CN105097962A - Solar cell anti-reflection film and preparation method thereof - Google Patents
Solar cell anti-reflection film and preparation method thereof Download PDFInfo
- Publication number
- CN105097962A CN105097962A CN201510549529.3A CN201510549529A CN105097962A CN 105097962 A CN105097962 A CN 105097962A CN 201510549529 A CN201510549529 A CN 201510549529A CN 105097962 A CN105097962 A CN 105097962A
- Authority
- CN
- China
- Prior art keywords
- silicon
- layer
- chemical vapor
- enhanced chemical
- vapor deposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 80
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 75
- 239000010703 silicon Substances 0.000 claims abstract description 75
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 74
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims abstract description 74
- 238000000151 deposition Methods 0.000 claims abstract description 58
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims abstract description 55
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 40
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 39
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 38
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 38
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 38
- 229910000077 silane Inorganic materials 0.000 claims abstract description 38
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000011261 inert gas Substances 0.000 claims abstract description 20
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 17
- 230000008021 deposition Effects 0.000 claims description 53
- 239000007789 gas Substances 0.000 claims description 47
- 229910021529 ammonia Inorganic materials 0.000 claims description 18
- 229910052757 nitrogen Inorganic materials 0.000 claims description 18
- 229910052739 hydrogen Inorganic materials 0.000 claims description 17
- 239000001257 hydrogen Substances 0.000 claims description 17
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 239000001307 helium Substances 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 229910052754 neon Inorganic materials 0.000 claims description 2
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims 14
- 230000003667 anti-reflective effect Effects 0.000 claims 5
- 239000004408 titanium dioxide Substances 0.000 claims 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims 4
- 150000004754 hydrosilicons Chemical class 0.000 claims 2
- 150000002431 hydrogen Chemical class 0.000 claims 1
- 150000004767 nitrides Chemical class 0.000 claims 1
- 239000010408 film Substances 0.000 abstract description 61
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 abstract description 40
- 229910052990 silicon hydride Inorganic materials 0.000 abstract description 17
- 239000010409 thin film Substances 0.000 abstract description 15
- 230000000694 effects Effects 0.000 abstract description 13
- 229910001873 dinitrogen Inorganic materials 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 18
- 235000012431 wafers Nutrition 0.000 description 15
- 238000005229 chemical vapour deposition Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 11
- 239000002245 particle Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910021419 crystalline silicon Inorganic materials 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000005360 phosphosilicate glass Substances 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- -1 silicon hydrogen compound Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/30—Coatings
- H10F77/306—Coatings for devices having potential barriers
- H10F77/311—Coatings for devices having potential barriers for photovoltaic cells
- H10F77/315—Coatings for devices having potential barriers for photovoltaic cells the coatings being antireflective or having enhancing optical properties
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
本发明涉及一种太阳能电池减反射膜及其制备方法。所述太阳能电池减反射膜包括依次叠加沉积在硅片表面上的氮氧化硅薄膜层、纳米二氧化钛层、氮化硅层、二氧化硅层和非晶硅层。所述制备方法包括在等离子体增强化学气相沉积设备中通入硅片、硅氢化合物和氮气使硅片表面沉积氮氧化硅薄膜层,然后通入纳米二氧化钛和惰性气体沉积纳米二氧化钛层,然后通入硅烷和氨气沉积氮化硅层,然后通入二氧化硅沉积二氧化硅层,最后通入硅烷和氢气沉积非晶硅层的步骤。本发明采用多层薄膜,能够对多个特定波长同时起到减反射的效果,而且本发明的薄膜厚度和折射率可控,使得对多个不同波长的光能同时起到较好的减反射效果;制备方法条件温和,易于操控。The invention relates to a solar cell anti-reflection film and a preparation method thereof. The solar cell anti-reflection film comprises a silicon nitride oxide thin film layer, a nano-titanium dioxide layer, a silicon nitride layer, a silicon dioxide layer and an amorphous silicon layer deposited on the surface of a silicon wafer in sequence. The preparation method comprises feeding a silicon wafer, a silicon hydride and nitrogen gas into a plasma-enhanced chemical vapor deposition device to deposit a silicon oxynitride film layer on the surface of the silicon wafer, and then feeding a nano-titanium dioxide and an inert gas to deposit a nano-titanium dioxide layer, and then passing The step of depositing a silicon nitride layer by feeding silane and ammonia gas, then depositing a silicon dioxide layer by feeding silicon dioxide, and finally depositing an amorphous silicon layer by feeding silane and hydrogen gas. The present invention adopts a multi-layer film, which can have the effect of anti-reflection on multiple specific wavelengths at the same time, and the thickness and refractive index of the film of the present invention are controllable, so that it can simultaneously play a better anti-reflection effect on multiple light energies of different wavelengths. Effect: The preparation method has mild conditions and is easy to manipulate.
Description
技术领域technical field
本发明涉及新能源技术领域,具体涉及太阳能电池减反射膜领域,尤其涉及一种太阳能电池减反射膜及其制备方法。The invention relates to the field of new energy technologies, in particular to the field of anti-reflection films for solar cells, in particular to an anti-reflection film for solar cells and a preparation method thereof.
背景技术Background technique
随着人类社会的高速发展,环境恶化与能源短缺已成为全世界最为突出的问题。目前,全球总能耗的70%以上都来自石油、天然气、煤等不可再生的能源。长期大量利用这些不可再生的能源会造成许多的危害。太阳能是一种非常理想的清洁、可再生的新能源,可以缓解能源短缺和环境污染。太阳能电池是将太阳辐射能直接转换为电能的一种器件。目前晶硅太阳能电池在世界太阳能电池产量中占80%左右,晶硅太阳能电池发电就是利用太阳能电池吸收0.4μm~1.1μm波长的太阳光,将光能直接转变成电能输出的一种发电方式。如何提高晶硅太阳能电池的转换效率,其中一个最主要的措施就是在硅片上镀减反射膜,由于光在硅片表面的反射使光损失高达30%以上,如果在硅表面镀上合适的薄膜,利用薄膜干涉原理就可以使光的反射大为减少,从而提高太阳能电池的短路光电流密度和光电转换效率。由此可见,在硅片表面加镀一层减反射膜显得非常重要。With the rapid development of human society, environmental degradation and energy shortage have become the most prominent problems in the world. At present, more than 70% of the world's total energy consumption comes from non-renewable energy sources such as oil, natural gas, and coal. Long-term and large-scale utilization of these non-renewable energy sources will cause many harms. Solar energy is an ideal clean and renewable new energy source, which can alleviate energy shortage and environmental pollution. A solar cell is a device that directly converts solar radiation energy into electrical energy. At present, crystalline silicon solar cells account for about 80% of the world's solar cell production. Crystalline silicon solar cell power generation is a power generation method that uses solar cells to absorb sunlight with a wavelength of 0.4 μm to 1.1 μm, and directly converts light energy into electrical energy output. How to improve the conversion efficiency of crystalline silicon solar cells, one of the most important measures is to coat the silicon wafer with an anti-reflection film. Due to the reflection of light on the surface of the silicon wafer, the light loss is as high as 30%. If the silicon surface is coated with a suitable Thin films, using the principle of thin film interference, can greatly reduce the reflection of light, thereby improving the short-circuit photocurrent density and photoelectric conversion efficiency of solar cells. It can be seen that it is very important to coat a layer of anti-reflection film on the surface of the silicon wafer.
CN104241402A公开了一种太阳能电池减反射膜及其制备方法;其中,减反射膜由依次叠加设置的非晶硅层、第一氮化硅薄膜和第二氮化硅薄膜组成,通过在太阳能电池硅片表面依次沉积三层薄膜而制成;该发明的减反射膜同时具有钝化作用和减反射的效果,但设备可控性较低,产品同一性不够,不易大规模生产。CN101989623A公开了一种太阳能电池减反射膜及其制备方法,其中,减反射膜包括沉积在硅片正表明的氮化硅薄膜,其平均折射率为2.1~2.3,平均反射率为1~10%;其制备方法是通过将硅片第一次镀膜、冷却和第二次镀膜的步骤;该发明的减反射膜厚度均匀且致密性良好,厚度可控,但附着性较差,影响其反射效率,沉积条件也比较严格。CN104241402A discloses an anti-reflection film for a solar cell and a preparation method thereof; wherein the anti-reflection film is composed of an amorphous silicon layer, a first silicon nitride film and a second silicon nitride film that are stacked in sequence, The anti-reflection film of this invention has the effect of passivation and anti-reflection at the same time, but the controllability of the equipment is low, the product identity is not enough, and it is not easy to mass-produce. CN101989623A discloses an anti-reflection film for a solar cell and a preparation method thereof, wherein the anti-reflection film includes a silicon nitride film deposited on the surface of a silicon wafer, the average refractive index is 2.1-2.3, and the average reflectance is 1-10%. ; The preparation method is through the steps of coating the silicon wafer for the first time, cooling and coating for the second time; the anti-reflection film of the invention has uniform thickness and good compactness, and the thickness is controllable, but the adhesion is poor, which affects its reflection efficiency , and the deposition conditions are more stringent.
发明内容Contents of the invention
本发明的目的之一在于提供一种具有良好反射率和折射率,且薄膜均匀性良好的太阳能电池减反射膜及其制备方法;One of the objects of the present invention is to provide a solar cell anti-reflection film with good reflectivity and refractive index and good film uniformity and its preparation method;
本发明的目的之二在于提供一种条件温和,易于推广和应用且市场前景广阔的太阳能减反射膜的制备方法。为了实现上述目的,本发明采用了以下技术方案:The second object of the present invention is to provide a method for preparing a solar anti-reflection film with mild conditions, easy popularization and application, and broad market prospects. In order to achieve the above object, the present invention adopts the following technical solutions:
第一方面,本发明提供一种太阳能电池减反射膜,包括依次叠加沉积在硅片表面上的氮氧化硅薄膜层、纳米二氧化钛层、氮化硅层、二氧化硅层和非晶硅层。In a first aspect, the present invention provides an antireflection film for a solar cell, comprising a silicon nitride oxide thin film layer, a nano-titanium dioxide layer, a silicon nitride layer, a silicon dioxide layer and an amorphous silicon layer sequentially stacked and deposited on the surface of a silicon wafer.
优选地,所述氮氧化硅薄膜层的厚度为25~30nm,例如可以是25nm、25.5nm、26nm、26.5nm、27nm、27.5nm、28nm、28.5nm、29nm、29.5nm或30nm;折射率为2.15~2.36,例如可以是2.15、2.16、2.17、2.18、2.19、2.2、2.21、2.22、2.23、2.24、2.25、2.26、2.27、2.28、2.29、2.3、2.31、2.32、2.33、2.34、2.35或2.36。Preferably, the thickness of the silicon oxynitride film layer is 25-30nm, such as 25nm, 25.5nm, 26nm, 26.5nm, 27nm, 27.5nm, 28nm, 28.5nm, 29nm, 29.5nm or 30nm; the refractive index 2.15~2.36, such as 2.15, 2.16, 2.17, 2.18, 2.19, 2.2, 2.21, 2.22, 2.23, 2.24, 2.25, 2.26, 2.27, 2.28, 2.29, 2.3, 2.31, 2.32, 2.33, 2.34, 2.35 or 2.36 .
优选地,所述纳米二氧化钛层的厚度为28~32nm,例如可以是28nm、28.5nm、29nm、29.5nm、30nm、30.5nm、31nm、31.5nm或32nm;折射率为2.1~2.2,例如可以是2.1、2.11、2.12、2.13、2.14、2.15、2.16、2.17、2.18、2.19或2.2。Preferably, the thickness of the nano-titanium dioxide layer is 28-32nm, such as 28nm, 28.5nm, 29nm, 29.5nm, 30nm, 30.5nm, 31nm, 31.5nm or 32nm; the refractive index is 2.1-2.2, such as 2.1, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, or 2.2.
优选地,所述氮化硅层的厚度为35~42nm,例如可以是35nm、35.5nm、36nm、36.5nm、37nm、37.5nm、38nm、38.5nm、39nm、39.5nm、40nm、40.5nm、41nm、41.5nm或42nm;折射率为2.2~2.4,例如可以是2.2、2.21、2.22、2.23、2.24、2.25、2.26、2.27、2.28、2.29、2.3、2.31、2.32、2.33、2.34、2.35、2.36、2.37、2.38、2.39或2.4。Preferably, the thickness of the silicon nitride layer is 35-42nm, for example, 35nm, 35.5nm, 36nm, 36.5nm, 37nm, 37.5nm, 38nm, 38.5nm, 39nm, 39.5nm, 40nm, 40.5nm, 41nm , 41.5nm or 42nm; the refractive index is 2.2 to 2.4, such as 2.2, 2.21, 2.22, 2.23, 2.24, 2.25, 2.26, 2.27, 2.28, 2.29, 2.3, 2.31, 2.32, 2.33, 2.34, 2.35, 2.36, 2.37, 2.38, 2.39 or 2.4.
所述二氧化硅层的厚度为45~55nm,例如可以是45nm、46nm、47nm、48nm、49nm、50nm、51nm、52nm、53nm、54nm或55nm;折射率为1.4~1.55,例如可以是1.4、1.41、1.42、1.43、1.44、1.45、1.46、1.47、1.48、1.49、1.5、1.51、1.52、1.53、1.54或1.55。The thickness of the silicon dioxide layer is 45-55nm, such as 45nm, 46nm, 47nm, 48nm, 49nm, 50nm, 51nm, 52nm, 53nm, 54nm or 55nm; the refractive index is 1.4-1.55, such as 1.4, 1.41, 1.42, 1.43, 1.44, 1.45, 1.46, 1.47, 1.48, 1.49, 1.5, 1.51, 1.52, 1.53, 1.54, or 1.55.
优选地,所述氮氧化硅薄膜层中氮氧化硅的粒度为12~15.5nm,例如可以是12nm、12.2nm、12.4nm、12.6nm、12.8nm、13nm、13.2nm、13.4nm、13.6nm、13.8nm、14nm、14.2nm、14.4nm、14.6nm、14.8nm、15nm、15.2nm、15.4nm或15.5nm。Preferably, the particle size of silicon oxynitride in the silicon oxynitride thin film layer is 12-15.5 nm, for example, 12 nm, 12.2 nm, 12.4 nm, 12.6 nm, 12.8 nm, 13 nm, 13.2 nm, 13.4 nm, 13.6 nm, 13.8nm, 14nm, 14.2nm, 14.4nm, 14.6nm, 14.8nm, 15nm, 15.2nm, 15.4nm, or 15.5nm.
优选地,所述纳米二氧化钛层中纳米二氧化钛的粒度为8~12nm,例如可以是8nm、8.2nm、8.4nm、8.6nm、8.8nm、9nm、9.2nm、9.4nm、9.6nm、9.8nm、10nm、10.2nm、10.4nm、10.6nm、10.8nm、11nm、11.2nm、11.4nm、11.6nm、11.8nm或12nm。Preferably, the particle size of the nano-titanium dioxide in the nano-titanium dioxide layer is 8-12nm, such as 8nm, 8.2nm, 8.4nm, 8.6nm, 8.8nm, 9nm, 9.2nm, 9.4nm, 9.6nm, 9.8nm, 10nm , 10.2nm, 10.4nm, 10.6nm, 10.8nm, 11nm, 11.2nm, 11.4nm, 11.6nm, 11.8nm or 12nm.
优选地,所述氮化硅层中氮化硅的粒度为10~15nm,例如可以是10nm、10.5nm、11nm、11.5nm、12nm、12.5nm、13nm、13.5nm、14nm、14.5nm或15nm。Preferably, the particle size of the silicon nitride in the silicon nitride layer is 10-15 nm, such as 10 nm, 10.5 nm, 11 nm, 11.5 nm, 12 nm, 12.5 nm, 13 nm, 13.5 nm, 14 nm, 14.5 nm or 15 nm.
优选地,所述二氧化硅层中二氧化硅的粒度为20~25nm,例如可以是20nm、20.5nm、21nm、21.5nm、22nm、22.5nm、23nm、23.5nm、24nm、24.5nm或25nm。Preferably, the silicon dioxide in the silicon dioxide layer has a particle size of 20-25nm, for example, 20nm, 20.5nm, 21nm, 21.5nm, 22nm, 22.5nm, 23nm, 23.5nm, 24nm, 24.5nm or 25nm.
优选地,所述氮氧化硅薄膜层、纳米二氧化钛层、氮化硅层、二氧化硅层和非晶硅层的膜层厚度依次增大。Preferably, the film thicknesses of the silicon oxynitride thin film layer, the nano-titanium dioxide layer, the silicon nitride layer, the silicon dioxide layer and the amorphous silicon layer increase sequentially.
本领域的技术人员熟知的,减反射膜是利用光在减反射膜上下表面反射产生的光程差值,使得两束反射光干涉相消,从而削弱反射增加入射,使得入射光符合一定的光程条件,从而达到减反射的效果,因此本发明采用多层薄膜,能够对多个特定波长同时起到减反射的效果,而且本发明的薄膜厚度和折射率可控,使得对多个不同波长的光能同时起到较好的减反射效果。As is well known to those skilled in the art, the anti-reflection film uses the optical path difference generated by the reflection of light on the upper and lower surfaces of the anti-reflection film, so that the two beams of reflected light interfere and cancel each other, thereby weakening the reflection and increasing the incidence, so that the incident light conforms to a certain light beam. process conditions, so as to achieve the effect of anti-reflection, so the present invention adopts multilayer film, can play the effect of anti-reflection to a plurality of specific wavelengths at the same time, and the film thickness and refractive index of the present invention are controllable, make to a plurality of different wavelengths At the same time, it can play a better anti-reflection effect.
第二方面,本发明提供如第一方面所述的太阳能电池减反射膜的制备方法,包括如下步骤:In a second aspect, the present invention provides a method for preparing an antireflection film for a solar cell as described in the first aspect, comprising the steps of:
(1)在等离子体增强化学气相沉积设备中通入硅片、硅氢化合物和氮气,使所述硅片的表面沉积氮氧化硅薄膜;(1) Pass silicon chip, silicon hydride and nitrogen in the plasma-enhanced chemical vapor deposition equipment, make the silicon nitride oxide film deposited on the surface of the silicon chip;
(2)继续在等离子体增强化学气相沉积设备中通入纳米二氧化钛和惰性气体,使纳米二氧化钛沉积在氮氧化硅薄膜层的表面;(2) Continue to feed nano-titanium dioxide and inert gas in the plasma enhanced chemical vapor deposition equipment, so that nano-titanium dioxide is deposited on the surface of the silicon oxynitride film layer;
(3)继续在等离子体增强化学气相沉积设备中通入硅烷和氨气,使氮化硅沉积在纳米二氧化钛层的表面;(3) continue to feed silane and ammonia in the plasma-enhanced chemical vapor deposition equipment, so that silicon nitride is deposited on the surface of the nano-titanium dioxide layer;
(4)继续在等离子体增强化学气相沉积设备中通入二氧化硅,使二氧化硅沉积在氮化硅层的表面;(4) Continue to feed silicon dioxide in the plasma enhanced chemical vapor deposition equipment, so that silicon dioxide is deposited on the surface of the silicon nitride layer;
(5)继续在等离子体增强化学气相沉积设备中通入硅烷和氢气,使非晶硅层沉积在二氧化硅层的表面。(5) Continue to feed silane and hydrogen into the plasma enhanced chemical vapor deposition equipment, so that the amorphous silicon layer is deposited on the surface of the silicon dioxide layer.
优选地,步骤(1)所述硅片、硅氢化合物和氮气的流量比为1:(1~4):(1~3),例如可以是1:1:1、1:2:1、1:3:1、1:4:1、1:1:2、1:1:3、1:2:2、1:2:3、1:3:2、1:3:3、1:4:2或1:4:3。Preferably, the flow ratio of silicon wafer, silicon hydride and nitrogen in step (1) is 1:(1~4):(1~3), for example, it can be 1:1:1, 1:2:1, 1:3:1, 1:4:1, 1:1:2, 1:1:3, 1:2:2, 1:2:3, 1:3:2, 1:3:3, 1: 4:2 or 1:4:3.
优选地,所述等离子体增强化学气相沉积设备的频率为12~16MHz,例如可以是12MHz、12.5MHz、13MHz、13.5MHz、14MHz、14.5MHz、15MHz、15.5MHz或16MHz;气体压强为20~80Pa,例如可以是20Pa、25Pa、30Pa、35Pa、40Pa、45Pa、50Pa、55Pa、60Pa、65Pa、70Pa、75Pa或80Pa;温度为100~300℃,例如可以是100℃、110℃、120℃、130℃、140℃、150℃、160℃、170℃、180℃、190℃、200℃、210℃、220℃、230℃、240℃、250℃、260℃、270℃、280℃、290℃或300℃;射频功率为3500~6000W,例如可以是3500W、3600W、3700W、3800W、3900W、4000W、4100W、4200W、4300W、4400W、4500W、4600W、4700W、4800W、4900W、5000W、5100W、5200W、5300W、5400W、5500W、5600W、5700W、5800W、5900W或6000W;沉积功率为38~70W,例如可以是38W、39W、40W、41W、42W、43W、44W、45W、46W、47W、48W、49W、50W、51W、52W、53W、54W、55W、56W、57W、58W、59W、60W、61W、62W、63W、64W、65W、66W、67W、68W、69W或70W。Preferably, the frequency of the plasma-enhanced chemical vapor deposition equipment is 12-16MHz, such as 12MHz, 12.5MHz, 13MHz, 13.5MHz, 14MHz, 14.5MHz, 15MHz, 15.5MHz or 16MHz; the gas pressure is 20-80Pa , such as 20Pa, 25Pa, 30Pa, 35Pa, 40Pa, 45Pa, 50Pa, 55Pa, 60Pa, 65Pa, 70Pa, 75Pa or 80Pa; the temperature is 100-300°C, such as 100°C, 110°C, 120°C, 130°C ℃, 140℃, 150℃, 160℃, 170℃, 180℃, 190℃, 200℃, 210℃, 220℃, 230℃, 240℃, 250℃, 260℃, 270℃, 280℃, 290℃ or 300°C; RF power is 3500~6000W, such as 3500W, 3600W, 3700W, 3800W, 3900W, 4000W, 4100W, 4200W, 4300W, 4400W, 4500W, 4600W, 4700W, 4800W, 4900W, 5000W, 50000W, 5300W, 5300W , 5400W, 5500W, 5600W, 5700W, 5800W, 5900W or 6000W; the deposition power is 38-70W, for example, it can be 38W, 39W, 40W, 41W, 42W, 43W, 44W, 45W, 46W, 47W, 48W, 49W, 50W , 51W, 52W, 53W, 54W, 55W, 56W, 57W, 58W, 59W, 60W, 61W, 62W, 63W, 64W, 65W, 66W, 67W, 68W, 69W, or 70W.
优选地,步骤(2)所述惰性气体为氖气、氩气或氦气中的任意一种或至少两种的混合物。Preferably, the inert gas in step (2) is any one or a mixture of at least two of neon, argon or helium.
优选地,所述纳米二氧化钛和惰性气体的流量比为1:(10~25),例如可以是1:10、1:11、1:12、1:13、1:14、1:15、1:16、1:17、1:18、1:19、1:20、1:21、1:22、1:23、1:24或1:25。Preferably, the flow ratio of the nano-titanium dioxide and the inert gas is 1:(10-25), such as 1:10, 1:11, 1:12, 1:13, 1:14, 1:15, 1 :16, 1:17, 1:18, 1:19, 1:20, 1:21, 1:22, 1:23, 1:24, or 1:25.
优选地,所述等离子体增强化学气相沉积设备的频率为10~13MHz,例如可以是10MHz、10.2MHz、10.4MHz、10.6MHz、10.8MHz、11MHz、11.2MHz、11.4MHz、11.6MHz、11.8MHz、12MHz、12.2MHz、12.4MHz、12.6MHz、12.8MHz或13MHz;气体压强为20~100Pa,例如可以是20Pa、25Pa、30Pa、35Pa、40Pa、45Pa、50Pa、55Pa、60Pa、65Pa、70Pa、75Pa、80Pa、85Pa、90Pa、95Pa或100Pa;温度为150~350℃,例如可以是150℃、160℃、170℃、180℃、190℃、200℃、210℃、220℃、230℃、240℃、250℃、260℃、270℃、280℃、290℃、300℃、310℃、320℃、330℃、340℃或350℃;射频功率为3500~6000W,例如可以是3500W、3600W、3700W、3800W、3900W、4000W、4100W、4200W、4300W、4400W、4500W、4600W、4700W、4800W、4900W、5000W、5100W、5200W、5300W、5400W、5500W、5600W、5700W、5800W、5900W或6000W;沉积功率为50~80W,例如可以是50W、51W、52W、53W、54W、55W、56W、57W、58W、59W、60W、61W、62W、63W、64W、65W、66W、67W、68W、69W、70W、71W、72W、73W、74W、75W、76W、77W、78W、79W或80W。Preferably, the frequency of the plasma-enhanced chemical vapor deposition equipment is 10-13MHz, such as 10MHz, 10.2MHz, 10.4MHz, 10.6MHz, 10.8MHz, 11MHz, 11.2MHz, 11.4MHz, 11.6MHz, 11.8MHz, 12MHz, 12.2MHz, 12.4MHz, 12.6MHz, 12.8MHz or 13MHz; the gas pressure is 20-100Pa, such as 20Pa, 25Pa, 30Pa, 35Pa, 40Pa, 45Pa, 50Pa, 55Pa, 60Pa, 65Pa, 70Pa, 75Pa, 80Pa, 85Pa, 90Pa, 95Pa or 100Pa; the temperature is 150-350°C, such as 150°C, 160°C, 170°C, 180°C, 190°C, 200°C, 210°C, 220°C, 230°C, 240°C, 250°C, 260°C, 270°C, 280°C, 290°C, 300°C, 310°C, 320°C, 330°C, 340°C or 350°C; RF power is 3500-6000W, for example, it can be 3500W, 3600W, 3700W, 3800W , 3900W, 4000W, 4100W, 4200W, 4300W, 4400W, 4500W, 4600W, 4700W, 4800W, 4900W, 5000W, 5100W, 5200W, 5300W, 5400W, 5500W, 5600W, 5700W, 5800W, 59000W; 80W, such as 50W, 51W, 52W, 53W, 54W, 55W, 56W, 57W, 58W, 59W, 60W, 61W, 62W, 63W, 64W, 65W, 66W, 67W, 68W, 69W, 70W, 71W, 72W , 73W, 74W, 75W, 76W, 77W, 78W, 79W or 80W.
优选地,步骤(3)所述硅烷和氨气的流量比为1:(3~6),例如可以是1:3、1:3.5、1:4、1:4.5、1:5、1:5.5或1:6。Preferably, the flow ratio of silane and ammonia in step (3) is 1: (3-6), for example, it can be 1:3, 1:3.5, 1:4, 1:4.5, 1:5, 1: 5.5 or 1:6.
优选地,所述等离子体增强化学气相沉积设备的频率为12~16MHz,例如可以是12MHz、12.5MHz、13MHz、13.5MHz、14MHz、14.5MHz、15MHz、15.5MHz或16MHz;气体压强为100~300Pa,例如可以是100Pa、110Pa、120Pa、130Pa、140Pa、150Pa、160Pa、170Pa、180Pa、190Pa、200Pa、210Pa、220Pa、230Pa、240Pa、250Pa、260Pa、270Pa、280Pa、290Pa或300Pa;温度为100~300℃,例如可以是100℃、110℃、120℃、130℃、140℃、150℃、160℃、170℃、180℃、190℃、200℃、210℃、220℃、230℃、240℃、250℃、260℃、270℃、280℃、290℃或300℃;射频功率为3500~6000W,例如可以是3500W、3600W、3700W、3800W、3900W、4000W、4100W、4200W、4300W、4400W、4500W、4600W、4700W、4800W、4900W、5000W、5100W、5200W、5300W、5400W、5500W、5600W、5700W、5800W、5900W或6000W;沉积功率为38~70W,例如可以是38W、39W、40W、41W、42W、43W、44W、45W、46W、47W、48W、49W、50W、51W、52W、53W、54W、55W、56W、57W、58W、59W、60W、61W、62W、63W、64W、65W、66W、67W、68W、69W或70W。Preferably, the frequency of the plasma-enhanced chemical vapor deposition equipment is 12-16MHz, such as 12MHz, 12.5MHz, 13MHz, 13.5MHz, 14MHz, 14.5MHz, 15MHz, 15.5MHz or 16MHz; the gas pressure is 100-300Pa , such as 100Pa, 110Pa, 120Pa, 130Pa, 140Pa, 150Pa, 160Pa, 170Pa, 180Pa, 190Pa, 200Pa, 210Pa, 220Pa, 230Pa, 240Pa, 250Pa, 260Pa, 270Pa, 280Pa, 290Pa or 300Pa; 300°C, such as 100°C, 110°C, 120°C, 130°C, 140°C, 150°C, 160°C, 170°C, 180°C, 190°C, 200°C, 210°C, 220°C, 230°C, 240°C . , 4600W, 4700W, 4800W, 4900W, 5000W, 5100W, 5200W, 5300W, 5400W, 5500W, 5600W, 5700W, 5800W, 5900W or 6000W; the deposition power is 38-70W, such as 38W, 39W, 40W, 41W, 42W ,43W,44W,45W,46W,47W,48W,49W,50W,51W,52W,53W,54W,55W,56W,57W,58W,59W,60W,61W,62W,63W,64W,65W,66W,67W , 68W, 69W or 70W.
优选地,在步骤(4)中,所述等离子体增强化学气相沉积设备的频率为10~15MHz,例如可以是10MHz、10.5MHz、11MHz、11.5MHz、12MHz、12.5MHz、13MHz、13.5MHz、14MHz、14.5MHz或15MHz;气体压强为20~100Pa,例如可以是20Pa、25Pa、30Pa、35Pa、40Pa、45Pa、50Pa、55Pa、60Pa、65Pa、70Pa、75Pa、80Pa、85Pa、90Pa、95Pa或100Pa;温度为300~500℃,例如可以是300℃、310℃、320℃、330℃、340℃、350℃、360℃、370℃、380℃、390℃、400℃、410℃、420℃、430℃、440℃、450℃、460℃、470℃、480℃、490℃或500℃;射频功率为3500~6000W,例如可以是3500W、3600W、3700W、3800W、3900W、4000W、4100W、4200W、4300W、4400W、4500W、4600W、4700W、4800W、4900W、5000W、5100W、5200W、5300W、5400W、5500W、5600W、5700W、5800W、5900W或6000W;沉积功率为38~70W,例如可以是38W、39W、40W、41W、42W、43W、44W、45W、46W、47W、48W、49W、50W、51W、52W、53W、54W、55W、56W、57W、58W、59W、60W、61W、62W、63W、64W、65W、66W、67W、68W、69W或70W。Preferably, in step (4), the frequency of the plasma-enhanced chemical vapor deposition equipment is 10-15MHz, such as 10MHz, 10.5MHz, 11MHz, 11.5MHz, 12MHz, 12.5MHz, 13MHz, 13.5MHz, 14MHz , 14.5MHz or 15MHz; the gas pressure is 20-100Pa, such as 20Pa, 25Pa, 30Pa, 35Pa, 40Pa, 45Pa, 50Pa, 55Pa, 60Pa, 65Pa, 70Pa, 75Pa, 80Pa, 85Pa, 90Pa, 95Pa or 100Pa; The temperature is 300-500°C, such as 300°C, 310°C, 320°C, 330°C, 340°C, 350°C, 360°C, 370°C, 380°C, 390°C, 400°C, 410°C, 420°C, 430°C ℃, 440℃, 450℃, 460℃, 470℃, 480℃, 490℃ or 500℃; RF power is 3500~6000W, such as 3500W, 3600W, 3700W, 3800W, 3900W, 4000W, 4100W, 4200W, 4300W , 4400W, 4500W, 4600W, 4700W, 4800W, 4900W, 5000W, 5100W, 5200W, 5300W, 5400W, 5500W, 5600W, 5700W, 5800W, 5900W or 6000W; the deposition power is 38-70W, such as 38W, 39W, 4 ,41W,42W,43W,44W,45W,46W,47W,48W,49W,50W,51W,52W,53W,54W,55W,56W,57W,58W,59W,60W,61W,62W,63W,64W,65W , 66W, 67W, 68W, 69W or 70W.
优选地,步骤(5)所述硅烷和氢气的流量比为1:(6~10),例如可以是1:6、1:6.5、1:7、1:7.5、1:8、1:8.5、1:9、1:9.5或1:10。Preferably, the flow ratio of silane and hydrogen in step (5) is 1: (6-10), for example, it can be 1:6, 1:6.5, 1:7, 1:7.5, 1:8, 1:8.5 , 1:9, 1:9.5 or 1:10.
优选地,所述等离子体增强化学气相沉积设备的频率为12~16MHz,例如可以是12MHz、12.5MHz、13MHz、13.5MHz、14MHz、14.5MHz、15MHz、15.5MHz或16MHz;气体压强为100~300Pa,例如可以是100Pa、110Pa、120Pa、130Pa、140Pa、150Pa、160Pa、170Pa、180Pa、190Pa、200Pa、210Pa、220Pa、230Pa、240Pa、250Pa、260Pa、270Pa、280Pa、290Pa或300Pa;温度为100~300℃,例如可以是100℃、110℃、120℃、130℃、140℃、150℃、160℃、170℃、180℃、190℃、200℃、210℃、220℃、230℃、240℃、250℃、260℃、270℃、280℃、290℃或300℃;射频功率为3500~6000W,例如可以是3500W、3600W、3700W、3800W、3900W、4000W、4100W、4200W、4300W、4400W、4500W、4600W、4700W、4800W、4900W、5000W、5100W、5200W、5300W、5400W、5500W、5600W、5700W、5800W、5900W或6000W;沉积功率为38~70W,例如可以是38W、39W、40W、41W、42W、43W、44W、45W、46W、47W、48W、49W、50W、51W、52W、53W、54W、55W、56W、57W、58W、59W、60W、61W、62W、63W、64W、65W、66W、67W、68W、69W或70W。Preferably, the frequency of the plasma-enhanced chemical vapor deposition equipment is 12-16MHz, such as 12MHz, 12.5MHz, 13MHz, 13.5MHz, 14MHz, 14.5MHz, 15MHz, 15.5MHz or 16MHz; the gas pressure is 100-300Pa , such as 100Pa, 110Pa, 120Pa, 130Pa, 140Pa, 150Pa, 160Pa, 170Pa, 180Pa, 190Pa, 200Pa, 210Pa, 220Pa, 230Pa, 240Pa, 250Pa, 260Pa, 270Pa, 280Pa, 290Pa or 300Pa; 300°C, such as 100°C, 110°C, 120°C, 130°C, 140°C, 150°C, 160°C, 170°C, 180°C, 190°C, 200°C, 210°C, 220°C, 230°C, 240°C . , 4600W, 4700W, 4800W, 4900W, 5000W, 5100W, 5200W, 5300W, 5400W, 5500W, 5600W, 5700W, 5800W, 5900W or 6000W; the deposition power is 38-70W, such as 38W, 39W, 40W, 41W, 42W ,43W,44W,45W,46W,47W,48W,49W,50W,51W,52W,53W,54W,55W,56W,57W,58W,59W,60W,61W,62W,63W,64W,65W,66W,67W , 68W, 69W or 70W.
在对太阳能电池的硅片进行镀膜之前,需要对硅片进行预先处理,具体包括对硅片进行清洗腐蚀制绒、制备PN结、等离子刻蚀去除硅片四周的PN结合清洗去除磷硅玻璃的步骤。在进行上述处理之后,在硅片的表面上进行镀膜,本发明采用的等离子体增强化学气相沉积设备是借助微波或者射频等使含有薄膜组成原子的气体电离,在局部形成具有极高化学活性的等离子体,从而在硅基片上沉积成薄膜,通过对气体流量的比例控制实现对沉积薄膜厚度的精确操控。此外,本发明对于设备的频率、压强、温度、射频功率和沉积功率的要求均为常规范围,条件较为温和,易于推广和应用。Before coating the silicon wafers of solar cells, the silicon wafers need to be pre-treated, including cleaning and etching the silicon wafers, preparing PN junctions, plasma etching to remove the PN around the silicon wafers, and cleaning to remove the phospho-silicate glass. step. After the above-mentioned treatment, the surface of the silicon wafer is coated. The plasma-enhanced chemical vapor deposition equipment used in the present invention uses microwaves or radio frequencies to ionize the gas containing the constituent atoms of the film to form a highly chemically active layer locally. The plasma is used to deposit a thin film on a silicon substrate, and the precise control of the thickness of the deposited film can be achieved through the proportional control of the gas flow. In addition, the requirements of the present invention for the frequency, pressure, temperature, radio frequency power and deposition power of the equipment are all in the conventional range, the conditions are relatively mild, and it is easy to popularize and apply.
与现有技术相比,本发明至少具备以下有益效果:Compared with the prior art, the present invention at least has the following beneficial effects:
本发明的太阳能电池减反射膜包括依次叠加沉积在硅片表面上的氮氧化硅薄膜层、纳米二氧化钛层、氮化硅层、二氧化硅层和非晶硅层。本发明所述太阳能减反射膜的制备方法包括在等离子体增强化学气相沉积设备中通入硅片、硅氢化合物和氮气使硅片表面沉积氮氧化硅薄膜层,然后通入纳米二氧化钛和惰性气体沉积纳米二氧化钛层,然后通入硅烷和氨气沉积氮化硅层,然后通入二氧化硅沉积二氧化硅层,最后通入硅烷和氢气沉积非晶硅层的步骤。本发明采用多层薄膜,能够对多个特定波长同时起到减反射的效果,而且本发明的薄膜厚度和折射率可控,使得对多个不同波长的光能同时起到较好的减反射效果。此外,本发明借助微波或者射频等使含有薄膜组成原子的气体电离,在局部形成具有极高化学活性的等离子体,从而在硅基片上沉积成薄膜,通过对气体流量的比例控制实现对沉积薄膜厚度的精确操控。制备方法本身对于设备的频率、压强、温度、射频功率和沉积功率的要求均为常规范围,条件较为温和,易于推广和应用,市场前景广阔。The solar cell anti-reflection film of the invention comprises a silicon nitride oxide thin film layer, a nano-titanium dioxide layer, a silicon nitride layer, a silicon dioxide layer and an amorphous silicon layer successively stacked and deposited on the surface of a silicon wafer. The preparation method of the solar anti-reflection film of the present invention comprises passing silicon wafer, silicon hydrogen compound and nitrogen gas into the plasma enhanced chemical vapor deposition equipment to deposit a silicon nitride oxide film layer on the surface of the silicon wafer, and then feeding nano titanium dioxide and inert gas The step of depositing a nano-titanium dioxide layer, then passing through silane and ammonia gas to deposit a silicon nitride layer, then passing through silicon dioxide to deposit a silicon dioxide layer, and finally passing through silane and hydrogen gas to deposit an amorphous silicon layer. The present invention adopts a multi-layer film, which can have the effect of anti-reflection on multiple specific wavelengths at the same time, and the thickness and refractive index of the film of the present invention are controllable, so that it can simultaneously play a better anti-reflection effect on multiple light energies of different wavelengths. Effect. In addition, the present invention uses microwaves or radio frequencies to ionize the gas containing the constituent atoms of the film, locally forming plasma with extremely high chemical activity, thereby depositing a film on the silicon substrate, and realizing the control of the deposited film by controlling the gas flow rate Precise control of thickness. The preparation method itself requires the frequency, pressure, temperature, radio frequency power and deposition power of the equipment to be in the conventional range, the conditions are relatively mild, it is easy to promote and apply, and the market prospect is broad.
具体实施方式Detailed ways
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。The technical solutions of the present invention will be further described below through specific embodiments. It should be clear to those skilled in the art that the embodiments are only for helping to understand the present invention, and should not be regarded as specific limitations on the present invention.
实施例1Example 1
本实施例采用如下方法制备太阳能电池的减反射膜:In this embodiment, the following method is used to prepare the anti-reflection film of the solar cell:
(1)在等离子体增强化学气相沉积设备中通入硅片、硅氢化合物和氮气,使所述硅片的表面沉积氮氧化硅薄膜;所述硅片、硅氢化合物和氮气的流量比为1:1:1;所述等离子体增强化学气相沉积设备的频率为12MHz;气体压强为20Pa;温度为100℃;射频功率为3500W;沉积功率为38W;(1) feed silicon chip, silicon hydride and nitrogen in the plasma enhanced chemical vapor deposition equipment, make the surface deposition silicon oxynitride thin film of described silicon chip; The flow ratio of described silicon chip, silicon hydride and nitrogen is: 1:1:1; the frequency of the plasma-enhanced chemical vapor deposition equipment is 12MHz; the gas pressure is 20Pa; the temperature is 100°C; the radio frequency power is 3500W; the deposition power is 38W;
(2)继续在等离子体增强化学气相沉积设备中通入纳米二氧化钛和惰性气体,使纳米二氧化钛沉积在氮氧化硅薄膜层的表面;所述纳米二氧化钛和惰性气体的流量比为1:10;所述等离子体增强化学气相沉积设备的频率为10MHz;气体压强为20Pa;温度为150℃;射频功率为3500W;沉积功率为50W;(2) Continue to feed nano-titanium dioxide and inert gas in the plasma-enhanced chemical vapor deposition equipment, so that nano-titanium dioxide is deposited on the surface of the silicon oxynitride film layer; the flow ratio of described nano-titanium dioxide and inert gas is 1:10; The frequency of the plasma enhanced chemical vapor deposition equipment is 10MHz; the gas pressure is 20Pa; the temperature is 150°C; the radio frequency power is 3500W; the deposition power is 50W;
(3)继续在等离子体增强化学气相沉积设备中通入硅烷和氨气,使氮化硅沉积在纳米二氧化钛层的表面;所述硅烷和氨气的流量比为1:3;所述等离子体增强化学气相沉积设备的频率为12MHz;气体压强为100Pa;温度为100℃;射频功率为3500W;沉积功率为38W;(3) Continue to feed silane and ammonia in the plasma enhanced chemical vapor deposition equipment, so that silicon nitride is deposited on the surface of the nano-titanium dioxide layer; the flow ratio of the silane and ammonia is 1:3; the plasma The frequency of the enhanced chemical vapor deposition equipment is 12MHz; the gas pressure is 100Pa; the temperature is 100°C; the radio frequency power is 3500W; the deposition power is 38W;
(4)继续在等离子体增强化学气相沉积设备中通入二氧化硅,使二氧化硅沉积在氮化硅层的表面;所述等离子体增强化学气相沉积设备的频率为10MHz;气体压强为20Pa;温度为300℃;射频功率为3500W;沉积功率为38W;(4) Continue to feed silicon dioxide in the plasma-enhanced chemical vapor deposition equipment, so that silicon dioxide is deposited on the surface of the silicon nitride layer; the frequency of the plasma-enhanced chemical vapor deposition equipment is 10MHz; the gas pressure is 20Pa ; The temperature is 300°C; the RF power is 3500W; the deposition power is 38W;
(5)继续在等离子体增强化学气相沉积设备中通入硅烷和氢气,使非晶硅层沉积在二氧化硅层的表面;所述硅烷和氢气的流量比为1:6;所述等离子体增强化学气相沉积设备的频率为12MHz;气体压强为100Pa;温度为100℃;射频功率为3500W;沉积功率为38W。(5) Continue to feed silane and hydrogen in the plasma-enhanced chemical vapor deposition equipment, so that the amorphous silicon layer is deposited on the surface of the silicon dioxide layer; the flow ratio of the silane and hydrogen is 1:6; the plasma The frequency of the enhanced chemical vapor deposition equipment is 12MHz; the gas pressure is 100Pa; the temperature is 100°C; the radio frequency power is 3500W; and the deposition power is 38W.
实施例2Example 2
本实施例采用如下方法制备太阳能电池的减反射膜:In this embodiment, the following method is used to prepare the anti-reflection film of the solar cell:
(1)在等离子体增强化学气相沉积设备中通入硅片、硅氢化合物和氮气,使所述硅片的表面沉积氮氧化硅薄膜;所述硅片、硅氢化合物和氮气的流量比为1:4:3;所述等离子体增强化学气相沉积设备的频率为16MHz;气体压强为80Pa;温度为300℃;射频功率为6000W;沉积功率为70W;(1) feed silicon chip, silicon hydride and nitrogen in the plasma enhanced chemical vapor deposition equipment, make the surface deposition silicon oxynitride thin film of described silicon chip; The flow ratio of described silicon chip, silicon hydride and nitrogen is: 1:4:3; the frequency of the plasma-enhanced chemical vapor deposition equipment is 16MHz; the gas pressure is 80Pa; the temperature is 300°C; the radio frequency power is 6000W; the deposition power is 70W;
(2)继续在等离子体增强化学气相沉积设备中通入纳米二氧化钛和惰性气体,使纳米二氧化钛沉积在氮氧化硅薄膜层的表面;所述纳米二氧化钛和惰性气体的流量比为1:25;所述等离子体增强化学气相沉积设备的频率为13MHz;气体压强为100Pa;温度为350℃;射频功率为6000W;沉积功率为80W;(2) Continue to feed nano-titanium dioxide and inert gas in the plasma enhanced chemical vapor deposition equipment, so that nano-titanium dioxide is deposited on the surface of the silicon oxynitride film layer; the flow ratio of described nano-titanium dioxide and inert gas is 1:25; The frequency of the plasma-enhanced chemical vapor deposition equipment is 13MHz; the gas pressure is 100Pa; the temperature is 350°C; the radio frequency power is 6000W; the deposition power is 80W;
(3)继续在等离子体增强化学气相沉积设备中通入硅烷和氨气,使氮化硅沉积在纳米二氧化钛层的表面;所述硅烷和氨气的流量比为1:6;所述等离子体增强化学气相沉积设备的频率为16MHz;气体压强为300Pa;温度为300℃;射频功率为6000W;沉积功率为70W;(3) Continue to feed silane and ammonia in the plasma enhanced chemical vapor deposition equipment, so that silicon nitride is deposited on the surface of the nano-titanium dioxide layer; the flow ratio of the silane and ammonia is 1:6; the plasma The frequency of the enhanced chemical vapor deposition equipment is 16MHz; the gas pressure is 300Pa; the temperature is 300°C; the radio frequency power is 6000W; the deposition power is 70W;
(4)继续在等离子体增强化学气相沉积设备中通入二氧化硅,使二氧化硅沉积在氮化硅层的表面;所述等离子体增强化学气相沉积设备的频率为15MHz;气体压强为100Pa;温度为500℃;射频功率为6000W;沉积功率为70W;(4) Continue to feed silicon dioxide in the plasma-enhanced chemical vapor deposition equipment, so that silicon dioxide is deposited on the surface of the silicon nitride layer; the frequency of the plasma-enhanced chemical vapor deposition equipment is 15MHz; the gas pressure is 100Pa ; The temperature is 500°C; the RF power is 6000W; the deposition power is 70W;
(5)继续在等离子体增强化学气相沉积设备中通入硅烷和氢气,使非晶硅层沉积在二氧化硅层的表面;所述硅烷和氢气的流量比为1:10;所述等离子体增强化学气相沉积设备的频率为16MHz;气体压强为300Pa;温度为300℃;射频功率为6000W;沉积功率为70W。(5) Continue to feed silane and hydrogen in the plasma-enhanced chemical vapor deposition equipment, so that the amorphous silicon layer is deposited on the surface of the silicon dioxide layer; the flow ratio of the silane and hydrogen is 1:10; the plasma The frequency of the enhanced chemical vapor deposition equipment is 16MHz; the gas pressure is 300Pa; the temperature is 300°C; the radio frequency power is 6000W; and the deposition power is 70W.
实施例3Example 3
本实施例采用如下方法制备太阳能电池的减反射膜:In this embodiment, the following method is used to prepare the anti-reflection film of the solar cell:
(1)在等离子体增强化学气相沉积设备中通入硅片、硅氢化合物和氮气,使所述硅片的表面沉积氮氧化硅薄膜;所述硅片、硅氢化合物和氮气的流量比为1:2:1.5;所述等离子体增强化学气相沉积设备的频率为14MHz;气体压强为50Pa;温度为200℃;射频功率为4250W;沉积功率为54W;(1) feed silicon chip, silicon hydride and nitrogen in the plasma enhanced chemical vapor deposition equipment, make the surface deposition silicon oxynitride thin film of described silicon chip; The flow ratio of described silicon chip, silicon hydride and nitrogen is: 1:2:1.5; the frequency of the plasma-enhanced chemical vapor deposition equipment is 14MHz; the gas pressure is 50Pa; the temperature is 200°C; the radio frequency power is 4250W; the deposition power is 54W;
(2)继续在等离子体增强化学气相沉积设备中通入纳米二氧化钛和惰性气体,使纳米二氧化钛沉积在氮氧化硅薄膜层的表面;所述纳米二氧化钛和惰性气体的流量比为1:17.5;所述等离子体增强化学气相沉积设备的频率为11.5MHz;气体压强为60Pa;温度为250℃;射频功率为4250W;沉积功率为65W;(2) Continue to feed nano-titanium dioxide and inert gas in the plasma enhanced chemical vapor deposition equipment, so that nano-titanium dioxide is deposited on the surface of the silicon oxynitride film layer; the flow ratio of described nano-titanium dioxide and inert gas is 1:17.5; The frequency of the plasma-enhanced chemical vapor deposition equipment is 11.5MHz; the gas pressure is 60Pa; the temperature is 250°C; the radio frequency power is 4250W; the deposition power is 65W;
(3)继续在等离子体增强化学气相沉积设备中通入硅烷和氨气,使氮化硅沉积在纳米二氧化钛层的表面;所述硅烷和氨气的流量比为1:4.5;所述等离子体增强化学气相沉积设备的频率为14MHz;气体压强为200Pa;温度为200℃;射频功率为4250W;沉积功率为54W;(3) Continue to feed silane and ammonia in the plasma enhanced chemical vapor deposition equipment, so that silicon nitride is deposited on the surface of the nano-titanium dioxide layer; the flow ratio of the silane and ammonia is 1:4.5; the plasma The frequency of the enhanced chemical vapor deposition equipment is 14MHz; the gas pressure is 200Pa; the temperature is 200°C; the radio frequency power is 4250W; the deposition power is 54W;
(4)继续在等离子体增强化学气相沉积设备中通入二氧化硅,使二氧化硅沉积在氮化硅层的表面;所述等离子体增强化学气相沉积设备的频率为22.5MHz;气体压强为60Pa;温度为400℃;射频功率为4250W;沉积功率为54W;(4) Continue to feed silicon dioxide in the plasma-enhanced chemical vapor deposition equipment, so that silicon dioxide is deposited on the surface of the silicon nitride layer; the frequency of the plasma-enhanced chemical vapor deposition equipment is 22.5MHz; the gas pressure is 60Pa; temperature is 400°C; RF power is 4250W; deposition power is 54W;
(5)继续在等离子体增强化学气相沉积设备中通入硅烷和氢气,使非晶硅层沉积在二氧化硅层的表面;所述硅烷和氢气的流量比为1:8;所述等离子体增强化学气相沉积设备的频率为14MHz;气体压强为200Pa;温度为200℃;射频功率为4250W;沉积功率为54W。(5) Continue to feed silane and hydrogen in the plasma-enhanced chemical vapor deposition equipment, so that the amorphous silicon layer is deposited on the surface of the silicon dioxide layer; the flow ratio of the silane and hydrogen is 1:8; the plasma The frequency of the enhanced chemical vapor deposition equipment is 14MHz; the gas pressure is 200Pa; the temperature is 200°C; the radio frequency power is 4250W; and the deposition power is 54W.
实施例4Example 4
本实施例采用如下方法制备太阳能电池的减反射膜:In this embodiment, the following method is used to prepare the anti-reflection film of the solar cell:
(1)在等离子体增强化学气相沉积设备中通入硅片、硅氢化合物和氮气,使所述硅片的表面沉积氮氧化硅薄膜;所述硅片、硅氢化合物和氮气的流量比为1:1:1;所述等离子体增强化学气相沉积设备的频率为13MHz;气体压强为30Pa;温度为105℃;射频功率为3600W;沉积功率为40W;(1) feed silicon chip, silicon hydride and nitrogen in the plasma enhanced chemical vapor deposition equipment, make the surface deposition silicon oxynitride thin film of described silicon chip; The flow ratio of described silicon chip, silicon hydride and nitrogen is: 1:1:1; the frequency of the plasma-enhanced chemical vapor deposition equipment is 13MHz; the gas pressure is 30Pa; the temperature is 105°C; the radio frequency power is 3600W; the deposition power is 40W;
(2)继续在等离子体增强化学气相沉积设备中通入纳米二氧化钛和惰性气体,使纳米二氧化钛沉积在氮氧化硅薄膜层的表面;所述纳米二氧化钛和惰性气体的流量比为1:20;所述等离子体增强化学气相沉积设备的频率为12MHz;气体压强为50Pa;温度为200℃;射频功率为4000W;沉积功率为50W;(2) Continue to feed nano-titanium dioxide and inert gas in the plasma-enhanced chemical vapor deposition equipment, so that nano-titanium dioxide is deposited on the surface of the silicon oxynitride film layer; the flow ratio of described nano-titanium dioxide and inert gas is 1:20; The frequency of the plasma enhanced chemical vapor deposition equipment is 12MHz; the gas pressure is 50Pa; the temperature is 200°C; the radio frequency power is 4000W; the deposition power is 50W;
(3)继续在等离子体增强化学气相沉积设备中通入硅烷和氨气,使氮化硅沉积在纳米二氧化钛层的表面;所述硅烷和氨气的流量比为1:5;所述等离子体增强化学气相沉积设备的频率为15MHz;气体压强为150Pa;温度为200℃;射频功率为4000W;沉积功率为40W;(3) Continue to feed silane and ammonia in the plasma enhanced chemical vapor deposition equipment, so that silicon nitride is deposited on the surface of the nano-titanium dioxide layer; the flow ratio of the silane and ammonia is 1:5; the plasma The frequency of the enhanced chemical vapor deposition equipment is 15MHz; the gas pressure is 150Pa; the temperature is 200°C; the radio frequency power is 4000W; the deposition power is 40W;
(4)继续在等离子体增强化学气相沉积设备中通入二氧化硅,使二氧化硅沉积在氮化硅层的表面;所述等离子体增强化学气相沉积设备的频率为10MHz;气体压强为50Pa;温度为300℃;射频功率为3500W;沉积功率为42W;(4) Continue to feed silicon dioxide in the plasma-enhanced chemical vapor deposition equipment, so that silicon dioxide is deposited on the surface of the silicon nitride layer; the frequency of the plasma-enhanced chemical vapor deposition equipment is 10MHz; the gas pressure is 50Pa ; The temperature is 300°C; the RF power is 3500W; the deposition power is 42W;
(5)继续在等离子体增强化学气相沉积设备中通入硅烷和氢气,使非晶硅层沉积在二氧化硅层的表面;所述硅烷和氢气的流量比为1:8;所述等离子体增强化学气相沉积设备的频率为12MHz;气体压强为100Pa;温度为100℃;射频功率为5000W;沉积功率为40W。(5) Continue to feed silane and hydrogen in the plasma-enhanced chemical vapor deposition equipment, so that the amorphous silicon layer is deposited on the surface of the silicon dioxide layer; the flow ratio of the silane and hydrogen is 1:8; the plasma The frequency of the enhanced chemical vapor deposition equipment is 12MHz; the gas pressure is 100Pa; the temperature is 100°C; the radio frequency power is 5000W; and the deposition power is 40W.
实施例5Example 5
本实施例采用如下方法制备太阳能电池的减反射膜:In this embodiment, the following method is used to prepare the anti-reflection film of the solar cell:
(1)在等离子体增强化学气相沉积设备中通入硅片、硅氢化合物和氮气,使所述硅片的表面沉积氮氧化硅薄膜;所述硅片、硅氢化合物和氮气的流量比为1:2:3;所述等离子体增强化学气相沉积设备的频率为16MHz;气体压强为80Pa;温度为280℃;射频功率为5500W;沉积功率为58W;(1) feed silicon chip, silicon hydride and nitrogen in the plasma enhanced chemical vapor deposition equipment, make the surface deposition silicon oxynitride thin film of described silicon chip; The flow ratio of described silicon chip, silicon hydride and nitrogen is: 1:2:3; the frequency of the plasma-enhanced chemical vapor deposition equipment is 16MHz; the gas pressure is 80Pa; the temperature is 280°C; the radio frequency power is 5500W; the deposition power is 58W;
(2)继续在等离子体增强化学气相沉积设备中通入纳米二氧化钛和惰性气体,使纳米二氧化钛沉积在氮氧化硅薄膜层的表面;所述纳米二氧化钛和惰性气体的流量比为1:25;所述等离子体增强化学气相沉积设备的频率为11MHz;气体压强为60Pa;温度为200℃;射频功率为4500W;沉积功率为50W;(2) Continue to feed nano-titanium dioxide and inert gas in the plasma enhanced chemical vapor deposition equipment, so that nano-titanium dioxide is deposited on the surface of the silicon oxynitride film layer; the flow ratio of described nano-titanium dioxide and inert gas is 1:25; The frequency of the plasma enhanced chemical vapor deposition equipment is 11MHz; the gas pressure is 60Pa; the temperature is 200°C; the radio frequency power is 4500W; the deposition power is 50W;
(3)继续在等离子体增强化学气相沉积设备中通入硅烷和氨气,使氮化硅沉积在纳米二氧化钛层的表面;所述硅烷和氨气的流量比为1:5.5;所述等离子体增强化学气相沉积设备的频率为13MHz;气体压强为200Pa;温度为200℃;射频功率为4500W;沉积功率为60W;(3) Continue to feed silane and ammonia in the plasma enhanced chemical vapor deposition equipment, so that silicon nitride is deposited on the surface of the nano-titanium dioxide layer; the flow ratio of the silane and ammonia is 1:5.5; the plasma The frequency of the enhanced chemical vapor deposition equipment is 13MHz; the gas pressure is 200Pa; the temperature is 200°C; the radio frequency power is 4500W; the deposition power is 60W;
(4)继续在等离子体增强化学气相沉积设备中通入二氧化硅,使二氧化硅沉积在氮化硅层的表面;所述等离子体增强化学气相沉积设备的频率为10MHz;气体压强为60Pa;温度为300℃;射频功率为4500W;沉积功率为45W;(4) Continue to feed silicon dioxide in the plasma-enhanced chemical vapor deposition equipment, so that silicon dioxide is deposited on the surface of the silicon nitride layer; the frequency of the plasma-enhanced chemical vapor deposition equipment is 10MHz; the gas pressure is 60Pa ; The temperature is 300°C; the RF power is 4500W; the deposition power is 45W;
(5)继续在等离子体增强化学气相沉积设备中通入硅烷和氢气,使非晶硅层沉积在二氧化硅层的表面;所述硅烷和氢气的流量比为1:7.5;所述等离子体增强化学气相沉积设备的频率为15MHz;气体压强为300Pa;温度为100℃;射频功率为5500W;沉积功率为50W。(5) Continue to feed silane and hydrogen in the plasma-enhanced chemical vapor deposition equipment, so that the amorphous silicon layer is deposited on the surface of the silicon dioxide layer; the flow ratio of the silane and hydrogen is 1:7.5; the plasma The frequency of the enhanced chemical vapor deposition equipment is 15MHz; the gas pressure is 300Pa; the temperature is 100°C; the radio frequency power is 5500W; and the deposition power is 50W.
对比例1Comparative example 1
采用CN104241402A公开的太阳能电池减反射膜的制备方法制备该发明所述的太阳能电池减反射膜。The solar cell anti-reflection film described in the invention is prepared by the method for preparing the solar cell anti-reflection film disclosed in CN104241402A.
对比例2Comparative example 2
采用CN101989623A公开的太阳能电池减反射膜的制备方法制备该发明所述的太阳能电池减反射膜。The solar cell anti-reflection film described in the invention is prepared by adopting the preparation method of the solar cell anti-reflection film disclosed in CN101989623A.
对比例3Comparative example 3
本对比例采用如下方法制备太阳能电池的减反射膜:This comparative example adopts the following method to prepare the anti-reflection film of solar cell:
(1)在等离子体增强化学气相沉积设备中通入硅片、硅氢化合物和氮气,使所述硅片的表面沉积氮氧化硅薄膜;所述硅片、硅氢化合物和氮气的流量比为1:2:3;所述等离子体增强化学气相沉积设备的频率为16MHz;气体压强为80Pa;温度为280℃;射频功率为5500W;沉积功率为58W;(1) feed silicon chip, silicon hydride and nitrogen in the plasma enhanced chemical vapor deposition equipment, make the surface deposition silicon oxynitride thin film of described silicon chip; The flow ratio of described silicon chip, silicon hydride and nitrogen is: 1:2:3; the frequency of the plasma-enhanced chemical vapor deposition equipment is 16MHz; the gas pressure is 80Pa; the temperature is 280°C; the radio frequency power is 5500W; the deposition power is 58W;
(2)继续在等离子体增强化学气相沉积设备中通入纳米二氧化钛和惰性气体,使纳米二氧化钛沉积在氮氧化硅薄膜层的表面;所述纳米二氧化钛和惰性气体的流量比为1:25;所述等离子体增强化学气相沉积设备的频率为11MHz;气体压强为60Pa;温度为200℃;射频功率为4500W;沉积功率为50W;(2) Continue to feed nano-titanium dioxide and inert gas in the plasma enhanced chemical vapor deposition equipment, so that nano-titanium dioxide is deposited on the surface of the silicon oxynitride film layer; the flow ratio of described nano-titanium dioxide and inert gas is 1:25; The frequency of the plasma enhanced chemical vapor deposition equipment is 11MHz; the gas pressure is 60Pa; the temperature is 200°C; the radio frequency power is 4500W; the deposition power is 50W;
(3)继续在等离子体增强化学气相沉积设备中通入硅烷和氨气,使氮化硅沉积在纳米二氧化钛层的表面;所述硅烷和氨气的流量比为1:5.5;所述等离子体增强化学气相沉积设备的频率为13MHz;气体压强为200Pa;温度为200℃;射频功率为4500W;沉积功率为60W。(3) Continue to feed silane and ammonia in the plasma enhanced chemical vapor deposition equipment, so that silicon nitride is deposited on the surface of the nano-titanium dioxide layer; the flow ratio of the silane and ammonia is 1:5.5; the plasma The frequency of the enhanced chemical vapor deposition equipment is 13MHz; the gas pressure is 200Pa; the temperature is 200°C; the radio frequency power is 4500W; and the deposition power is 60W.
对比例4Comparative example 4
本对比例采用如下方法制备太阳能电池的减反射膜:This comparative example adopts the following method to prepare the anti-reflection film of solar cell:
(1)在等离子体增强化学气相沉积设备中通入硅片、硅氢化合物和氮气,使所述硅片的表面沉积氮氧化硅薄膜;所述硅片、硅氢化合物和氮气的流量比为1:2:3;所述等离子体增强化学气相沉积设备的频率为16MHz;气体压强为80Pa;温度为280℃;射频功率为5500W;沉积功率为58W;(1) feed silicon chip, silicon hydride and nitrogen in the plasma enhanced chemical vapor deposition equipment, make the surface deposition silicon oxynitride thin film of described silicon chip; The flow ratio of described silicon chip, silicon hydride and nitrogen is: 1:2:3; the frequency of the plasma-enhanced chemical vapor deposition equipment is 16MHz; the gas pressure is 80Pa; the temperature is 280°C; the radio frequency power is 5500W; the deposition power is 58W;
(2)继续在等离子体增强化学气相沉积设备中通入硅烷和氨气,使氮化硅沉积在纳米二氧化钛层的表面;所述硅烷和氨气的流量比为1:5.5;所述等离子体增强化学气相沉积设备的频率为13MHz;气体压强为200Pa;温度为200℃;射频功率为4500W;沉积功率为60W;(2) Continue to feed silane and ammonia in the plasma enhanced chemical vapor deposition equipment, so that silicon nitride is deposited on the surface of the nano-titanium dioxide layer; the flow ratio of the silane and ammonia is 1:5.5; the plasma The frequency of the enhanced chemical vapor deposition equipment is 13MHz; the gas pressure is 200Pa; the temperature is 200°C; the radio frequency power is 4500W; the deposition power is 60W;
(3)继续在等离子体增强化学气相沉积设备中通入二氧化硅,使二氧化硅沉积在氮化硅层的表面;所述等离子体增强化学气相沉积设备的频率为10MHz;气体压强为60Pa;温度为300℃;射频功率为4500W;沉积功率为45W;(3) Continue to feed silicon dioxide in the plasma-enhanced chemical vapor deposition equipment, so that silicon dioxide is deposited on the surface of the silicon nitride layer; the frequency of the plasma-enhanced chemical vapor deposition equipment is 10MHz; the gas pressure is 60Pa ; The temperature is 300°C; the RF power is 4500W; the deposition power is 45W;
(4)继续在等离子体增强化学气相沉积设备中通入硅烷和氢气,使非晶硅层沉积在二氧化硅层的表面;所述硅烷和氢气的流量比为1:7.5;所述等离子体增强化学气相沉积设备的频率为15MHz;气体压强为300Pa;温度为100℃;射频功率为5500W;沉积功率为50W。(4) Continue to feed silane and hydrogen in the plasma-enhanced chemical vapor deposition equipment, so that the amorphous silicon layer is deposited on the surface of the silicon dioxide layer; the flow ratio of the silane and hydrogen is 1:7.5; the plasma The frequency of the enhanced chemical vapor deposition equipment is 15MHz; the gas pressure is 300Pa; the temperature is 100°C; the radio frequency power is 5500W; and the deposition power is 50W.
性能测试:Performance Testing:
折射率测试采用SENTECH公司生产的SE400adv椭偏仪;The refractive index test adopts the SE400adv ellipsometer produced by SENTECH;
反射率采用PE公司生产的PELAMBDA积分式反射仪;The reflectivity adopts the PELAMBDA integral reflectometer produced by PE Company;
厚度均匀性采用减反射薄膜上五点的厚度极差来评价其厚度的均匀性,极差越大表示均匀性越差:Thickness uniformity uses the thickness range of five points on the anti-reflection film to evaluate the uniformity of its thickness. The larger the range, the worse the uniformity:
极差=最大值-最小值。Range = maximum value - minimum value.
所有测试的结果如表1所示,可以看出,本发明的减反射膜与对比例相比,其平均反射率大幅度降低,折射率效果也较佳;并且薄膜厚度的均匀性极差仅在1~2nm波动,说明厚度均匀性效果非常好。The results of all the tests are shown in Table 1. It can be seen that the average reflectance of the anti-reflection film of the present invention is greatly reduced compared with the comparative example, and the refractive index effect is also better; and the uniformity of the film thickness is extremely poor. It fluctuates at 1-2nm, indicating that the thickness uniformity effect is very good.
表1性能测试结果Table 1 performance test results
申请人声明,本发明通过上述实施例来说明本发明的工艺方法,但本发明并不局限于上述工艺步骤,即不意味着本发明必须依赖上述工艺步骤才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明所选用原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。The applicant declares that the present invention illustrates the process method of the present invention through the above examples, but the present invention is not limited to the above process steps, that is, it does not mean that the present invention must rely on the above process steps to be implemented. Those skilled in the art should understand that any improvement of the present invention, the equivalent replacement of the selected raw materials in the present invention, the addition of auxiliary components, the selection of specific methods, etc., all fall within the scope of protection and disclosure of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510549529.3A CN105097962A (en) | 2015-08-31 | 2015-08-31 | Solar cell anti-reflection film and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510549529.3A CN105097962A (en) | 2015-08-31 | 2015-08-31 | Solar cell anti-reflection film and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105097962A true CN105097962A (en) | 2015-11-25 |
Family
ID=54577984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510549529.3A Pending CN105097962A (en) | 2015-08-31 | 2015-08-31 | Solar cell anti-reflection film and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105097962A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112349813A (en) * | 2020-11-05 | 2021-02-09 | 江苏润阳悦达光伏科技有限公司 | Crystalline silicon solar cell PECVD low-reflectivity film optimization process |
WO2024248727A1 (en) * | 2023-06-01 | 2024-12-05 | Maxeon Solar Pte. Ltd. | Improved front surface anti-reflection coating for solar cells |
WO2024248728A1 (en) * | 2023-06-01 | 2024-12-05 | Maxeon Solar Pte. Ltd. | Improved front surface anti-reflection coating for solar cells |
WO2024248726A1 (en) * | 2023-05-26 | 2024-12-05 | Maxeon Solar Pte. Ltd. | Improved front surface anti-reflection coating for solar cells |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101383382A (en) * | 2008-10-09 | 2009-03-11 | 中国科学院电工研究所 | Composite passivation anti-reflection film for crystalline silicon solar cells and preparation method thereof |
CN102723370A (en) * | 2012-06-18 | 2012-10-10 | 湖南红太阳光电科技有限公司 | Wide spectrum multilayered antireflection passivation film for solar cell |
CN103000705A (en) * | 2012-10-22 | 2013-03-27 | 江苏晨电太阳能光电科技有限公司 | Crystalline silicon solar cell antireflection film |
CN103022160A (en) * | 2013-01-10 | 2013-04-03 | 常州天合光能有限公司 | PID (potential induced degradation) resistible solar cell passivated antireflective film |
CN103474506A (en) * | 2013-06-09 | 2013-12-25 | 苏州润阳光伏科技有限公司 | Method for manufacturing bifacial solar cell |
-
2015
- 2015-08-31 CN CN201510549529.3A patent/CN105097962A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101383382A (en) * | 2008-10-09 | 2009-03-11 | 中国科学院电工研究所 | Composite passivation anti-reflection film for crystalline silicon solar cells and preparation method thereof |
CN102723370A (en) * | 2012-06-18 | 2012-10-10 | 湖南红太阳光电科技有限公司 | Wide spectrum multilayered antireflection passivation film for solar cell |
CN103000705A (en) * | 2012-10-22 | 2013-03-27 | 江苏晨电太阳能光电科技有限公司 | Crystalline silicon solar cell antireflection film |
CN103022160A (en) * | 2013-01-10 | 2013-04-03 | 常州天合光能有限公司 | PID (potential induced degradation) resistible solar cell passivated antireflective film |
CN103474506A (en) * | 2013-06-09 | 2013-12-25 | 苏州润阳光伏科技有限公司 | Method for manufacturing bifacial solar cell |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112349813A (en) * | 2020-11-05 | 2021-02-09 | 江苏润阳悦达光伏科技有限公司 | Crystalline silicon solar cell PECVD low-reflectivity film optimization process |
WO2024248726A1 (en) * | 2023-05-26 | 2024-12-05 | Maxeon Solar Pte. Ltd. | Improved front surface anti-reflection coating for solar cells |
WO2024248727A1 (en) * | 2023-06-01 | 2024-12-05 | Maxeon Solar Pte. Ltd. | Improved front surface anti-reflection coating for solar cells |
WO2024248728A1 (en) * | 2023-06-01 | 2024-12-05 | Maxeon Solar Pte. Ltd. | Improved front surface anti-reflection coating for solar cells |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109087956B (en) | A double-sided PERC solar cell structure and preparation process thereof | |
Vermang et al. | Employing Si solar cell technology to increase efficiency of ultra‐thin Cu (In, Ga) Se2 solar cells | |
Kanda et al. | Al2O3/TiO2 double layer anti‐reflection coating film for crystalline silicon solar cells formed by spray pyrolysis | |
CN105097962A (en) | Solar cell anti-reflection film and preparation method thereof | |
CN102903764A (en) | Three-layered silicon nitride antireflective film of crystalline silicon solar cell and preparation method thereof | |
CN110112243A (en) | Passivation structure on back of solar battery and preparation method thereof | |
CN104091838B (en) | High-conversion-efficiency PID-resisting crystalline silicon solar cell and manufacturing method thereof | |
CN103094366A (en) | Solar cell passivation antireflection film and preparation technology and method thereof | |
CN109004038B (en) | Solar cell, preparation method thereof and photovoltaic module | |
CN104241403A (en) | Multilayer passivation anti-reflective coating of crystalline silicon cell and manufacturing method thereof | |
Shin et al. | Optimization of intrinsic hydrogenated amorphous silicon deposited by very high-frequency plasma-enhanced chemical vapor deposition using the relationship between Urbach energy and silane depletion fraction for solar cell application | |
Kim et al. | Anti-reflection porous SiO2 thin film deposited using reactive high-power impulse magnetron sputtering at high working pressure for use in a-Si: H solar cells | |
CN106449784A (en) | Solar battery antireflection film, preparation method thereof and solar battery piece | |
CN110106493A (en) | Utilize the method for Tubular PECVD device preparation backside passivation film | |
CN104851923A (en) | Antireflection film manufacture method for raising efficiency of crystalline silicon solar cell | |
CN102931284A (en) | Method for preparing SiOx-SiNx laminated films of crystal silicon solar cell | |
CN104091839A (en) | Antireflective film for solar cell piece and manufacturing method thereof | |
CN103606599A (en) | Method for manufacturing high-refractive-index silicon nitride antireflection film | |
CN110491954B (en) | A solar cell and a manufacturing method thereof, and a photovoltaic module | |
CN111733399A (en) | A kind of crystalline silicon solar cell coating method and coating equipment | |
CN111628044A (en) | Surface passivation treatment method and system for silicon solar cell | |
CN110079788A (en) | A kind of plating method of the ultraviolet antireflection film based on PEALD | |
CN113930748B (en) | Preparation method of solar cells, solar cells and photovoltaic modules | |
Dao et al. | Effect of N2O/SiH4 flow ratios on properties of amorphous silicon oxide thin films deposited by inductively-coupled plasma chemical vapor deposition with application to silicon surface passivation | |
CN104241402A (en) | Solar cell antireflection film and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20151125 |