(18)下部斜面和凸台肩(6)上部斜面相吻合。
3.根据权利要求1的挤入式地下连续墙终点封闭成墙装置,其特征在于:振动喷水装置包括进水管(28)、出水管(28')、循环水管(29)、电缆管(30)、风管(31)、冷却水管(31')、电动振动器(32)或气源振动器(32')、振动仓(33)、喷水阀(34),管路自主体(1)顶端沿内腔(2)长边(12')的外壁竖向设置;在外墙体(3)内侧设置有适应管路通行的穹拱(42),管路经穹拱(42)进入振动仓(33)内并固定在内腔(2)外壁上;在振动壁(36)上安装有喷水阀(34),喷水阀(34)的出水孔(37)朝振动壁(36)外侧设置,喷水阀(34)与水管连通;振动壁(36)竖向设置于上下两段外墙体(3)的凹台肩(40)上且横向设置于振动框架(41)上构成振动仓(33);电动振动器(32)或气源振动器(32')安装在振动壁(36)内侧;基本段(10)最下部振动仓(33)和辅助段(10')最顶部振动仓(33)均增设有与冷却水管(31')串联的循环水管(29);进水管(28)和出水管(28')连接静力桩机上的水箱。
4.一种挤入式地下连续墙终点封闭成墙的使用方法,其特征在于:包括以下工艺步骤:
工艺步骤一、组装:根据设计地下连续墙深度和厚度,选择适当型号的基本段(10)和辅助段(10')依次在地面对接好,竖向总长度通过增减不同长度的辅助段(10')达到符合设计标高和施工工艺条件为限,上下段连接时,除将上下段契口(8)对准套入防止渗水外,还应将竖向设置在外墙体(3)上的螺纹孔(35")对齐,外墙体(3)在此时兼有法兰(43)功能,用螺栓(35)拧紧起到非常稳固的对接作用,防护罩(44)用塑性铆钉(22)设置于分离轨道(5)和小外墙体(3')之底端,将分离轨道(5)和小外墙体(3')之间的缝隙封闭,以防止泥水杂质挤入阻塞;
工艺步骤二、单向运动应用:当固定主体(1)不产生位移时:将分离轨道(5)的小燕尾(21')自主体(1)顶部套入小凹形燕尾槽(17)实施安装,小燕尾(21')只能沿小凹形燕尾槽(17)从上往下作单体单向运动,进而使棘爪(18)与凸台肩(6)碰触,此时棘爪(18)下部斜面沿固定在内腔(2)短边(11')侧壁小凹形燕尾槽(17)中心的凸台肩(6)上部的斜面继续爬行,进而迫使棘爪(18)将垂直运动能量经斜面力学原理转换为棘爪轴(23')推动棘爪后台肩(23)压迫支撑弹簧(25)沿导向轴(27)作水平移动的动能,于是,棘爪(18)被压缩退入棘爪室(24),小燕尾(21')得以通过凸台肩(6)继而到达基本段(10)底部预定位置;当分离装置被混凝土粘黏不产生位移时:主体(1)需提升拔出形成从下往上的单体单向运动,凸台肩(6)上部斜面与棘爪(18)下部斜面相碰触,根据前述斜面力学原理,棘爪(18)被压缩退入棘爪室(24),使凸台肩(6)顺利通过棘爪(18),主体(1)得以继续上行直至拔出地面;当主体(1)和分离装置需同时挤入地下时,既形成从上往下双体单向运动,这时,固定在短边(11')侧壁的小凹形燕尾槽(17)中心的凸台肩(6)下部平直面与分离轨道(5)内腔安设的棘爪(18)上部平直面相顶触,失去了斜面运动条件,且由于小凹形燕尾槽(17)对分离轨道小燕尾(21')的制约,使分离轨道小燕尾(21')除上下垂直运动外不能作径向运动或脱离小凹形燕尾槽(17)独立运动,除非顶触面被剪切破坏,否则,凸台肩(6)下部平直面带动棘爪(18)上部平直面进而带动分离装置整体只能同步下行直至共同到达地下预定位置而不会产生相向运动或被分离;
工艺步骤三、终点分离封闭:先将封闭成墙装置(45)沿地下连续墙轴线挤入地下后暂停;再将第一只自动成墙装置(46)凹形燕尾槽(7)套入封闭成墙装置(45)分离轨道大燕尾(21)内并挤入地下,及时灌满混凝土,然后静力桩机沿地下连续墙轴线行进一步,将第二只自动成墙装置(46')凹形燕尾槽(7)套入第一只自动成墙装置(46)凸形燕尾轨道(7')中并挤入地下,及时灌满混凝土,缓慢提升第一只自动成墙装置(46),双瓣阀门(4)在重力作用下开启,内腔(2)混凝土迅即流出填充主体(1)上行让出的土体空间而形成第一段地下单元墙段,由于单向运动原理,分离装置不具备跟随自动成墙装置(46)上行条件,仍附着在封闭成墙装置(45)身上,而自动成墙装置(46)流出的混凝土迅即粘附在分离轨道(5)和翅翼(19)的外侧,至凝固后产生粘黏力;当地下连续墙施工到达终点合围处时,将最后一只自动成墙装置(46")凸形燕尾轨道(7')套入封闭成墙装置(45)后端凹形燕尾槽(7)中挤入地下同样深度,既完成终点合围处装置间的机械式封闭;将最先挤入的封闭成墙装置(45)和最后一只自动成墙装置(46")均灌满混凝土,启动电动振动器(32)或者气源振动器(32')先逐渐提升封闭成墙装置(45),由于最早灌注的混凝土早已硬化并将靠近混凝土的分离轨道(5)和翅翼(19)粘黏牢,其粘黏力远远大于支撑弹簧(25)张力加翅翼(19)塑性铆钉(22)拉力总和加小凹形燕尾槽(17)与小燕尾(21')之间的侧摩阻力,于是,满足主体(1)单体上行单向运动条件,最先挤入的封闭成墙装置(45)主体(1)被拔出,而分离轨道(5)加翅翼(19)加防护罩(44)被留在新形成的混凝土地下连续墙内;随后再将最后一只自动成墙装置(46")边振动边提升,因该装置前后套接部位之混凝土都没有凝固不产生大的粘黏力,于是最后一只自动成墙装置(46")拔出;分离轨道(5)、翅翼(19)和折翼(19')留在混凝土墙段中形成良好抗渗结构。
CN201510437993.3A 2015-07-23 2015-07-23 挤入式地下连续墙终点封闭成墙装置和使用方法 Active CN105133574B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201510437993.3A CN105133574B (zh) 2015-07-23 2015-07-23 挤入式地下连续墙终点封闭成墙装置和使用方法
US15/747,148 US10407858B2 (en) 2015-07-23 2015-08-26 End point closing wall forming device of extrusion type underground diaphragm wall and method for operating same
PCT/CN2015/088115 WO2017012169A1 (zh) 2015-07-23 2015-08-26 挤入式地下连续墙终点封闭成墙装置和使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510437993.3A CN105133574B (zh) 2015-07-23 2015-07-23 挤入式地下连续墙终点封闭成墙装置和使用方法

Publications (2)

Publication Number Publication Date
CN105133574A CN105133574A (zh) 2015-12-09
CN105133574B true CN105133574B (zh) 2017-01-04

Family

ID=54719122

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510437993.3A Active CN105133574B (zh) 2015-07-23 2015-07-23 挤入式地下连续墙终点封闭成墙装置和使用方法

Country Status (3)

Country Link
US (1) US10407858B2 (zh)
CN (1) CN105133574B (zh)
WO (1) WO2017012169A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110185026B (zh) * 2019-05-09 2024-03-22 中建八局第一建设有限公司 一种地下连续墙及其施工方法
CN110552340B (zh) * 2019-09-20 2021-05-18 杨显亮 一种水渠两侧斜坡面夯实装置
CN111794205B (zh) * 2020-07-04 2021-10-08 四川航天建筑工程有限公司 一种防塌陷旋挖桩施工装置及其施工方法
CN116240936B (zh) * 2023-03-14 2023-10-13 西南科技大学 地下连续墙水平受荷试验的双层墙结构及参量测试方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3889482A (en) * 1972-09-29 1975-06-17 Leonard Long Frederick Jet sheet and circular pile with water hammer assist
NL191153C (nl) * 1981-09-15 1995-02-16 Stevin Volker Beton Water Werkwijze voor het vervaardigen van een de stroming van grondwater beperkend scherm in de grond alsmede vel en lans voor toepassing bij deze werkwijze.
NL8200466A (nl) * 1982-02-08 1983-09-01 Stevin Volker Beton Water Werkwijze voor het vervaardigen van een de stroming van grondwater afsluitend scherm.
NL8301918A (nl) * 1983-05-31 1984-12-17 Nico Gerhard Cortlever Damwand vormende een waterdicht scherm in de grond en werkwijze voor het aanbrengen daarvan.
US5106233A (en) * 1989-08-25 1992-04-21 Breaux Louis B Hazardous waste containment system
US5354149A (en) * 1989-08-25 1994-10-11 Barrier Member Containment Corp. In-ground barrier system with pass-through
US5259705A (en) * 1989-08-25 1993-11-09 Breaux Louis B Guide box assembly system for in-ground barrier installation
WO1993025766A1 (en) * 1992-06-15 1993-12-23 Ground & Foundation Supports Pty. Ltd. Method and system for piling panels, and panels therefor
CN2206802Y (zh) * 1994-02-26 1995-09-06 孔清华 干作业地下连续墙的成墙装置
US5800096A (en) * 1995-04-27 1998-09-01 Barrow; Jeffrey Subsurface barrier wall and method of installation
JP3536270B2 (ja) * 1996-03-04 2004-06-07 清水建設株式会社 地下連続壁の施工方法
JP3760365B2 (ja) * 2000-04-24 2006-03-29 調和工業株式会社 芯材の建込み装置
US6427402B1 (en) * 2000-10-25 2002-08-06 American Piledriving Equipment, Inc. Pile systems and methods
JP2004162528A (ja) * 2004-03-15 2004-06-10 Fumio Hoshi オーガ削孔機による連続ラップ削孔方法、及びオーガ削孔機
CN100387785C (zh) * 2006-11-24 2008-05-14 何富荣 水力插板及使用方法
JP4719315B2 (ja) * 2008-09-18 2011-07-06 新日本製鐵株式会社 鋼管矢板、鋼管矢板の継手構造、及び壁構造並びに鋼管矢板の引き抜き方法
CN201526047U (zh) * 2009-11-14 2010-07-14 欧阳甘霖 静压地下连续墙自动成墙装置
CN101718099B (zh) * 2009-11-14 2011-08-31 欧阳甘霖 静压地下连续墙自动成墙装置及方法
CN101718093B (zh) * 2009-11-14 2011-01-26 青岛理工大学 水泥土地下截水帷幕静压式成型装置及方法
CN202359574U (zh) * 2011-12-01 2012-08-01 杭州岩土工程有限公司 一种用于地下连续墙施工的双面钢模板
CN102535441A (zh) * 2012-03-16 2012-07-04 广州中煤江南基础工程公司 一种地下连续墙的施工方法

Also Published As

Publication number Publication date
CN105133574A (zh) 2015-12-09
WO2017012169A1 (zh) 2017-01-26
US10407858B2 (en) 2019-09-10
US20180216304A1 (en) 2018-08-02

Similar Documents

Publication Publication Date Title
CN105133574B (zh) 挤入式地下连续墙终点封闭成墙装置和使用方法
CN101975041B (zh) 绕煤层固井方法及装置
CN106836179A (zh) 竖向加强筋增强式囊式注浆桩及施工方法
CN107218060A (zh) 一种隧道预制衬砌接缝及其施工方法
CN105909228A (zh) 脉冲高压水力割缝-压裂装置及方法
CN209144815U (zh) 一种适用深井接地极钢套管的底部注浆系统
CN102071898A (zh) 自成形挡板及其反应型泡沫封孔密封装置
CN202467796U (zh) 油田注水井细分注水投球调剖一体化管柱
CN207033472U (zh) 一种新型液压增阻式隧道让压装置
CN203035102U (zh) 裸眼水平井分段多簇均匀酸化管柱
CN209277932U (zh) 一种煤矿瓦斯抽采装置
CN201934051U (zh) 自成形挡板及其反应型泡沫封孔密封装置
CN204252119U (zh) X异型支护桩结构
CN113818502B (zh) 下端位于地下通道内的桩基托换方法
CN205917993U (zh) 一种灌浆套筒及预制件
CN105178314B (zh) 挤入式地下连续墙无隙转向装置
CN107461185A (zh) 一种新型致裂煤层抽采煤层气装置
KR20190035381A (ko) 사면 보강 옹벽 구조물 및 그 시공방법
CN206844394U (zh) 一种预制剪力墙竖向连接节点
CN206647109U (zh) 急倾斜煤层回采巷道封闭式圆环让压支护装置
CN205712776U (zh) 一种灌浆套筒及预制件
CN209654018U (zh) 一种机械防砂装置
CN217231803U (zh) 一种避免松脱位移的岩土锚固结构
CN212742928U (zh) 一种内塞式装配式车站连接装置
CN219316481U (zh) 一种可拆卸式孔洞封堵装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant